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Abstract. We consider a nonautonomous Hamiltonian system, T -periodic

in time, possibly defined on a bounded space region, the boundary of which
consists of singularity points which can never be attained. Assuming that the

system has an interior equilibrium point, we prove the existence of infinitely

many T -periodic solutions, by the use of a generalized version of the Poincaré –
Birkhoff theorem.

1. Introduction. Let us start by considering a planar Hamiltonian system

x′ =
∂H
∂y

(t, x, y) , y′ = −∂H
∂x

(t, x, y) . (1)

The Hamiltonian function H(t, x, y) is assumed to be continuous, T -periodic in t,
and continuously differentiable in x and y. It is defined for (x, y) belonging to a
“generalized rectangle”

R = ]a1,1, a1,2[× ]a2,1, a2,2[ ,

with ai,j ∈ R ∪ {−∞,+∞}. This means that R can be either a rectangle or an
unbounded set, like a quadrant, a half-plane, or even the whole plane R2.

We assume that the Hamiltonian function may be decomposed as

H(t, x, y) = H1(t, x) +H2(t, y) + U(t, x, y) ,

2010 Mathematics Subject Classification. 34C25.
Key words and phrases. Periodic solutions, Poincaré-Birkhoff theorem, singularities, Hamil-
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all functions being T -periodic in t. Correspondingly, let us introduce the following
three assumptions.

Assumption A1. There is an equilibrium point (x0, y0) in R, and there exist a
constant α > 0 and a neighborhood V of (x0, y0) such that∣∣∣∣∂H1

∂x
(t, x)

∣∣∣∣+

∣∣∣∣∂U∂x (t, x, y)

∣∣∣∣ ≤ α|x− x0| ,
and ∣∣∣∣∂H2

∂y
(t, y)

∣∣∣∣+

∣∣∣∣∂U∂y (t, x, y)

∣∣∣∣ ≤ α|y − y0| ,
for every (t, x, y) ∈ [0, T ]× V.

Assumption A2. There exist some continuous and increasing functions κi,` :
]ai,1, ai,2[→ R such that

κ1,1(x) <
∂H1

∂x
(t, x) < κ1,2(x) , κ2,1(y) <

∂H2

∂y
(t, y) < κ2,2(y) ,

for every (t, x, y) ∈ [0, T ]×R, with

lim
x→a1,j

κ1,`(x)

x− x0
= +∞ and lim

y→a2,j

κ2,`(y)

y − y0
= +∞ , j, ` ∈ {1, 2} , (2)

and the primitive functions

K1,`(x) =

∫ x

x0

κ1,`(σ) dσ , K2,`(y) =

∫ y

y0

κ2,`(σ) dσ

satisfy

lim
x→a1,j

K1,`(x) = +∞ and lim
y→a2,j

K2,`(y) = +∞ , j, ` ∈ {1, 2} . (3)

Assumption A3. The function U : R ×R → R is continuous and has a bounded
continuous gradient with respect to (x, y) belonging to R.

As a simple example of a system verifying the above assumptions, we propose,
e.g., 

x′ = α(t)

[
c2,2

(a2,2 − y)2
− c2,1

(y − a2,1)2

]
y′ = β(t)

[
c1,1

(x− a1,1)2
− c1,2

(a1,2 − x)2

]
,

where the constants ci,j are positive, and the functions α, β : R→ R are continuous,
positive, and T -periodic. Indeed, in this case, we can choose

H1(t, x)=β(t)

[
c1,1

x− a1,1
+

c1,2
a1,2 − x

]
, H2(t, y)=α(t)

[
c2,1

y − a2,1
+

c2,2
a2,2 − y

]
,

and U(t, x, y) identically equal to zero.
We are now ready to state our main result for the planar case.

Theorem 1.1. Let Assumptions A1, A2, and A3 be satisfied. Then, there exists
an integer K0 such that, for every integer K > K0, the Hamiltonian system (1) has
at least two T -periodic solutions performing exactly K clockwise rotations around
(x0, y0) in the time interval [0, T ].
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The above theorem thus provides the existence of infinitely many T -periodic
solutions of system (1). Its proof will be carried out in Section 2, by the use of
a generalized version of the Poincaré – Birkhoff theorem [7, Theorem 1.2], recently
obtained by the first author and A. J. Ureña., after a suitable modification of the
Hamiltonian function, so to guarantee the global existence of the solutions to the
associated initial value problems. Notice that we are not assuming the uniqueness
of such solutions, so that the Poincaré map could be multivalued. The meaning
of the conclusion concerning the K clockwise rotations of the T -periodic solutions
around (x0, y0) will be clarified in Section 2, after introducing the so called rotation
number.

