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a b s t r a c t

We investigate the possibility of extending a classical multiplicity result by Fabry,
Mawhin and Nkashama to a periodic problem of Ambrosetti–Prodi type having a
nonlinearity with possibly one or two singularities. In the second part of the paper
we study the existence of periodic rotating solutions for radially symmetric systems
with nonlinearities of the same type.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In 1972, Ambrosetti and Prodi [1] obtained a multiplicity result for the solutions of a Dirichlet problem
associated to an elliptic equation, which can be said to have influenced the research in the field of boundary
value problems up to the present days.

Let us recall the result of [1], as refined by Berger and Podolak in [3], by writing the Dirichlet problem as
∆u+ h(u) = sϕ1(x) + w(x) in Ω ,
u = 0 on ∂Ω .

Here, Ω is a bounded domain in RN , while ϕ1(x) is the positive eigenfunction associated to the first eigenvalue
λ1 of the Laplacian, with Dirichlet boundary conditions, and w(x) is a suitably smooth function. Assuming
h : R→ R to be twice continuously differentiable and strictly convex, with

0 < h′(−∞) < λ1 < h
′(+∞) < λ2,
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(where λ2 is the second eigenvalue), they proved the existence of an s0 ∈ R such that

• if s < s0, there are no solutions,
• if s = s0, there is exactly one solution,
• if s > s0, there are exactly two solutions.

Since then, many variants and generalizations have been proposed, see e.g. [2,4,6,15–17,19–21,23–25,28],
a far from being exhaustive list. Remarkably, the name Ambrosetti–Prodi problem remained attached to all
such situations when a multiplicity result structure as the one described above appears.

Searching for an analogue for the periodic problem, Fabry, Mawhin and Nkashama [7] considered in 1986
the second order differential equation

x′′ + f(x)x′ + h(t, x) = s. (Es)

(In this case, the Laplacian is replaced by a second derivative, and the first eigenvalue associated to the
periodic problem is equal to zero.) They were able to prove the following Ambrosetti–Prodi type of result.

Theorem 1.1 (Fabry–Mawhin–Nkashama). Assume f : R→ R and h : R×R→ R to be continuous functions,
with T -periodicity in the t variable. If

lim
|x|→∞

h(t, x) = +∞, uniformly in t ∈ [0, T ],

then there exists an s0 ∈ R such that

• if s < s0, there are no T -periodic solutions,
• if s = s0, there is at least one T -periodic solution,
• if s > s0, there are at least two T -periodic solutions.

We will take the above theorem as our starting point, and develop some possible generalizations. In the
first part of the paper we focus our attention on the case when the nonlinearities in Eq. (Es) are defined
only for x varying in an open interval (a, b) of R, with possibly one or two singularities. Here is our result,
extending Theorem 1.1 to such a situation.

Theorem 1.2. Assume f : (a, b) → R and h : R × (a, b) → R to be continuous functions, with T -periodicity
in the t variable, such that

lim
x→a+

h(t, x) = lim
x→b−

h(t, x) = +∞, uniformly in t ∈ [0, T ]. (1)

If b = +∞, the same conclusion of Theorem 1.1 for Eq. (Es) holds. On the other hand, if b < +∞, the
same is true assuming, in addition, that

f(x) ≥ −η and h(t, x) ≥ hm(x), for every x ∈ (a, b),

where η is a positive constant and hm : (a, b)→ R is continuous and such that b
c

hm(x) dx = +∞, (2)

for some c ∈ (a, b).

A few comments on the above statement are in order. Notice that, in the case (a, b) = R, Theorem 1.2
reduces to Theorem 1.1. If b = +∞, no assumptions besides the continuity are required on the function f .
When b < +∞, the repulsive singularity at x = b has to be sufficiently strong so to ensure that the solutions
of (Es) cannot collide with it. On the contrary, it is remarkable that the attractive singularity at x = a does
not require an assumption of this type.
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Fig. 1. A charged particle q− in a capacitor of surface charge density σ, lying between the electric charges Q+ and Q−.

