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Abstract. We provide an extension of the Poincaré–Birkhoff Theorem for
systems coupling linear components with twisting components. Applica-
tions are given both to weakly coupled Hamiltonian systems where, e.g., a
superlinear or sublinear behaviour is assumed in the nonlinear part of the
coupling in order to recover the needed twist conditions, and to local per-
turbations of superintegrable systems, showing the survival of a number
of periodic solutions from a lower-dimensional torus.
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1. Introduction and main result

We consider the Hamiltonian system

ż = J∇H(t, z), (HS)

and we assume the Hamiltonian function H : R × R
2N → R to be continuous,

T -periodic in its first variable t, and continuously differentiable with respect to
its second variable z, with corresponding gradient ∇H(t, z). Here, J =

(
0 −I
I 0

)

denotes the standard symplectic matrix; it will be often used in the sequel,
also in spaces having a different dimension.

For z ∈ R
2N , we use the notation z = (x, y), with x = (x1, . . . , xN ) ∈ R

N

and y = (y1, . . . , yN ) ∈ R
N . Moreover, we gather into four groups the variables

of x and y, respectively, thus writing

x = (xa, xb, xc, xd), y = (ya, yb, yc, yd),
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where, for some nonnegative integers Na, N b, N c, Nd,

xa = (xa
1 , . . . , x

a
Na) ∈ R

Na

, ya = (ya
1 , . . . , ya

Na) ∈ R
Na

,

xb = (xb
1, . . . , x

b
Nb) ∈ R

Nb

, yb = (yb
1, . . . , y

b
Nb) ∈ R

Nb

,

xc = (xc
1, . . . , x

c
Nc) ∈ R

Nc

, yc = (yc
1, . . . , y

c
Nc) ∈ R

Nc

,

xd = (xd
1, . . . , x

d
Nd) ∈ R

Nd

, yd = (yd
1 , . . . , y

d
Nd) ∈ R

Nd

.

We also introduce the notation

za = (xa, ya), zb = (xb, yb), zc = (xc, yc), zd = (xd, yd).

Notice that one or more of these integers could be equal to zero, in which
case the corresponding group will not be taken into account; for example, if
Na = 0, then xa, ya and za will disappear from the list. We assume that

H(t, x, y) is 2π-periodic in each of the variables included in xa, xb, ya, yc.
The total number of variables in which our Hamiltonian function is 2π-periodic
is thus

M := Na + N b + Na + N c.

Under this setting, T -periodic solutions z(t) of (HS) appear in equivalence
classes made of those solutions whose components in xa(t), xb(t), ya(t), yc(t)
differ by an integer multiple of 2π. We say that two T -periodic solutions are
geometrically distinct if they do not belong to the same equivalence class.

Gathering together the variables in which H(t, z) is 2π-periodic, we will
use the notation

zp = (xa, xb, ya, yc), z¬p = (xc, xd, yb, yd),

so that we are allowed to write z = (zp, z¬p).
In order to guarantee the existence of T -periodic solutions for (HS), some

additional conditions are necessary. One classical approach is to require that
the Hamiltonian function is asymptotically quadratic (or alternatively coer-
cive) in the z¬p variables. Many key results are included in this framework.
Just briefly, the case N = Na is related to Arnold’s conjecture for the torus,
eventually settled in [8]. The case N = Nd corresponds to asymptotically lin-
ear Hamiltonian systems; starting from the seminal papers [1,9] it has inspired
an entire research branch. The case N = N b (or the analogous one N = N c)
has been first approached in [8], assuming the Hamiltonian to be asymptot-
ically quadratic in the yb variables, and later pursued in [27,33] by the use
of abstract variational theorems. Our general case has been studied in [6,28],
cf. also [17].

Several authors have noticed a strong connection between the case N =
N b and the Poincaré–Birkhoff Theorem. Indeed, in the planar case N = N b =
1, an asymptotically quadratic Hamiltonian in yb produces, for R > 0 suffi-
ciently large, the twist behaviour

xb(T ) − xb(0) > 0 for every solution (xb(t), yb(t)) with yb(0) = R,

xb(T ) − xb(0) < 0 for every solution (xb(t), yb(t)) with yb(0) = −R,
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or vice versa. There is however still a structural gap between such results
and the Poincaré–Birkhoff Theorem. While asymptotic quadraticity in the yb

variables is a global property of the Hamiltonian function, the twist condition
in the Poincaré–Birkhoff Theorem is assumed for a symplectic map (e.g., the
Poincaré time map of (HS)) on a bounded domain. Conditions of this type
in higher dimension have been proposed for instance in [31, Theorem 2.21],
but under the strong assumption of having a monotone twist. The general
case without such an assumption has been first tamed by the first author and
Ureña in [21], for Poincaré maps of higher dimensional Hamiltonian systems,
cf. also [22]. This result represents a considerable improvement in terms of the
possible applications, as has been shown, e.g., in [5,15,18–20].

We have proved in [16] that the same results can be extended to the
case where the twisting components zb are coupled with some purely periodic
components za, thus treating the case N = Na + N b. The main purpose
of this paper is to prove existence and multiplicity of T -periodic solutions
for (HS) when purely periodic components za, twist components zb and zc,
and asymptotically linear components zd are all simultaneously considered.
Such a generalization does not only present a theoretical value, completing
the scenario presented above, but also allows several novel applications, that
we discuss in the second part of the paper.

Let us now present in detail the setting of our main theorem. Denoting
by Ls(X) the space of linear symmetric operators in a finite-dimensional space
X, We assume that there exists a continuous and T -periodic function A : R →
Ls(R2Nd

) satisfying the nonresonance condition

z(t) ≡ 0 is the only T -periodic solution of ż(t) = JA(t)z(t), (1.1)

and such that the Hamiltonian function can be written as

H(t, z) = 1
2 〈A(t)zd, zd〉 + K(t, z),

where K(t, z) has a bounded gradient with respect to z, i.e., there exists a
constant C1 > 0 for which

|∇K(t, z)| ≤ C1, for every (t, z) ∈ R × R
2N . (1.2)

(We denote by 〈·, ·〉 the Euclidean scalar product, and by | · | its associated
norm.) Our main result is the following.

Theorem 1.1. In the above setting, let h : RNc × R
Nb → R be a C∞-function

and S ∈ Ls(RNc ×R
Nb

) be an invertible operator such that, for some constant
C2 > 0,

∣
∣h(υ) − 1

2 〈Sυ, υ〉∣∣ ≤ C2 and |∇h(υ) − Sυ| ≤ C2, (1.3)

for every υ ∈ R
Nc × R

Nb

. Setting

D = {υ ∈ R
Nc × R

Nb

: ∇h(υ) = 0}, (1.4)

assume that there exists ρ > 0 such that, for any solution z(t) of (HS) with
dist((xc(0), yb(0)), ∂D) < ρ, one has

(
yc(T ) − yc(0),−(xb(T ) − xb(0))

)
/∈ {λ∇h(xc(0), yb(0)) : λ ≥ 0}. (1.5)
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Then, system (HS) has at least M + 1 geometrically distinct T -periodic solu-
tions z(t), with the property that

(xc(0), yb(0)) ∈ D. (1.6)

In the case N = Na + N b the avoiding cones condition (1.5) has been
extensively discussed in [16]. As an example, let us quote [16, Theorem 12],
where D is assumed to be a convex set, and the same conclusion of Theorem 1.1
is reached by asking, for any solution z(t) of (HS) with yb(0) ∈ ∂D, that

xb(T ) − xb(0) /∈ −ND(yb(0)),

where ND(yb) denotes the normal cone to D at yb ∈ ∂D, i.e.,

ND(yb) =
{
v ∈ R

N :
〈
v, w − yb

〉 ≤ 0, for every w ∈ D
}

.