Let us mention that conditions like (2) have been introduced in [4] in order
to treat scalar second order equations with a nonlinearity having either one or two
repulsive singularities, or a superlinear growth at infinity. It has been shown, indeed,
that the singularities of this type provide a behavior of the solutions which resembles
the situation encountered while dealing with superlinear systems (see, e.g. [1, 2, 3,
6, 7, 8, 9, 10, 11, 12, 13]). In the same spirit, the existence of subharmonic solutions
can also be easily obtained, but we will avoid such a discussion, for briefness.

The above situation will be generalized in Section 3 to a Hamiltonian system in
R2N . Again, the proof will be based on the above mentioned higher dimensional
generalized version of the Poincaré – Birkhoff theorem.

2. The proof of Theorem 1.1. There is no loss of generality in assuming that
the equilibrium (x0, y0) coincides with the origin (0, 0). Moreover, by Assumption
A3, we can assume that U is the restriction of a continuous function defined on
the whole space R×R2, still having a bounded continuous gradient. Indeed, in the
case when R is a strict subset of R2, we can choose a larger open set S, containing
the closure of R, and extend U so that it vanishes outside R× S, thus keeping the
gradient bounded. Hence, let C > 0 be a constant for which

|∇z U(t, z)| ≤ C , for every (t, z) ∈ R× R2 . (4)

2.1. The modified problem. In order to ensure the existence of the solutions on
the whole interval [0, T ], we are going to modify our system, and, whenever R does
not already coincide with R2, extend it on the whole plane.

Define, for every i, j ∈ {1, 2} and every p ∈ ]0, 1[ , the numbers

api,j =


−(1− p)−1 if ai,j = −∞
p ai,j if ai,j ∈ R
(1− p)−1 if ai,j = +∞ ,

and the rectangle

R(p) =
]
ap1,1, a

p
1,2

[
×
]
ap2,1, a

p
2,2

[
, (5)

whose closure is contained in R. We will be interested in taking p near to 1, so that
the rectangle R(p) “approaches” R, so to speak.

By Assumption A1, we can consider two auxiliary continuous functions f1 :
R× ]a1,1, a1,2[→ R and f2 : R× ]a2,1, a2,2[→ R, so that

∂H1

∂x
(t, x) = xf1(t, x) ,

∂H2

∂y
(t, y) = yf2(t, y) . (6)
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Define, for every p ∈ ]0, 1[ and i ∈ {1, 2},

fpi (t, ξ) =


fi(t, a

p
i,1) if ξ ∈

]
−∞, api,1

[
fi(t, ξ) if ξ ∈

[
api,1, a

p
i,2

]
fi(t, a

p
i,2) if ξ ∈

]
api,2,+∞

[
,

and set

Hp
i (t, ξ) = Hi(t, 0) +

∫ ξ

0

σfpi (t, σ) dσ .

We thus obtain a new Hamiltonian function Hp : R× R2 → R, defined as

Hp(t, x, y) = Hp
1 (t, x) +Hp

2 (t, y) + U(t, x, y) ,

which coincides with H on R×R(p). We then consider the auxiliary Hamiltonian
system

x′ =
∂Hp

∂y
(t, x, y) , y′ = −∂H

p

∂x
(t, x, y) . (7)

It will be useful to write the solutions z(t) =
(
x(t), y(t)

)
of (7), whenever they

do not attain the origin, using the polar coordinates

x(t) = ρ(t) cosϑ(t) , y(t) = ρ(t) sinϑ(t) . (8)

Then, the radial velocity is given by

ρ′(t) =

x(t)
∂Hp

∂y

(
t, x(t), y(t)

)
− y(t)

∂Hp

∂x

(
t, x(t), y(t)

)
√
x2(t) + y2(t)

, (9)

and the angular velocity by

− ϑ′(t) =

x(t)
∂Hp

∂x

(
t, x(t), y(t)

)
+ y(t)

∂Hp

∂y

(
t, x(t), y(t)

)
x2(t) + y2(t)

. (10)

If z(t) 6= 0 for every t in an interval [τ0, τ1], the corresponding clockwise rotation
number will be denoted by

rot
(
z, [τ0, τ1]

)
= − 1

2π

(
ϑ(τ1)− ϑ(τ0)

)
.