The condition f(x) ≥ −η (which could be replaced by the symmetric one f(x) ≤ η) is needed in order to
obtain some a priori estimates. However, it would be interesting to know whether it is really necessary.

As a possible example of application of the above theorem, we propose the following physical model
describing the dynamics of a charged particle in a periodically varying electric field. We consider a negatively
charged particle, freely moving on a straight line between two fixed charged particles, one positive and the
other one negative, with T -periodically varying (not vanishing) charges. We denote by q−, Q+(t) and Q−(t)
the electric charges (in absolute value), respectively. Let x = x(t) be the position of the freely moving
particle, and assume that the fixed charges are placed at x = a and x = b respectively, so that a < x(t) < b,
for every t. We assume that the line of motion is confined between two capacitor plates, as in Fig. 1. The
equation of motion is then

x′′ + k

Q+(t)

(x− a)2 + Q−(t)
(x− b)2


= s, (3)

with k = q−/4πεm and s = σq−/mε, where m is the mass of the free charge, ε is the dielectric permittivity
and σ is the surface charge density of the capacitor. As a consequence of Theorem 1.2, if σ is large enough,
Eq. (3) has at least two T -periodic solutions. A simple physical interpretation of this result can be easily
given in the case when the electric charges Q+ and Q− are constant in time: the strong constant force
generated by the capacitor balances the attractive force exerted by Q+, when the free particle x(t) is near
the position x = a, and the repulsive force exerted by Q−, when x(t) is near x = b. Hence there are two
equilibria, one near x = a (unstable) and the other one near x = b (stable). When the electric charges Q+(t)
and Q−(t) are not constant, but T -periodic in time, we have a perturbation of the previous situation, if σ is
large enough, and the equilibria we have found give rise to the two expected T -periodic solutions. We recall
that the case when Q+ is replaced by a negative charge has already been considered in [8].

In the second part of the paper, we deal with a system of the type

x ′′ =

−h(t, |x|) + s

 x
|x|
. (Es)

Here x = x(t) ∈ RN , and |·| denotes the euclidean norm. We will show that the same assumptions considered
above on the nonlinearity h : R×(a, b)→ R, with a ≥ 0, lead to different types of periodic solutions: some of
them will oscillate radially, being those provided by Theorem 1.2. However, new families of periodic solutions
will arise, rotating around the origin, completing a revolution in a period time which is a sufficiently large
integer multiple of T .

Let us describe more precisely our result. Writing Eq. (Es) in polar coordinates, we obtain the systemρ′′ −
µ2

ρ3
+ h(t, ρ) = s,

ρ2ϕ′ = µ,
(Rs)
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where µ denotes the scalar angular momentum, which is known to be constant along the solutions. This fact
is justified by the absence in (Es) of the friction term related to the function f , which instead was included
in the scalar equation (Es). We will only look for solutions with µ > 0, since the ones with µ < 0 can be
obtained symmetrically. Notice that the solutions with µ = 0 (hence with constant ϕ) oscillate radially and
ρ solves the scalar equation (Es), with f = 0. The rotating solutions we are looking for will be such that,
for some positive integer k,

ρ(t+ T ) = ρ(t), ϕ(t+ kT ) = ϕ(t) + 2π. (4)

Notice that such solutions are kT -periodic, but their radial component is T -periodic. Let us state our result
for the radially symmetric system (Es).

Theorem 1.3. Let the same assumptions of Theorem 1.2 hold, with f = 0. Then, there exists an s0 ∈ R
such that, if s > s0, system (Es) has two families of rotating periodic solutions with small positive angular
momenta. More precisely, there exists a positive integer ks such that, for every integer k ≥ ks, there are two
periodic solutions (ρk,1, ϕk,1) and (ρk,2, ϕk,2) of (Rs), satisfying (4), with positive angular momenta µk,1
and µk,2, respectively, such that

lim
k→∞
µk,1 = lim

k→∞
µk,2 = 0.