Notice that, when Nd = 0, in the statement of Theorem 1.1 we can
replace dist((xc(0), yb(0)), ∂D) < ρ by (xc(0), yb(0)) ∈ ∂D, and (1.2) may not
be requested. Both properties are actually still needed in the proof, but they
can be easily recovered by the other assumptions via a modified Hamiltonian
and a compactness argument. With Nd 
= 0, the lack of a priori estimates in
the zd variables makes it necessary to require such conditions explicitly.

In the next section we provide some corollaries of Theorem 1.1 which will
open the way to the applications we have in mind, and illustrate in more con-
crete terms the meaning of the twist condition (1.5). The proof of Theorem 1.1
is carried out in Sect. 3. In the last three sections we discuss some possible
applications of our result.

In Sect. 4 we present a local existence result concerning the perturbation
of a completely resonant lower dimensional torus, thus extending the result in
[15] for the case Nd = 0. Under suitable nondegeneracy conditions, we prove
the survival of periodic solutions under a small perturbation of the autonomous
system.

In Sect. 5 we propose instead a global existence result, considering the
weakly coupling of a linear system with systems which have a superlinear
behaviour at infinity.

Finally, in Sect. 6, we survey other possible applications to weakly coupled
systems, discussing how a sublinear or pendulum-like behaviour can be handled
similarly as the superlinear one studied in the previous section.

2. Corollaries and remarks

Let D be a given convex body of RNc ×R
Nb

(i.e., a closed convex bounded set
with a nonempty interior), and let πD : RNc ×R

Nb → D denote the projection
on it. When there is no ambiguity, we shorten πDv for πD(v). Moreover, let
ND(ζ) be the normal cone at some point ζ ∈ ∂D and, when D has a smooth
boundary, let νD(ζ) be the unit outward normal, in which case ND(ζ) =
{λνD(ζ) : λ ≥ 0}.

The aim of this section is to provide some conditions which guarantee the
possibility of constructing a function h verifying (1.3) and (1.4), and for which
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the avoiding cones condition (1.5) holds. We refer to [16] for further details.
Here is our first corollary.

Corollary 2.1. In the setting of Theorem 1.1, assume that D is a convex body
of RNc ×R

Nb

with a smooth boundary, and that there is a constant ρ > 0 such
that for any solution z(t) of (HS) with dist((xc(0), yb(0)), ∂D) < ρ, one has

(
yc(T ) − yc(0),−(xb(T ) − xb(0))

)
/∈ ND

(
πD(xc(0), yb(0))

)
. (2.1)

Then, the conclusion of Theorem 1.1 holds.

Proof. We need to consider a C∞-smooth function σ : R → R such that

σ(s) =

{
0, if s ≤ 0,

1, if s ≥ 1,
σ′(s) > 0 if s ∈ ]0, 1[.

We define the function h : RNb+Nc → R by

h(v) = ξ(v)|v − πDv|2,
where

ξ(v) =

{
0 if v ∈ D,
1
2σ(|v − πDv|) if v /∈ D.

Notice that

∇ξ(v) =
σ′(|v − πDv|)
2|v − πDv| (v − πDv), for every v /∈ D. (2.2)

Then, if v /∈ D,

∇h(v) =
[
1
2σ′(|v − πDv|)|v − πDv| + σ(|v − πDv|)] (v − πDv),

hence (1.3) and (1.4) hold, with S = I. Moreover, since ∇h(v) has the same
direction as νD(πDv), for every v /∈ D, we see that (2.1) is equivalent to (1.5),
hence the result follows from Theorem 1.1. �

Remark 2.2. Notice that assumption (2.1) can be replaced by
(
yc(T ) − yc(0),−(xb(T ) − xb(0))

)
/∈ −ND

(
πD(xc(0), yb(0))

)
. (2.3)

In the proof, it is sufficient to take h(v) = −ξ(v) |v − πDv|2, and the result
follows in a similar way.

Here is our second corollary, where we assume that D is strongly convex,
meaning that, for any v ∈ ∂D, the height function η �→ 〈η − v,−νD(v)〉 has a
nondegenerate minimum at η = v.

Corollary 2.3. In the setting of Theorem 1.1, assume that D is strongly con-
vex, with a smooth boundary, and that there exist an invertible operator B ∈
Ls(RNc ×R

Nb

) and a constant ρ > 0 such that, for any solution z(t) of (HS)
with dist((xc(0), yb(0)), ∂D) < ρ, one has

〈(
yc(T ) − yc(0),−(xb(T ) − xb(0))

)
, BνD

(
πD(xc(0), yb(0))

)〉
> 0. (2.4)

Then, the conclusion of Theorem 1.1 holds.



   55 Page 6 of 26 A. Fonda and P. Gidoni NoDEA

Proof. We consider the C∞-smooth function ξ(v) introduced in the proof of
Corollary 2.1, and define

h(v) = −ξ(v)〈B(v − πDv), v − πDv〉.
By the chain rule, if v /∈ D,

∇h(v) = −〈B(v − πDv), v − πDv〉∇ξ(v) − 2ξ(v)(Id − π′
D(v))∗

B(v − πDv).

For |v| large enough, since ξ(v) = 1
2 and ∇ξ(v) = 0, we have

|∇h(v) + Bv| = |BπDv + π′
D(v)∗

B(v − πDv)|
≤ |BπDv| + ‖π′

D(v)∗‖ ‖B‖ |v − πDv|.
Since D is strongly convex, by [21, Lemma 2.2] there is a constant c > 0 such
that

‖π′
D(v)‖ |v − πDv| ≤ c, for every v /∈ D,

hence (1.3) holds, with S = −B. Moreover, if v /∈ D,

〈∇h(v),−BνD(πDv)〉 =〈B(v − πDv), v − πDv〉〈∇ξ(v),BνD(πDv)〉
+ 2ξ(v)〈(Id − π′

D(v))∗
B(v − πDv),BνD(πDv)〉.

Now, in view of (2.2), ∇ξ(v) has the same direction as v−πDv. Since v−πDv =
dist(v, ∂D)ν(πDv), the first term in the right hand side of the equality is
nonnegative. On the other hand, by [21, Lemma 2.2], we have that (Id−π′

D(v))∗

is positive definite, for any v /∈ D, and the second term in the right hand side
of the equality is positive. Therefore,

〈∇h(v),BνD(πDv)〉 < 0, for every v /∈ D. (2.5)

This implies (1.4), and we see that (2.4) and (2.5) imply (1.5), hence the result
follows from Theorem 1.1. �

To end this section, we consider the case when D is a (N b + N c)-cell,
namely

D = [a1, b1] × · · · × [aNb+Nc , bNb+Nc ].

Corollary 2.4. In the setting of Theorem 1.1, suppose that there exist a (N b +
N c)-uple

σ = (σ1, . . . , σNb+Nc) ∈ {−1, 1}Nb+Nc

,

and a constant ρ > 0 such that, for any solution z(t) of (HS),

(xb
j(T ) − xb

j(0))σj < 0, if yb
j(0) ∈ [aj − ρ, aj ],

(xb
j(T ) − xb

j(0))σj > 0, if yb
j(0) ∈ [bj , bj + ρ],

(yc
k(T ) − yc

k(0))σNb+k < 0, if xc
k(0) ∈ [aNb+k − ρ, aNb+k],

(yc
k(T ) − yc

k(0))σNb+k > 0, if xc
k(0) ∈ [bNb+k, bNb+k + ρ],

for every index j = 1, . . . , N b and k = 1, . . . , N c. Then, the conclusion of
Theorem 1.1 holds.
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Proof. A smoothness procedure can be used (see [21, Lemma 2.1]) to trans-
form the set D into a strongly convex set with a smooth boundary. Then,
taking a diagonal matrix B with diagonal elements equal to ±1, Corollary 2.3
applies. �

The expert reader will have noticed that such kind of conditions are
strongly related to the ones appearing in the Poincaré–Miranda Theorem.