In the case b = +∞, if moreover

lim
r→+∞

h(t, r)
r

= 0, (5)

then (Es) also admits rotating periodic solutions with large angular momenta. Precisely, there exists a
positive integer ks such that, for every integer k ≥ ks, there is a periodic solution (ρk, ϕk) of system (Rs),
satisfying (4), with positive angular momentum µk, and with the following properties:

lim
k→∞

min ρk = +∞, lim
k→∞

min ρk
max ρk

= 1, lim
k→∞
µk = +∞.

In the above statement, we may have several possible situations: in the case b = +∞, if a = 0 we are in
the classical case of a Keplerian-type system having only a singularity at the origin. Conversely, if a > 0 we
have a singular sphere {ρ = a} and the motion takes place outside of it. In the case b < +∞, if a = 0 then
we have the singularity at the origin and one singular sphere {ρ = b} and the motion is confined inside of
it. On the other hand, if a > 0, we have two singular spheres, {ρ = a} and {ρ = b}, and the orbits lie in the
annular region between them.

Equations of the type (Es) have already been considered in the literature, taking into account several
situations. E.g., systems with an attractive singularity of Keplerian type have been studied in [9,12,14]; the
case of repulsive singularity has been treated in [10,11,13,26]; bouncing solutions were found in [27]. See also
the interesting monograph [29].

The proof of Theorem 1.2 is carried out in Section 2 by the use of lower and upper solutions and
topological degree arguments, in the line of the proof given in [7]. Then, in Section 3, we provide the proof
of Theorem 1.3, adapting the techniques developed in [10,12]. Finally, in Section 4, we discuss on possible
generalizations and extensions of our results.

2. Proof of Theorem 1.2

By hypothesis (1), we can define the real number

h0 := min

h(t, x) : t ∈ [0, T ], x ∈ (a, b)


.
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If s < h0, we cannot have periodic solutions, since otherwise we would have x′′(t0) < 0 at any minimum
point t0. Let us fix an arbitrary ξ ∈ (a, b) and define

h1 := max

h(t, ξ) : t ∈ [0, T ]


≥ h0.

Thanks to assumption (1), for every s ∈ R we can find an interval [d1,s, d2,s] ⊂ (a, b) such that

h(t, x) > s, for every (t, x) ∈ [0, T ]×

(a, d1,s] ∪ [d2,s, b)


. (6)

We can also assume that s → d1,s is decreasing and s → d2,s is increasing. Notice that α ≡ d1,s and β ≡ ξ
are respectively a lower and an upper solution of (Es) with α < β, for every s > h1. Then, for every s > h1
there exists a periodic solution x of (Es) satisfying d1,s ≤ x(t) ≤ ξ, for every t ∈ [0, T ]. Hence, we can define

s0 = inf

s ∈ R : (Es) has a T -periodic solution


. (7)

Notice that, by the previous reasoning, we have h0 ≤ s0 ≤ h1.
The proof of the following lemma can be traced back to a pioneering paper by Lazer and Solimini [18].

Lemma 2.1. For every s > s0, Eq. (Es) has a T -periodic solution.

Proof. We fix s > s0. There exists σ ∈ [s0, s) such that (Eσ) has a T -periodic solution, which we denote
by xσ. It is easy to verify that xσ is an upper solution of (Es). Set ασ ∈ R such that a < ασ < d1,s and
ασ < min xσ. Then ασ is a lower solution of (Es), so that (Es) has a T -periodic solution xs satisfying
ασ ≤ xs(t) ≤ xσ(t), for every t ∈ [0, T ]. The lemma is thus proved. �

We now prove an a priori estimate for all the possible T -periodic solutions of (Es), when s varies in a
compact interval.

Lemma 2.2. For every s̄ > s0 there are constants d1,s̄ < d2,s̄ in (a, b) and Ds̄ > 0 such that every T -periodic
solution x of (Es) with s ∈ [s0, s̄] must satisfy, for every t ∈ [0, T ],d1,s̄ < x(t) < d2,s̄ and |x′(t)| < Ds̄.

Proof. Let x be one such solution. We must have min x > d1,s̄, otherwise we would have a negative second
derivative at any minimum point. So, we can set d1,s̄ = d1,s̄. Let us consider separately the cases b = +∞
and b < +∞.

Case 1: b = +∞. Integrating Eq. (Es) we get

1
T

 T
0
h(t, x(t)) dt = s.

Introducing the constants d1,s̄, d2,s̄ as in (6), there exists t0 ∈ [0, T ] such that x(t0) ∈ (d1,s̄, d2,s̄). Let us
denote by x̄ the mean value of x, i.e. x̄ = 1

T

 T
0 x(t) dt, so that x̃(t) = x(t) − x̄ has zero mean. Multiplying

(Es) by x̃ we get

∥x′∥22 =
 T

0
x̃(t)h(t, x(t)) dt =

 T
0
x̃(t)

h(t, x(t))− h0


dt

≤ ∥x̃∥∞
 T

0


h(t, x(t))− h0


dt ≤ ∥x̃∥∞ T (s̄− h0).

Let t1 ∈ [0, T ] be such that x̃(t1) = 0. Then, for every t ∈ [t1, t1 + T ],

|x̃(t)| ≤
 t
t1

x̃′(τ) dτ
 ≤  T

0
|x′(τ)| dτ ≤

√
T ∥x′∥2.
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By the previous estimates, we get ∥x′∥2 ≤ T 3/2 (s̄− h0), so that, for every t ∈ [0, T ],

x(t) = x(t0) +
 t
t0

x′(τ) dτ ≤ x(t0) +
√
T∥x′∥2 < d2,s̄ + T 2(s̄− h0).

Hence, setting d2,s̄ = d2,s̄ + T 2(s̄− h0), we have x(t) < d2,s̄, for every t ∈ [0, T ].

Case 2: b < +∞. We introduce the energy E(x, y) = y2/2 + H(x), where H(x) =
 x
c

(hm(υ) − s̄) dυ.
There exists a constant H0 such that H(υ) ≤ H0 for every υ ∈ [d1,s̄, d2,s̄]. By (2), it is possible to find ad2,s̄ ∈ (d2,s̄, b) such that H(υ) > H0 e2ηT , for every υ ∈ [d2,s̄, b).

Assume max x > d2,s̄. Then, by (6), there exist t1 < t2 such that x′(t1) = x′(t2) = 0, x(t2) = max x and
x′(t) > 0 for every t ∈ (t1, t2), and x(t1) ∈ [d1,s̄, d2,s̄]. A computation gives, for every t ∈ (t1, t2),

d

dt
E(x(t), x′(t)) = −x′(t)


f(x(t))x′(t) + h(t, x(t))− s− hm(x(t)) + s̄


≤ η (x′(t))2 ≤ 2η E(x(t), x′(t)).

Hence,

H(x(t2)) = E(x(t2), x′(t2)) ≤ E(x(t1), x′(t1)) e2η(t2−t1) ≤ H0 e2ηT ,

thus giving us x(t2) < d2,s̄.
The proof of the derivative estimate follows easily from the validity of a Nagumo condition. Indeed, by

the previously proved estimates, we get the existence of a positive constant C such that, for every T -periodic
solution x of (Es), one has

x′′(t) ≤ C

|x′(t)|+ 1


, for every t ∈ [0, T ].

The application of Gronwall Lemma ends the proof. �

We remark that it is possible to assume, without loss of generality, that s → d1,s is decreasing, s → d2,s
and s → Ds are increasing.

We now define our functional setting. Let X = C([0, T ]) be the set of continuous functions, and let
L : D(L)→ X be the operator defined as

D(L) = {x ∈ C2([0, T ]) : x(0) = x(T ), x′(0) = x′(T )},
Lx = x′′ − x.

Setting Y = C1([0, T ]), we define on

Y(a,b) = {x ∈ Y : a < x(t) < b, for every t ∈ [0, T ]}

the Nemytskii operator Ns : Y(a,b) → X as

(Ns x)(t) = −f(x(t))x′(t)− h(t, x(t)) + s− x(t).