3. Proof of Theorem 1.1

3.1. Some preliminary estimates

We first modify our Hamiltonian function so to make it purely quadratic for
large values of the non-periodic components. Let us consider, for any R ≥ 1,
a C∞-smooth function aR : R → [0, 1], with

aR(s) =

{
1, if s ≤ R,

0, if s ≥ 3R,

and such that

− s−1 ≤ a′
R(s) ≤ 0, for every s ≥ R. (3.1)

Recalling the notation z = (zp, z¬p), by (1.2) and the periodicity in the zp

variables we can find two constants C3, C4 for which

|K(t, z)| ≤ C3|z¬p| + C4, for every z ∈ R
2N . (3.2)

We now define the function

KR(t, z) = aR(|z¬p|)K(t, z),

for some R ≥ 1 to be fixed below, and the corresponding Hamiltonian function

HR(t, z) = 1
2 〈A(t)zd, zd〉 + KR(t, z).

Notice that, using (1.2), (3.1), (3.2) and the fact that R ≥ 1, we get

|∇KR(t, z)| =
∣
∣
∣
∣a

′
R(|z¬p|)K(t, z)

z¬p

|z¬p| + aR(|z¬p|)∇K(t, z)
∣
∣
∣
∣

≤ |a′
R(|z¬p|)| |K(t, z)| + aR(|z¬p|) |∇K(t, z)|

≤ C1 + C3 + C4 := C5,

so that the bound on ∇KR is independent of R.
The following lemmas provide us with some a priori estimates on the

solutions of

ż = J∇HR(t, z). (HSR)

More precisely, we will need to consider an approximating system

ż = J∇Ĥ(t, z), (ĤS)

with some Ĥ(t, z) = 1
2 〈A(t)z, z〉 + K̂(t, z).
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Lemma 3.1. There is a constant C6 ≥ 1 such that, for any R ≥ 1 and K̂ : [0, T ]×
R

2N → R with ‖∇K̂ − ∇KR‖∞ ≤ 1, if ẑ(t) is a solution of (ĤS) satisfy-
ing (1.6) and ẑ(0) = ẑ(T ), then |ẑ¬p(t)| ≤ C6, for every t ∈ [0, T ].

Proof. Assume by contradiction that there are a sequence (Rn)n in [1,+∞[, a
sequence (K̂n)n with ‖∇K̂n −∇KRn

‖∞ ≤ 1 and a sequence (zn)n of solutions
of (ĤS) with Ĥ(t, z) = 1

2 〈A(t)zd, zd〉 + K̂n(t, z) such that ‖z¬p
n ‖∞ → +∞. We

first prove that (zd
n)n remains bounded. If not, define vn(t) = zn(t)/‖zd

n‖∞.
Then

v̇d
n = JA(t)vd

n +
1

‖zd
n‖∞

J∇zdK̂n(t, zn), (3.3)

and since ∇K̂n is bounded, independently of n, we deduce the existence of
a subsequence (vd

nk
)k which converges uniformly to some continuous function

vd(t). We then see that vd(0) = vd(T ), and vd solves υ̇ = JA(t)υ, hence,
by (1.1), vd(t) has to be identically equal to zero. But this is a contradiction
with the fact that ‖vd‖∞ = 1, since ‖vd

n‖∞ = 1, for every n. So, (zd
n)n is

uniformly bounded on [0, T ].
Now, since (xc

n(0), yb
n(0)) belongs to the compact set D and ∇K̂n is

bounded, independently of n, we deduce that (xc
n)n and (yb

n)n must be uni-
formly bounded on [0, T ], thus concluding the proof. �

Lemma 3.2. There is a constant C7 ≥ 1 such that, if w : [0, T ] → R
2Nd

is a
differentiable function such that w(0) = w(T ) and

|ẇ(t) − JA(t)w(t)| ≤ C5 + 1, for every t ∈ [0, T ],

then |w(t)| ≤ C7, for every t ∈ [0, T ].

The proof follows a standard argument by contradiction, as the previous
one, and it is a consequence of the nonresonance condition (1.1). We omit it,
for brevity.

Let rD > 0 be such that D ⊆ B
RNc+Nb (0, rD), and set

C∗ := max{C6, C7, rD} + ρ.

(Here and in the following, BRL(0, r) denotes the open ball in R
L centered at

0, with radius r > 0.)

Lemma 3.3. There is a constant C̃ ≥ C∗ such that, for any R ≥ 1, if z(t)
is a solution of (HSR) satisfying |z¬p(t0)| ≤ C∗ for some t0 ∈ [0, T ], then
|z¬p(t)| ≤ C̃, for every t ∈ [0, T ].

Proof. Just use the fact that ∇KR is bounded independently of R ≥ 1, and
∇H(t, z) has an at most linear growth in zd. �

We now fix R ≥ C̃. Notice that, with such an R, Lemma 3.1 tells us
that the T -periodic solutions of (HSR) satisfying (1.6) are indeed solutions
of (HS). We will thus look for T -periodic solutions of (HSR) satisfying (1.6).
Notice that, since

|z¬p| ≥ 3R ⇒ KR(t, z) = 0,
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assumption (1.5) does not hold for the system (HSR). However, we will show
how to control the components z¬p of such solutions so to remain in the region
where the Hamiltonian H has not been modified.

3.2. The modified system

As usual, it is suficient to assume HR to be defined only on [0, T ] × R
2N ,

and to look for solutions satisfying the boundary condition z(0) = z(T ) (still
called T -periodic solutions). We need to adapt to our situation the argument
introduced in [21, Sect. 4–5].

By (1.5) and Lemma 3.2, there are no T -periodic solutions z(t) of (HSR)
starting with (xc(0), yb(0)) ∈ ∂D. We claim that there is a ε∗ > 0 such that, if
z(t) is a solution of (HSR) such that (xc(0), yb(0)) ∈ ∂D, then |z(T ) − z(0)| ≥
ε∗. By contradiction, assume that there exists a sequence (zn)n of solutions
of (HSR) such that (xc

n(0), yb
n(0)) ∈ ∂D and |zn(T ) − zn(0)| < 1/n. Using the

argument in the proof of Lemma 3.1 we see that (z¬p
n )n is bounded. Then,

using the compactness of D and the periodicity in the zp
n variables, by the

Ascoli–Arzelà Theorem we see that a subsequence of (zn)n converges to some
z∗, which is a T -periodic solution of (HSR) such that (xc

∗(0), yb
∗(0)) ∈ ∂D, a

contradiction.
Since the solutions of initial value problems associated with (HSR) are

globally defined, the standard theory of differential equations (cf. [14]) provides
the existence of a small δ ∈ ]0,min{1, T}[ with the following property: if K̂ :
[0, T ] × R

2N → R is such that ‖∇K̂ − ∇KR‖∞ ≤ δ, then, defining Ĥ(t, z) =
1
2 〈A(t)zd, zd〉 + K̂(t, z), for every solution ẑ(t) of (ĤS) satisfying

dist((x̂c(t0), ŷb(t0)), ∂D) ≤ δ, for some t0 ∈ [0, δ],

there is a solution z(t) of (HSR) satisfying (xc(0), yb(0)) ∈ ∂D, and |z(t) −
ẑ(t)| ≤ ε∗/4, for every t ∈ [0, T ].