We thus have that x is a T -periodic solution of (Es) if and only if it solves the equation

Lx = Ns x,

with x ∈ D(L) ∩ Y(a,b). Fix s̄ > s0 and define the set

Ξs̄ =

x ∈ Y : d1,s̄ < x(t) < d2,s̄ and |x′(t)| < Ds̄, for every t ∈ [0, T ]


.

By standard arguments, for every s < s̄, the function Ψs = L−1 ◦ Ns : Ξ s̄ → Y is a completely
continuous operator, and its fixed points are the T -periodic solutions of (Es). By Lemma 2.2, we have
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that 0 ̸∈ (I−Ψs)(∂ Ξs̄), so that the degree of I−Ψs on the open and bounded set Ξs̄ ⊂ Y is well defined, for
every s ≤ s̄. Recalling that for every s < s0 there are no T -periodic solutions of (Es), using the homotopy
invariance property of the degree, we have

d(I −Ψs,Ξs̄) = 0, for every s ≤ s̄.

Now, for every ε > 0, consider a T -periodic solution βε of equation (Es0+ε), whose existence is guaranteed
by Lemma 2.1. If s0 + ε < s ≤ s̄, then αε ≡ d1,s̄ and βε are respectively a lower and an upper solution of
(Es), and αε < βε(t) for every t ∈ [0, T ], by Lemma 2.2. Set

Ω1
ε =

x ∈ Y : αε < x(t) < βε(t) and |x′(t)| < Ds̄, for every t ∈ [0, T ]


,

a subset of Ξs̄, by Lemma 2.2. We now prove that there are no T -periodic solutions of (Es) belonging to
∂Ω1
ε , if s ∈ (s0 +ε, s̄]. Let x be a T -periodic solution of (Es) such that αε ≤ x(t) ≤ βε(t), for every t ∈ [0, T ].

Arguing as above, we see that such a solution cannot have αε as a minimum. Conversely, suppose that
there exists a τ ∈ [0, T ] such that x(τ)− βε(τ) = 0. Then, τ is a point of maximum for x(t)− βε(t), hence
x′(τ)− β′ε(τ) = 0, and we have

x′′(τ)− β′′ε (τ) = −f(x(τ))x′(τ)− h(τ, x(τ)) + s+ f(βε(τ))β′ε(τ) + h(τ, βε(τ))− s0 − ε = s− s0 − ε > 0,
(8)

leading to a contradiction. Hence, by a standard result in lower and upper solution theory (see, e.g., [5]),

d(I −Ψs,Ω1
ε ) = 1, for every s ∈ (s0 + ε, s̄]. (9)

We now define Ω2
ε = Ξs̄ \ Ω1

ε . By the additivity property of the degree,

d(I −Ψs,Ω2
ε ) = −1, for every s ∈ (s0 + ε, s̄]. (10)

Hence, since the choice of ε is arbitrary, for every s ∈ (s0, s̄] there are at least two T -periodic solutions
of (Es), one in Ω1

ε and the second one in Ω2
ε , simply choosing ε < s − s0. Since we can consider s̄ > s0

arbitrarily large, we have thus proved that there exist two T -periodic solutions of (Es), for every s > s0.

Remark 2.3. We have proved that there are at least two T -periodic solutions, but there could be many more:
we will discuss this issue in Section 4. Let us mention here that, among all the T -periodic solutions, it is
always possible to find two of them which are ordered. Indeed, let x1 and x2 be the two T -periodic solutions
found above. Then the function β̄ = min{x1, x2} is an upper solution of (Es), and therefore there exists a
T -periodic solution x̃1 between αε and β̄, cf. [5, Chapter VI].

In order to prove the existence of at least one periodic solution of (Es0), we consider a strictly decreasing
sequence (sn)n with limn sn = s0. For every n, let xn be a solution of (Esn). By Lemma 2.2, we have that
(xn)n is contained in Ξs̄. Moreover, by the fact that xn solves the differential equation (Esn), we have that
(xn)n is bounded in C2([0, T ]), so that, by the Ascoli–Arzelà Theorem, it C1-converges up to subsequences
to some x ∈ Ξs̄. Since xn = Ψsn(xn), passing to the limit, we obtain x = Ψs0(x), so that x solves (Es0).
The proof of Theorem 1.2 is thus completed.

3. Proof of Theorem 1.3

Setting X = C([0, T ]) and

X(a,b) = {ρ ∈ X : a < ρ(t) < b, for every t ∈ [0, T ]},
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the Nemytskii operator Ns,µ : X(a,b) → X can now be defined as

(Ns,µ ρ)(t) := µ2

ρ3(t) − h(t, ρ(t)) + s− ρ(t).

Let Ω be an open bounded subset of X(a,b) such that Ω ⊂ X(a,b). The operator Ψs,µ = L−1 ◦Ns,µ : Ω → X
is completely continuous and its fixed points correspond to T -periodic solutions of the first equation in (Rs).

The following theorem is a variant of [12, Theorem 2].

Theorem 3.1. Assume that there are no fixed points of Ψs,0 on ∂Ω , and that d(I − Ψs,0,Ω) ̸= 0. Then,
there exists a k̄ ≥ 1 such that, for every integer k ≥ k̄, system (Rs) has a kT -periodic solution (ρk, ϕk)
satisfying (4). Moreover, ρk belongs to Ω and, if µk denotes the associated angular momentum, then

lim
k→∞
µk = 0.

The proof of Theorem 3.1 is completely analogous of the one provided in [12]. It can also be carried out
by suitably modifying the nonlinearity h, in the following way. Take an interval [c, d] ⊂ (a, b) such that
Ω ⊂ X(c,d), and a function h : R× (0,+∞)→ R such that h = h on R× (c, d). Replacing h with h in (Rs)
we are brought back to the setting of a Newtonian system already considered in [12, Theorem 2], and the
result follows.

Going back to the first equation in (Rs), we first study the situation when µ = 0. Following the proof of
the first part of Theorem 1.3, we fix s̄ > s0 and define

Ξs̄ =

ρ ∈ X : d1,s̄ < ρ(t) < d2,s̄, for every t ∈ [0, T ]


.

Taking s ∈ (s0, s̄], we can choose ε < s̄− s0 and define

Ω1
ε =

ρ ∈ X : αε < ρ(t) < βε(t), for every t ∈ [0, T ]


,

a subset of Ξs̄, where we have used the notation of the previous section for αε and βε(t). Finally, we set
Ω2
ε = Ξs̄ \ Ω1

ε . We thus obtain the analogues of formulas (9) and (10), i.e.,

d(I −Ψs,0,Ω1
ε ) = 1, d(I −Ψs,0,Ω2

ε ) = −1,

for every s ∈ (s0 + ε, s̄], and we can apply Theorem 3.1 with Ω = Ω1
ε and Ω = Ω2

ε , thus finding the two
required families of periodic solutions with a small angular momentum.

When b = +∞, the proof of the second part of the statement follows directly from [10, Theorem 1.2],
after suitably modifying the function h : R× (a,+∞)→ R to some function h : R× (0,+∞)→ R such thath = h on R× (c,+∞), for some c > a.

4. Final remarks

As observed in [5], the continuity assumption on the function h(t, x) can be replaced by L1-Carathéodory
conditions, provided an extra hypothesis is fulfilled (cf. assumption (A) in [5, Theorem VI-1.2 and
Corollary VI-1.3]).

Concerning the multiplicity of solutions of Eq. (Es), their exact number can be established, in the case
b = +∞, if f = 0 and h(t, ·) is strictly convex, with

h(t, x1)− h(t, x2)
x1 − x2

<


2π
T

2
, for every x1 ̸= x2 and t ∈ [0, T ].