Let mδ : [0, 1] × R
Nc × R

Nb → R be a C∞-smooth function such that

mδ(t, xc, yb) =

{
1, if t ∈ [0, δ/2] and dist((xc, yb),RNc+Nb\D) ≤ δ/2,

0, if t ∈ [δ, T ] or dist((xc, yb),RNc+Nb\D) ≥ δ.

Choose a C∞-smooth function K∗ : [0, T ] × R
2N → R such that ‖∇K∗ −

∇KR‖∞ ≤ 1, satisfying

|z¬p| ≥ 3R ⇒ K∗(t, z) = 0,

and define

K̂(t, z) = (1 − mδ(t, xc, yb))KR(t, z) + mδ(t, xc, yb)K∗(t, z).

Then, K̂ coincides with KR on the relatively open set

O =
{

(t, z) : t ∈ [0, δ],dist((xc, yb),RNc+Nb\D) > δ
}

∪
(
]δ, T ] × R

2N
)
.

Moreover, the graph of every T -periodic solution ẑ(t) of (ĤS) starting with
(x̂c(0), ŷb(0)) ∈ D is contained in O. Indeed, otherwise for such a solution
there would be a t0 ∈ [0, δ] for which dist((x̂c(t0), ŷb(t0)), ∂D) < δ, and then
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(xc, yb)

r̄

−r̄

t

D

Tτ

Δ

Δ

Figure 1. The set Δ ⊂ [0, T ] × R
Nc+Nb

defined in (3.5)

we could find a solution z(t) of (HSR) such that (xc(0), yb(0)) ∈ ∂D and
|z(t) − ẑ(t)| ≤ ε∗/4, for every t ∈ [0, T ]. But

0 = |ẑ(T ) − ẑ(0)| ≥ |z(T ) − z(0)| − |z(T ) − ẑ(T )| − |z(0) − ẑ(0)|
≥ ε∗ − (ε∗/4) − (ε∗/4) > 0,

a contradiction. We thus conclude that every T -periodic solution ẑ(t) of (ĤS)
starting with (x̂c(0), ŷb(0)) ∈ D is indeed a T -periodic solution of (HSR).

We will thus look for T -periodic solutions ẑ(t) of (ĤS) starting with
(x̂c(0), ŷb(0)) ∈ D. Recalling assumption (1.5), taking δ ∈ ]0, 1[ small enough,
by a compactness argument as above we can find a � ∈ ]0, ρ[ such that, for any
solution ẑ(t) of (ĤS) with dist((x̂c(0), ŷb(0)), ∂D) ≤ � and |ẑd(0)| ≤ C7, one
has

(
ŷc(T ) − ŷc(0),−(x̂b(T ) − x̂b(0))

)
/∈ {λ∇h(x̂c(0), ŷb(0)) : λ ≥ 0}. (3.4)

Let us fix some r̄ > 3R and define the closed set (cf. Fig. 1)

Δ =
(
[0, τ [×(RNc+Nb\D

)) ∪
(
[τ, T ] × (RNc+Nb\B

RNc+Nb (0, r̄)
))

, (3.5)

where τ ∈ ]0, δ/2[ is chosen small enough so to have

t ∈ [0, τ ] ⇒ dist((x̂c(t), ŷb(t)), (x̂c(0), ŷb(0))) ≤ δ/4, (3.6)

for any solution ẑ(t) of (ĤS). By [21, Lemma 5.2], there is a C∞-smooth func-
tion r : [0, T ] × R

Nc+Nb → R satisfying
(i) r(t, xc, yb) = 0, if (t, xc, yb) /∈ Δ,
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(ii) 1
T

∫ T

0
r(t, xc, yb) dt = h(xc, yb), for every (xc, yb) ∈ R

Nc+Nb

,
(iii) r(t, xc, yb) = h(xc, yb), if |(xc, yb)| is sufficiently large.

In the sequel, it will be sometimes useful to use the notation ζ = (ξ, η)
for the points in R

2N . Similarly as above, we will then write

ξ = (ξa, ξb, ξc, ξd), η = (ηa, ηb, ηc, ηd);

we also use the notation

ζa = (ξa, ηa), ζb = (ξb, ηb), ζc = (ξc, ηc), ζd = (ξd, ηd).

Let

Δ� =
{
(t, ζ) ∈ [0, T ] × R

2N : (t, ξc, ηb) ∈ Δ
}
.

Notice that Ĥ is C∞-smooth on the relatively open subset

A� ={(t, z) : t ∈ [0, δ/2[ and dist((xc, yb),RNc+Nb\D) < δ/2}
∪ {(t, z) : t ∈ [δ/2, T ] and |(xc, yb)| > 3R},

containing the closed set Δ�. We also need to take into account the relatively
open set

B� ={(t, z) : t ∈ [0, δ/2[ and dist((xc, yb),RNc+Nb\D) < δ/4}
∪ {(t, z) : t ∈ [δ/2, T ] and |(xc, yb)| > 3R},

contained in A�, and still containing Δ�. By (3.6), we can define the function
Z : B� → R

2N which associates to every (t, ζ) ∈ B� the value ẑ(t) of the solution
ẑ of (ĤS) starting with ẑ(0) = ζ, and the function Z : B� → [0, T ]×R

2N defined
as Z(t; ζ) = (t;Z(t; ζ)) takes its values in A�. It is well known that the function
Z is a diffeomorphism between B� and its image Z(B�).

Define the functions r�,R : [0, T ] × R
2N → R by

r�(t, ζ) = r(t, ξc, ηb), R(t, z) =

{
r�(Z−1(t, z)), if (t, z) ∈ Z(Δ�),
0, otherwise.

Both of them are C∞-smooth. Consider the Hamiltonian system

ż = J∇H̃(t, z), (H̃S)

with

H̃(t, z) := Ĥ(t, z) − λR(t, z),

where λ > 0 is a constant, to be determined later. By (iii) above and (1.3),
there exists a constant c̃λ > 0 such that, for every (t, z) ∈ [0, T ] × R

2N ,
∣
∣H̃(t, z) − 1

2 〈A(t)zd, zd〉 − 1
2λ〈S(xc, yb), (xc, yb)〉∣∣ ≤ c̃λ.

One can thus apply [33, Theorem 3.8] to find M + 1 geometrically distinct
T -periodic solutions of (H̃S) (see [21] for the details of the variational setting).

We now need to show that these T -periodic solutions of (H̃S) are indeed
solutions of (ĤS).
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3.3. Back to the original system

First of all we notice that, if z̃(t) is a solution of (H̃S) with (x̃c(0), ỹb(0)) in the
interior of D, then (t, z̃(t)) /∈ Z(Δ�), for every t ∈ [0, T ]. Indeed, for such a solu-
tion we have that (0, z̃(0)) /∈ Z(Δ�), and Z(Δ�) is a closed set; should it enter
in Z(Δ�), there would be a first point t0 ∈ ]0, T ] where (t0, z̃(t0)) ∈ ∂Z(Δ�).
Since H̃(t, z̃(t)) = HR(t, z̃(t)) for every t ∈ [0, t0], we see that z̃ is a solution
of (ĤS) on [0, t0]. But, being (t0, z̃(t0)) ∈ Z(Δ�), there is another solution z(t)
of (ĤS), starting with (0, z(0)) ∈ Δ� and arriving at the same point (t0, z̃(t0)).
Notice that (t, z(t)) ∈ Z(Δ�) for every t ∈ [0, t0], while (t, z̃(t)) /∈ Z(Δ�) for
every t ∈ [0, t0[. Since Ĥ is C∞-smooth in a neghborhood of (t0, z̃(t0)), this
contradicts the uniqueness for the associated Cauchy problem.

By the above consideration, we need to prove that the only T -periodic
solutions z̃(t) of (H̃S) must start with (x̃c(0), ỹb(0)) in the interior of D. One
proceeds by contradiction, assuming that there exists such a solution z̃(t)
starting with (x̃c(0), ỹb(0)) outside the interior of D.

First notice that

|(x̃c(t), ỹb(t))| ≤ 3R, for every t ∈ [0, T ]. (3.7)

Indeed, if on the contrary |(x̃c(t0), ỹb(t0))| > 3R for some t0 ∈ [0, T ], then, for
all t near t0,

H̃(t, z̃(t)) = 1
2 〈Az̃d(t), z̃d(t)〉 − λr(t, x̃c(t), ỹb(t)),

so that x̃c(t), ỹb(t) are constant near t0; we deduce that they are constant on
[0, T ], and, by (ii) above,

(
ỹc(T ) − ỹc(0),−(x̃b(T ) − x̃b(0)

)
= −λT∇h(x̃c(0), ỹb(0)) 
= 0,

hence z̃(t) cannot be T -periodic.
Next, since the function R(t, z) does not depend on zd, we have that

˙̃zd(t) = J∇zdĤ(t, z(t)) = JAz̃d(t) + J∇zdK̂(t, z(t)).

Being ‖∇K̂ − ∇KR‖∞ ≤ 1 and ‖∇KR‖∞ ≤ C5, we have that | ˙̃zd(t) −
JAz̃d(t)| ≤ C5 + 1, for every t ∈ [0, T ] and, by Lemma 3.2,

|z̃d(t)| ≤ C7, for every t ∈ [0, T ]. (3.8)

By [21, Lemma 5.3], we can define a function ζ : [0, T ] → R
2N such that

z̃(t) = Z(t, ζ(t)), for every t ∈ [0, τ ], (3.9)

and

ζ̇(t) = −λ∇R(t, ζ(t)), for every t ∈ [0, T ].

Hence,

(η̇c(t),−ξ̇b(t)) = −λ∇r(t, ξc(t), ηb(t)), (η̇b(t),−ξ̇c(t)) = (0, 0), ζ̇d(t) = 0.

Consequently,

ξc(t) = ξc(0) = x̃c(0), ηb(t) = ηb(0) = ỹb(0), ζd(t) = ζd(0) = z̃d(0),
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for every t ∈ [0, T ] and, by (3.7),

|(ξc(t), ηb(t))| ≤ 3R, for every t ∈ [0, T ].

Moreover, by (3.8),

|ζd(t)| ≤ C7, for every t ∈ [0, T ]. (3.10)

By (i) above, ηc(t), ξb(t) are constant on [τ, T ], and, by (ii),
(
ηc(τ) − ηc(0),−(ξb(τ) − ξb(0))

)
= (ηc(T ) − ηc(0),−(ξb(T ) − ξb(0)))

= −λT∇h(x̃c(0), ỹb(0)).

Define

ẑ(t) =

{
Z(t, ζ(τ)), if t ∈ [0, τ ],
z̃(t), if t ∈ ]τ, T ].

By (3.9), this is a continuous function and, by (3.7) and (i), it is a solution
of (HSR). Moreover, ẑ(0) = ζ(τ) and ẑ(T ) = z̃(T ). In particular,

x̂c(0) = ξc(τ) = x̃c(0), ŷb(0) = ηb(τ) = ỹb(0), ẑd(0) = ζd(τ) = z̃d(0),

(ŷc(0),−x̂b(0)) = (ηc(τ),−ξb(τ)) = (ỹc(0),−x̃b(0)) − λT ∇h(x̃c(0), ỹb(0)).

Then, since z̃(0) = z̃(T ),
(
ŷc(T ) − ŷc(0),−(x̂b(T ) − x̂b(0))

)

= (ỹc(T ),−x̃b(T )) − [(ỹc(0),−x̃b(0)) − λT ∇h(x̃c(0), ỹb(0))
]

= λT ∇h(xc(0), yb(0)), (3.11)

and ẑd(0) = ẑd(T ), hence |ẑd(0)| ≤ C7, by (3.10).
Now we consider two cases.

Case 1. dist((x̂c(0), ŷb(0)), ∂D) ≤ �. In this case, we get a contradiction with (3.4).

Case 2. dist((x̂c(0), ŷb(0)),D) > �. Since D is compact, ∇h(υ) 
= 0 for every
υ /∈ D, and (1.3) holds for |υ| large, we have

c := inf
{|∇h(υ)| : dist(υ,D) > �

}
> 0,

so that

|λT ∇h(x̂c(0), ŷb(0))| ≥ λTc. (3.12)

On the other hand, recalling that |∇KR(t, z)| ≤ C5 for every (t, z) ∈ [0, T ] ×
R

2N , we have
∣
∣(ŷc(T ) − ŷc(0),−(x̂b(T ) − x̂b(0))

)∣∣ ≤ C5T. (3.13)

Taking λ > C5/c, the combination of (3.12) and (3.13) gives a contradiction
with (3.11).

The proof is thus completed.
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4. Superintergrable systems and perturbations of low
dimensional tori

In [15] it has been shown how, in the special case Nd = 0, a generalized
version of the Poincaré–Birkhoff Theorem provided in [21] can be applied to
perturbations of a completely integrable system, thus generalizing the results
in [2,3,7,12], where a sort of periodic counterpart of the celebrated KAM
theory was developed. Indeed, it is proved that, whereas tori made of periodic
solutions are in general destroyed by a small perturbation, still the survival of
a certain number of periodic solutions is guaranteed, assuming some suitable
nondegeneracy conditions.

In this section we discuss how such framework can be extended to the case
Nd ≥ 1. There are two main options to do so, depending on whether the linear
part of the dynamics is included in the unperturbed system, or corresponds
to the lower order terms of the perturbation. We discuss with more detail the
latter case, which is slightly more complex. The proof in the two situations is
however almost the same; the former case will be briefly commented at the
end of the section.

We consider a superintegrable 2N -dimensional system, namely a Hamil-
tonian system in R

2N having 2N −M constants of motion, for some 0 < M <
N , which are independent and satisfy a suitable rank condition on their Pois-
son brackets (cf. e.g. [13,32]), hence producing a foliation in M -dimensional
surfaces. By the Mishchenko–Fomenko Theorem [30] we know that, if one of
these fibers is compact, then it is an M -torus T

M ; moreover, in a neighbour-
hood of any of such tori the system can be written in the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

˙̃x = 0,

ϕ̇ = ∇K(I),
˙̃y = 0,

İ = 0,

(3.1)

for some suitable coordinates

(x̃, ϕ, ỹ, I) ∈ Ux̃ × T
M × Uỹ × UI ⊆ R

N−M × T
M × R

N−M × R
M ,

and Hamiltonian function K(x̃, ϕ, ỹ, I) = K(I), which we assume to be once
continuously differentiable.

We assume that the tori corresponding to a certain value I = I0 in
UI are composed of T 0-periodic orbits. This means that, denoting by ω0 =
(ω0

1 , . . . , ω
0
M ) = ∇K(I0) the frequency of such tori, there exist M integers

a1, . . . , aM such that

T 0ω0
i = 2πai, for every i = 1, . . . ,M. (3.2)

We assume moreover that K is twice differentiable at I0, and that it satisfies
the nondegeneracy condition

det(K′′(I0)) 
= 0. (3.3)

If, on one hand, the rich structure of superintegrable systems offers detailed
information on the unperturbed system, on the other hands it implies that,
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in the study of its perturbation, a full nondegeneracy is not available; indeed,
since we foliate an open set of R2N in M -dimensional tori (whose frequency
is a vector in R

M ), we can always find a lower dimensional fibration of tori
with the same frequency. To overcome this issue, and hence to be able to
obtain perturbative results such as in KAM theory, one classical approach is
to assume that the first order term of the perturbation has a special structure
which allows to recover nondegeneracy on the desired directions [13,24]. We
will follow this spirit, although with some differences: indeed we will not use
the first order perturbation to produce a foliation in N -tori (to which classical
results apply), but instead use it to obtain nondegeneracy on a specific lower
dimensional M -torus.