The proof can be carried out applying [5, Theorem VI-1.4], after suitably modifying and extending h(t, ·)
on the interval (−∞, a+ ϵ), for some ϵ > 0, so to obtain a strictly convex function defined on the whole real



154 A. Fonda, A. Sfecci / Nonlinear Analysis 149 (2017) 146–155

line. Notice that a larger number of solutions of Eq. (Es) can arise when the nonlinearity h “oscillates”: for
example, if h(t, x) = h(x), the differential equation x′′+f(x)x′+h(x) = s may clearly have several constant
solutions.

Let us argue on the stability of the two T -periodic solutions found in Theorem 1.2, when b = +∞. For
an equation of the type

x′′ + cx′ + h(x) = s+ p(t),

with c > 0, assume h to be twice continuously differentiable and strictly convex, with h′(+∞) ≤
(π/T )2 + c2/4. By a truncation argument, it is possible to reduce to [22, Theorem 2.1] showing that, also in
this case, there are exactly two T -periodic solutions for s large, one of which is asymptotically stable, and
the other one unstable (see also [23] for further considerations). We omit the details, for briefness.

As a further remark, we notice that, adapting the proof of Theorem 1.2, it is easy to see that the following
result also holds.

Corollary 4.1. Assume

lim
x→a+

h(t, x) = +∞, uniformly in t ∈ [0, T ].

Then, there exists at least one T -periodic solution of Eq. (Es), provided that s is sufficiently large.

Indeed, in such a situation it is possible to find a lower and an upper solution of (Es), for large values of
s. We emphasize that, being now h not necessarily bounded from below, the value s0 introduced in (7) can
be equal to −∞. As an example of application, a physical model similar to the one described in Fig. 1 can
be considered, by dropping the charge Q−, or replacing it with a positive one. In the former case s0 ∈ R,
and in the latter s0 = −∞.

Some refinements of Theorem 1.3 can also be obtained: for instance, when the exact number of solutions
of Theorem 1.2 is known, we can preserve an order structure of the rotating solutions provided there. More
precisely, referring to Remark 2.3, the two solutions given by Theorem 1.2, for s > s0, can be assumed to
be ordered as x1 ≺ x2, meaning that x1(t) ≤ x2(t) for every t ∈ [0, T ], and x1 ̸= x2. Defining the average
function r = (x1 + x2)/2, we have that x1 ≺ r ≺ x2. Using the excision property of the degree, we can
replace, in the proof of Theorem 1.3, the sets Ω1

ε and Ω2
ε , respectively, by

Γ 1 = {ρ ∈ Ξs̄ : ρ ≺ r} and Γ 2 = {ρ ∈ Ξs̄ : r ≺ ρ}.

In this way, for every couple of solutions (ρk,1, ϕk,1) and (ρj,2, ϕj,2) emerging from Γ 1 and Γ 2, respectively,
we have that ρk,1 ≺ ρj,2.

Finally, under the assumptions of Corollary 4.1, arguing as in the proof of Theorem 1.3, it is possible to
find at least one family of rotating solutions for the radially symmetric system (Es), with a small angular
momentum.
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[15] S. Fuč́ık, Remarks on a result by A. Ambrosetti and G. Prodi, Boll. Unione Mat. Ital. (4) 11 (1975) 259–267.
[16] P. Hess, On a nonlinear elliptic boundary value problem of the Ambrosetti–Prodi type, Boll. Unione Mat. Ital. A (5) 17

(1980) 187–192.
[17] J.L. Kazdan, F.W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (1975) 567–597.
[18] A.C. Lazer, S. Solimini, On periodic solutions of nonlinear differential equations with singularities, Proc. Amer. Math. Soc.