We then proceed by considering a perturbation Kε = Kε(t, x̃, ϕ, ỹ, I) of
K, continuous, T -periodic in t, and continuously differentiable in the other
variables. (In what follows, ε will be a small positive parameter.) Using the
notation z̃ = (x̃, ỹ), we assume that Kε is of the form

Kε(t, x̃, ϕ, ỹ, I) = K(I) +
ε

2
〈Az̃, z̃〉 + ε2P (t, x̃, ϕ, ỹ, I), (3.4)

where A is a 2(N −M)×2(N −M) invertible symmetric matrix, while P is T -
periodic in time t and its gradient ∇P in the (x̃, ϕ, ỹ, I) variables is uniformly
bounded. Moreover, we assume that there exist two integers m0, n0 satisfying

n0T 0 = m0T.

We are now interested in the study of the perturbed system
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

˙̃x = ∇ỹKε(t, x̃, ϕ, ỹ, I),
ϕ̇ = ∇IKε(t, x̃, ϕ, ỹ, I),
˙̃y = −∇x̃Kε(t, x̃, ϕ, ỹ, I),
İ = −∇ϕKε(t, x̃, ϕ, ỹ, I).

(3.5)

Here is our result.

Theorem 4.1. For ε sufficiently small, the perturbed system (3.5) admits at
least M +1 geometrically distinct m0T -periodic solutions, each making exactly
n0ai rotations in the coordinate ϕi in one period time, for every i = 1, . . . , M .

Proof. To begin, we would like to extend system (3.5) to R
2N . We take r0 > 0

such that BRM (I0, r0) ⊆ UI and BR2(N−M)(0, r0) ⊆ Ux̃ × Uỹ, and with the
property that

〈∇K(I) − ∇K(I0),K′′(I0)(I − I0〉 > 0, for every I ∈ BRM (I0, r0). (3.6)

Then, we modify and extend outside these sets the function Kε defined in (3.4),
as follows. Concerning the function K(I), we can take any smooth extension to
R

M with bounded gradient. Regarding P , we take a continuous extension with
uniformly bounded gradient in the variables x̃, ỹ, I and keep the periodicity in
the ϕ-variables. The linear part of Kε is extended in the natural way.

In order to apply Corollary 2.3, we need to subtract from the Hamiltonian
function a term accounting for the rotation of the reference torus; we thus
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define

K∗
ε (t, x̃, ϕ, ỹ, I) = Kε(t, x̃, ϕ, ỹ, I) − 〈∇K(I0), I − I0

〉
.

We now study the Hamiltonian system

Ż = J∇K∗
ε (t, Z), (3.7)

where Z(t) = (x̃(t), ϕ(t), ỹ(t), I(t)). Any m0T -periodic solution of this system
corresponds to a m0T -periodic solution of (3.4) making exactly n0ai rotations
in each coordinate ϕi in its period time.

We will now prove that there exists ε̄ > 0 such that, for every ε ∈ ]0, ε̄[ ,

(i) the matrix εA satisfies the nonresonance condition

σ(JεA) ∩ 2πi

m0T
Z = ∅ ;

(ii) all the m0T -periodic solutions of (3.7) satisfy

‖(x̃(t), ỹ(t))‖ < r0, for every t ∈ [0,m0T ];

(iii) there exists rε > 0 such that every solution of (3.7) with ‖I(0) − I0‖ ≤ rε

satisfies

‖I(t) − I0‖ ≤ r0, for every t ∈ [0,m0T ];

(iv) for every I ∈ BRM (I0, r0) and every t ∈ R, ϕ ∈ T
M , (x̃, ỹ) ∈ R

2(N−M),
we have

〈∇IK
∗
ε (t, x̃, ϕ, ỹ, I),K′′(I0)(I − I0)〉 > 0. (3.8)

Item (i) is easily verified, since JA is invertible and bounded. It guarantees
that (1.1) holds when A(t) is replaced by εA and T by m0T .

To check (ii), let us notice that the z̃ = (x̃, ỹ)-component of each solution
satisfies an equation of the type

˙̃z = εJAz̃ + ε2f(t),

where f itself depends on the considered solution. Suppose by contradiction
that (ii) is false. Then there exist some sequences (εn)n, (fn)n, (wn)n, with

εn ∈ ]0, 1[, fn : [0,m0T ] → BR2N−2M (0, ‖∇P‖∞), wn : [0,m0T ] → R
2(N−M),

such that εn → 0, ‖wn‖∞ ≥ r0, and

ẇn = εnJAwn + ε2nfn(t), wn(0) = wn(T ). (3.9)

If (‖wn‖∞)n is bounded, then ‖ẇn‖∞ → 0 and hence, up to a subsequence,
(wn)n converges uniformly to a constant function w̄, with ‖w̄‖ ≥ r0. However,
integrating (3.9) over one period, we see that

∥
∥
∥
∫ m0T

0

Awn(t)dt
∥
∥
∥ ≤ εnm0T ‖∇P‖∞ ,

and passing to the limit we conclude that Aw̄ = 0, which is a contradiction
since A is invertible and w̄ 
= 0.
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If instead (‖wn‖∞)n is unbounded then, up to a subsequence, ‖wn‖∞ →
+∞. Then, setting vn(t) = wn(t)/ ‖wn‖∞, we have that

v̇n = εnJAvn + ε2n
fn(t)

‖wn‖∞
, vn(0) = vn(T ). (3.10)

Since (‖vn‖∞)n is bounded, we see that, up to a further subsequence, (vn)n

converges uniformly to a constant function v̄, with ‖v̄‖ = 1. As in the previous
case we get a contradiction integrating and passing to the limit in

∥
∥
∥
∫ m0T

0

Avn(t)dt
∥
∥
∥ ≤ εnm0T

‖∇P‖∞
‖wn‖∞

.

Finally, both items (iii) and (iv) easily follow from the boundedness
assumption on the function ∇P , taking into account (3.6).

We now fix ε ∈ ]0, ε̄[ and set D = BRM (I0, rε/2). Integrating (3.8) along
the orbits we obtain that the twist condition (2.4) is satisfied with B = K′′(I0)
and ρ = rε/2. By this and (i) we can apply Corollary 2.3, with N b = M ,
Nd = N − M and Na = N c = 0. Hence, we recover M + 1 geometrically
distinct m0T -periodic solutions of (3.7) satisfying I(0) ∈ D. By (ii) and (iii),
these solutions are such that

I(t) ∈ BRM (I0, r0), z̃(t) ∈ BR2N−2M (0, r0), for every t ∈ [0,m0T ],

hence they lie in the region where the Hamiltonian function has not been mod-
ified. We have thus found M +1 geometrically distinct m0T -periodic solutions
of (3.5). �

Remark 4.2. The nondegeneracy condition (3.3) at I = I0 can be replaced by
the following weaker one (cf. [15]): there exists an invertible symmetric matrix
B such that

0 ∈ cl
{

r ∈ ]0,+∞[: min
‖I−I0‖=r

〈∇K(I) − ∇K(I0),B(I − I0)
〉

> 0
}

. (3.11)

Indeed, if (3.3) holds, then (3.11) is satisfied taking B = K′′(I0). Notice that
such a condition does not require the function K to be twice differentiable
at I0.

Remark 4.3. The proof of Theorem 4.1 can be easily adapted if in the per-
turbed system (3.5) we replace the structure (3.4) of the Hamiltonian function
by

Kε(t, x̃, ϕ, ỹ, I) = K(I) + 1
2 〈Az̃, z̃〉 + εP (t, x̃, ϕ, ỹ, I). (3.12)

In this case the linear component is not part of the perturbation, so we have
to assume that

σ(JA) ∩ 2πi

m0T
Z = ∅,

so to guarantee the nonresonance condition (1.1) for A, replacing T by m0T .
The existence of the same number of periodic solutions with the same rota-
tion properties can be proved, for sufficiently small ε, in the same way as in
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Theorem 4.1. Concerning the survival of KAM tori for perturbations of the
type (3.12), we refer to [4, Section 8.3] and references therein.

5. Weakly coupling linear and superlinear systems

Let us consider the system
{

ü + M(t)u = ∇u U(t, u, w),
ẅ + ∇V (t, w) = ∇wU(t, u, w),

(3.1)

where u = (u1, . . . , ul) ∈ R
l, w = (w1, . . . , wm) ∈ R

m. Here M(t) is a sym-
metric matrix, continuous and T -periodic in time, satisfying the nonresonance
condition

u(t) ≡ 0 is the only T -periodic solution of ü = M(t)u. (3.2)

We assume that

V (t, w) =
M∑

k=1

Vk(t, wk), with Vk(t, s) =
∫ s

0

σhk(t, σ) dσ,

where the functions hk : R×R → R are continuous, T -periodic in t, and satisfy

lim
|σ|→+∞

hk(t, σ) = +∞, uniformly in t ∈ [0, T ]. (3.3)

The second equation in (3.1) then reads as
⎧
⎪⎪⎨

⎪⎪⎩

ẅ1 + w1h1(t, w1) = ∂
∂w1

U(t, u, w),
...
ẅM + wMhM (t, wM ) = ∂

∂wM
U(t, u, w).

(3.4)

The function U : R × R
l × R

m is continuous, T -periodic in t, continuously
differentiable in (u,w) and satisfies, for some C > 0,

|∇u U(t, u, w)| < C, (3.5)
∂

∂wk
U(t, u, w) = wkpk(t, u, w), with |pk(t, u, w)| < C, (3.6)

for every (t, u, w) ∈ [0, T ]×R
l ×R

m. We observe that, thanks to the structure
induced by U , system (3.1) can be rewritten as a Hamiltonian system on
R

2(l+m), with variables (u,w, u̇, ẇ).
We have the following result.

Theorem 5.1. There exists a positive integer K such that, for every choice of
m integers �1, . . . , �m ≥ K, system (3.1) has at least m + 1 solutions which
are T -periodic and such that each of the components wk has exactly 2�k simple
zeros in the interval [0, T ).
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The above theorem extends the result in [18], where a classical theorem
by Jacobowitz [26] and Hartman [25] for scalar equations was generalized for
the superlinear system (3.4). The special form of the nonlinearities is needed
here so to guarantee that the “unperturbed system” (3.4), with U ≡ 0, has
the trivial solutions wk ≡ 0. This permits on one side to prove the global
existence of the solutions, and on the other side to settle each equation in
polar coordinates. Notice that the same approach can be followed if we replace
each wkhk(t, wk) by some gk(wk), not depending on time, as shown in [10] for
the scalar equation, and in [21] for a system.

In dealing with the superlinear part, we follow the classical approach
adopted in [18]. First of all, since our method is based on the study of the
Poincaré time map on a suitable portion of the domain, we want to assure
the global existence of solutions for the Cauchy problems. To do so, we in fact
consider, for every R > 1, the auxiliary system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ü + M(t)u = ∇u U(t, u, w),
ẅ1 + w1h

R(t, w1) = ∂
∂w1

U(t, u, w),
...
ẅ1 + wMhR(t, wM ) = ∂

∂wM
U(t, u, w),

(3.7)

where the functions hR
k are defined as

hR
k (t, wk) =

⎧
⎪⎨

⎪⎩

hk(t,−R), if wk < −R,

hk(t, wk), if |wk| ≤ R,

hk(t, R), if wk > R.

Let us study a solution (u,w) of system (3.7). For every k = 1, . . . ,m, let us
consider the orbit (wk(t), ẇk(t)) in the phase plane and assume that (wk(t),
ẇk(t)) 
= (0, 0) for every t ∈ [τ0, τ1]. Then this couple can be written in polar
coordinates as

wk(t) = ρk(t) cos ϑk(t), ẇk(t) = ρk(t) sin ϑk(t), (3.8)

with ρk(t) > 0 and ϑk(t) continuous, thus defining

rotk(u,w, [τ0, τ1]) = −ϑk(τ1) − ϑk(τ0)
2π

.

We write rotk(u,w) := rotk(u,w, [0, T ]). We observe that, if wk(t) is T -periodic,
then rotk(u,w) is the integer counting the number of clockwise rotations per-
formed by (wk(t), ẇk(t)) around the origin, and 2 rotk(u,w) is the number of
simple zeros of wk in the time interval [0, T ).

Our approach is based on the following corollary of Theorem 1.1. For
0 < R1 < R2 we introduce the planar annulus A = B[0, R2]\B(0, R1) ⊆ R

2;
we then set Ω = {(w, ẇ) ∈ R

2m | (wk, ẇk) ∈ A, k = 1, . . . ,m}.
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Corollary 5.2. Suppose that there exist m positive integers �1, . . . , �m and a
constant ρ̄ > 0 such that, for k = 1, . . . ,m, we have

rotk(u,w) ≤ �k, if
√

w1(0)2 + ẇk(0)2 ∈ [R1 − ρ̄, R1], (3.9)

rotk(u,w) ≥ �k, if
√

w1(0)2 + ẇk(0)2 ∈ [R2, R2 + ρ̄], (3.10)

where (u,w) is any solution of (3.7). Then the system (3.7) has m+1 solutions,
T -periodic in time, such that each of their components wk has exactly 2�k

simple zeros in the interval [0, T ).

Proof. Let us begin by observing that system (3.7) is equivalent to the Hamil-
tonian system on R

2(l+m) with Hamiltonian function

h(t, u, w, u̇, ẇ) = 1
2 (|u̇|2 + |ẇ|2) + 1

2 〈M(t)u, u〉 +
m∑

k=1

V R
k (t, wk) + U(t, u, w),

where V R
k (t, s) =

∫ s

0
σhR

k (t, σ)dσ.
By (3.6) and by the continuity of hR, there exists a constant a > 0 such

that
∣
∣hR

k (t, wk) + pk(t, u, w)
∣
∣ < a,

for every (t, u, w) ∈ [0, T ] × R
l × R

m, wk ∈ [−1, 1]. (3.11)

Recalling the polar coordinates introduced in (3.8), we observe that (3.11)
implies

|ρ̇k(t)| ≤ (a + 1)ρk(t),

along every arc of solution (u(t), w(t)) of (3.7). A standard application of
Gronwall Lemma provides the existence of a positive constant δ̄ < 1 such that
every solution of (3.7) with initial point such that (wk(0), ẇk(0)) ∈ A (hence
ρk ≥ R1) satisfies ρk(t) > 2δ̄ for every t ∈ [0, T ] and index k = 1, . . . , m.