88 (1987) 109–114.
[19] J. Mawhin, Ambrosetti–Prodi type results in nonlinear boundary value problems, in: Differential Equations and

Mathematical Physics (Birmingham, 1986), in: Lect. Notes Math., vol. 1285, Springer, Berlin, 1987, pp. 280–313.
[20] J. Mawhin, The periodic Ambrosetti–Prodi problem for nonlinear perturbations of the p-Laplacian, J. Eur. Math. Soc. 8

(2006) 375–388.
[21] F. Obersnel, P. Omari, On the Ambrosetti–Prodi problem for first order scalar periodic ODEs, in: Applied and Industrial

Mathematics in Italy, in: Ser. Adv. Math. Appl. Sci., vol. 69, World Sci. Publ, Hackensack, NJ, 2005, pp. 404–415.
[22] R. Ortega, Stability and index of periodic solutions of an equation of Duffing type, Boll. Unione Mat. Ital. B (7) 3 (1989)

533–546.
[23] R. Ortega, Stability of a periodic problem of Ambrosetti–Prodi type, Differential Integral Equations 3 (1990) 275–284.
[24] R. Ortega, M. Tarallo, Almost periodic equations and conditions of Ambrosetti–Prodi type, Math. Proc. Cambridge Philos.

Soc. 135 (2003) 239–254.
[25] C. Rebelo, F. Zanolin, Multiplicity results for periodic solutions of second order ODEs with asymmetric nonlinearities,

Trans. Amer. Math. Soc. 348 (1996) 2349–2389.
[26] A. Sfecci, Double resonance for one-sided superlinear or singular nonlinearities, Ann. Mat. Pura Appl. 195 (2016) 2007–2025.
[27] A. Sfecci, Periodic impact motions at resonance of a particle bouncing on spheres and cylinders, preprint arXiv:1504.03457.
[28] E. Sovrano, F. Zanolin, The Ambrosetti–Prodi periodic problem: different routes to complex dynamics, preprint, 2016.
[29] P.J. Torres, Mathematical Models with Singularities. A Zoo of Singular Creatures, Atlantis Press, Paris, 2015.

http://refhub.elsevier.com/S0362-546X(16)30252-8/sbref3
http://refhub.elsevier.com/S0362-546X(16)30252-8/sbref4
http://refhub.elsevier.com/S0362-546X(16)30252-8/sbref5
http://refhub.elsevier.com/S0362-546X(16)30252-8/sbref6
http://refhub.elsevier.com/S0362-546X(16)30252-8/sbref7
http://refhub.elsevier.com/S0362-546X(16)30252-8/sbref8
http://refhub.elsevier.com/S0362-546X(16)30252-8/sbref9
http://refhub.elsevier.com/S0362-546X(16)30252-8/sbref10
http://refhub.elsevier.com/S0362-546X(16)30252-8/sbref11
http://refhub.elsevier.com/S0362-546X(16)30252-8/sbref12
http://refhub.elsevier.com/S0362-546X(16)30252-8/sbref13
http://refhub.elsevier.com/S0362-546X(16)30252-8/sbref14
http://refhub.elsevier.com/S0362-546X(16)30252-8/sbref15
http://refhub.elsevier.com/S0362-546X(16)30252-8/sbref16
http://refhub.elsevier.com/S0362-546X(16)30252-8/sbref17
http://refhub.elsevier.com/S0362-546X(16)30252-8/sbref18
http://refhub.elsevier.com/S0362-546X(16)30252-8/sbref19
http://refhub.elsevier.com/S0362-546X(16)30252-8/sbref20
http://refhub.elsevier.com/S0362-546X(16)30252-8/sbref21
http://refhub.elsevier.com/S0362-546X(16)30252-8/sbref22
http://refhub.elsevier.com/S0362-546X(16)30252-8/sbref23
http://refhub.elsevier.com/S0362-546X(16)30252-8/sbref24
http://refhub.elsevier.com/S0362-546X(16)30252-8/sbref25
http://refhub.elsevier.com/S0362-546X(16)30252-8/sbref26
http://arxiv.org/1504.03457
http://refhub.elsevier.com/S0362-546X(16)30252-8/sbref29

	On a singular periodic Ambrosetti--Prodi problem
	Introduction
	Proof of Theorem 1.2
	Proof of Theorem 1.3
	Final remarks
	Acknowledgements
	References