It is therefore allowed to modify the Hamiltonian function h in the cylin-
der {(t, u, w, u̇, ẇ) | w2

k + ẇ2
k < 4δ̄2, k = 1, . . . ,m} without affecting the solu-

tions with (w(0), ẇ(0)) ∈ Ω. Hence, given any ψ ∈ C∞(R,R) such that

ψ(r) =

{
0, if r ≤ δ̄,

1, if r ≥ 2δ̄,

we may study the new system with Hamiltonian

h0(t, u, w, u̇, ẇ) = h(t, u, w, u̇, ẇ)ψ
(

min
{√

w2
k + ẇ2

k, k = 1, . . . ,m
})

.

We now consider the time-dependent change of variables

uk = xd
k u̇k = yd

k

wk =
√

2yb
k cos

(
xb

k − 2πνkt

T

)
ẇk =

√
2yb

k sin
(

xb
k − 2πνkt

T

)
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in order to obtain, when yb
k ≥ 0, a Hamiltonian system (HS) with N b = m,

Nd = l, Na = N c = 0 and

H(t, z) = h0(t, u, w, u̇, ẇ) +
Nb
∑

k=1

2πνkyb
k

T
.

We can extend this Hamiltonian function for yb
k < 0 by simply setting H(t, z) =

∑Nb

k=1 2πνkyb
k/T in such situations. We notice that this system satisfies all

the assumptions of Corollary 2.4, with the twist conditions obtained by (3.9)
and (3.10) with D = [R2

1/2, R2
2/2]m. We conclude the proof observing that the

m + 1 periodic solutions given by Theorem 1.1, once translated in the original
coordinates, provide the solutions we are looking for. �

The main task to accomplish in order to apply Corollary 5.2 is to provide
suitable estimates of the rotational properties of (wk(t), ẇk(t)). Such situations
are well studied for superlinear second order ODEs, and can be extended to
systems by showing a suitable uniform behaviour with respect to the other
variables. In doing this we follow and generalize the approach in [18], where
the case l = 0 was treated, providing analogous estimates for the case l > 0.

We need the following three lemmas.

Lemma 5.3. There exists a positive integer K and a positive constant δ such
that if a solution (u,w) of (3.7) satisfies 0 < wk(t0)2 + ẇk(t0)2 < δ2 for a
certain index k at some time t0, then

0 < wk(t)2 + ẇk(t)2 < 1, for every t ∈ [t0, t0 + T ],
rotk(u,w, [t0, t0 + T ]) < K.

Moreover such constants do not depend on the value of R > 1.

Proof. Let us observe that, since R > 1, the constant a obtained in the esti-
mate (3.11) does not depend on R. Using this estimate, and remarking that
it is uniform in the variables u, the lemma can be proved with the very same
argument of [18, Lemma 3]. �

Lemma 5.4. For every positive integer K0, there exists a constant R = R(K0) >
1 such that, given a solution (u,w) of (3.7), with R > R, satisfying rotk(u,w) ≤
K0 for every k = 1, . . . ,m, we have

wk(t)2 + ẇk(t)2 < R2, for every t ∈ [0, T ] and every k = 1, . . . ,m. (3.12)

Proof. Let us fix a constant b, with

b > 2
(2πK0

T

)2
.

By (3.3) and (3.6) we obtain the existence of two constants c and R̄, with
1 < c < R̄, such that, for every index k = 1, . . . , m and for every R > R̄, we
have

hR
k (t, wk) + pk(t, u, w) > hR

k (t, wk) − C > b,

for every (t, u, w) ∈ [0, T ] × R
l × R

m, |wk| ≥ c. (3.13)
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Furthermore, by continuity, there exists a constant M > 0 such that, for every
index k = 1, . . . ,m,

∣
∣wk

[
hR

k (t, wk) + pk(t, u, w)
]∣∣ < M,

for every (t, u, w) ∈ [0, T ] × R
l × R

m, |wk| ≤ c. (3.14)

As for the previous lemma, once we have such uniform estimates, the proof
can now be concluded following [18, Lemma 4]. �

Lemma 5.5. Given any positive integer K0, for every solution (u, v) of (3.7),
with R > R(K0), such that wk(0)2 + ẇk(0)2 = R2 for some index k, we have
that rotk(u,w) > K0.

The lemma is proved as in [18, Lemma 6]. We are now ready to prove
our result.

Proof of Theorem 5.1. Let us take the integer K and the constant δ provided
by Lemma 5.3. We now fix m integers �1, . . . , �m and choose K0 such that
K0 ≥ �k ≥ K for every k = 1, . . . , m. We apply Lemma 5.4 to recover the
corresponding constant R = R(K0). We are now able to fix the constant
R > R and to apply Corollary 5.2 to the associated system (3.7). Indeed, we
observe that setting R1 := δ, condition (3.9) is fulfilled by Lemma 5.3; whereas
setting R2 := R Lemma 5.5 implies condition (3.10).

To show that the m + 1 periodic solutions thus provided by Corol-
lary 5.2 for system (3.7) are also solutions of system (3.1), we observe that,
by Lemma 5.4, their orbits are contained in the region w2

k + ẇ2
k < R

2, for
k = 1, . . . , m, where the two systems coincide. �

As a simple example of application of the above result, we can consider
the system

{
ẍ1 + a(t)x1 = ∂

∂x1
U(t, x1, x2),

ẍ2 + x3
2 = ∂

∂x2
U(t, x1, x2).

The assumptions on a(t) and U(t, x1, x2) can be easily recovered, so to
apply Theorem 5.1. We avoid the details, for briefness.

6. Further applications

In the previous section we have treated in detail the coupling of linear and
superlinear second order equations. Let us now briefly argue on the possible
applications of Theorem 1.1 to other situations involving the coupling of a
linear system with a twisting one.

When the second system has a sublinear growth at infinity, we can use
the approach developed in [11,20] to get an infinite number of subharmonic
solutions, i.e., periodic solutions having as minimal period an integer mul-
tiple of T . Indeed, the large amplitude solutions of the second system rotate
around the origin very slowly, with a time of rotation going to infinity with the
amplitude. Passing to polar coordinates, we recover the necessary twist, and
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Corollary 5.2 can be applied. As an example, we could deal with the following
system:

{
ẍ1 + a(t)x1 = ∂

∂x1
U(t, x1, x2),

ẍ2 + arctan x2 = ∂
∂x2

U(t, x1, x2).

Another possibility is to couple a linear system with a pendulum-like
system. For this type of system there is a large literature, cf. [15,21] and the
references therein. As an example, we could have the following:

{
ẍ1 + a(t)x1 = ∂

∂x1
U(t, x1, x2),

ẍ2 + sin x2 = ∂
∂x2

U(t, x1, x2).

For this kind of equations the twist can be recovered in two different ways.
First, writing the equivalent system in (x2, y2), with y2 = ẋ2, it is easy to
see that solutions starting with y2(0) large and positive will be such that
x2(T ) > x2(0), while those starting with y2(0) large and negative will satisfy
x2(T ) < x2(0), so that we have the desired twisting property. Second, one
observes that the solutions near the origin of the unperturbed problem are
periodic, and their periods increase to infinity when the solutions approach
the heteroclinic orbit connecting (−π, 0) with (π, 0). Then, passing to polar
coordinates, the twist is preserved under small perturbations (see e.g. [15]).

A similar argument applies when coupling a linear system with one having
different rotational properties near the origin and near infinity (see [23,29] for
a precise description of the twisting properties in this case), or for systems
involving a parameter (see, e.g., [5] and the references therein), where the
same situation is recovered after a change of coordinates.

To conclude, let us mention the possibility of treating, with the same
techniques, problems with one or more singularities. We refer to [19] for the
details concerning the singular system, to be coupled with a linear one.
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