2.2. The small amplitude solutions. We first estimate the number of rotations
of the solutions starting near the origin.

So, we fix a positive radius ε such that the ball Bε, centered at the origin, is
fully contained in R( 1

2 ) ∩ V, where V is the neighborhood of the origin introduced
in Assumption A1. The desired estimate is given by the following proposition.

Proposition 1. There exist a positive integer K0 and some positive constants η, δ,
with η < δ < ε, having the following property: if z(t) =

(
x(t), y(t)

)
is a solution to

system (7), with p ∈
]
1
2 , 1
[

, and |z(t0)| = δ at a certain time t0, then

η < |z(t)| < ε , for every t ∈ [t0, t0 + T ] ,

and

rot
(
z, [t0, t0 + T ]

)
≤ K0 .
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Proof. Consider a solution z(t) =
(
x(t), y(t)

)
to (7), with p > 1

2 , such that 0 <
|z(t)| < ε in a certain time interval I, and parametrize it in polar coordinates, as
in (8). Recalling Assumption A1, since Hp = H in R(p) ⊃ R( 1

2 ), it is easy to see
that, for every t ∈ I, the radial velocity (9) satisfies the inequality

|ρ′(t)| ≤ αρ(t) .

Choose δ < εe−αT and η < δe−αT , and assume that |z(t0)| = δ at a certain time
t0 ∈ I. We can now take I as the maximal interval of time in which 0 < |z(t)| < ε.
By Gronwall’s Lemma we thus have

δe−α|t−t0| ≤ |z(t)| ≤ δeα|t−t0| , for every t ∈ I .
Hence, [t0, t0 + T ] ⊆ I, and

η < |z(t)| < ε, for every t ∈ [t0, t0 + T ] .

At this point, the last part of the statement can be deduced by just noticing that
the angular velocity (10) is a continuous function in the compact set Bε \Bη.

2.3. The large amplitude solutions. We now estimate the number of rotations
of the solutions starting sufficiently far from the origin.

Proposition 2. For every positive integer K, there exists a constant pK ∈
]
1
2 , 1
[

with the following property: if z(t) =
(
x(t), y(t)

)
is a solution to system (7), with

p ∈ ]pK , 1[ , and z(t0) /∈ R(pK) at a certain time t0, then z(t) 6= 0 for every t ∈
[t0, t0 + T ], and rot

(
z, [t0, t0 + T ]

)
> K.

In order to prove the above proposition, we first need two lemmas.

Lemma 2.1. For every p ∈
]
1
2 , 1
[

, there exists a constant A = A(p) > 0 such that∣∣∣∣∂H1

∂x
(t, x)

∣∣∣∣ ≤ A|x| , for every t ∈ [0, T ] and x ∈
[
ap1,1, a

p
1,2

]
,

and ∣∣∣∣∂H2

∂y
(t, y)

∣∣∣∣ ≤ A|y| , for every t ∈ [0, T ] and y ∈
[
ap2,1, a

p
2,2

]
.

Proof. It is an immediate consequence of Assumption A1, and the compactness of
R(p), as a subset of R.

Lemma 2.2. For every β > 0, there exists p = p(β) ∈
]
1
2 , 1
[

such that, if q ∈ ]p, 1[ ,

x
∂Hq

∂x
(t, x, y) > βx2, for every t ∈ [0, T ] , x /∈

]
ap1,1, a

p
1,2

[
and y ∈ R ,

and

y
∂Hq

∂y
(t, x, y) > βy2, for every t ∈ [0, T ] , x ∈ R and y /∈

]
ap2,1, a

p
2,2

[
.

Proof. We just prove the first inequality, the other one being analogous. Given
β > 0, by (2) in Assumption A2 it is possible to find p ∈

]
1
2 , 1
[

such that

x
∂H1

∂x
(t, x) > βx2 + C|x| , for every t ∈ [0, T ] and x /∈ ]ap1,1, a

p
1,2[ ,

where C > 0 is the constant introduced in (4). Equivalently, recalling (6), we can
write f1(t, x) > β + C/|x|. Consequently, for every q > p, one has

fq1 (t, x) > β +
C

|x|
, for every t ∈ [0, T ] and x /∈ ]ap1,1, a

p
1,2[ ,
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so that

x
∂Hq

∂x
(t, x, y) = x2fq1 (t, x) + x

∂U
∂x

(t, x, y) > βx2 + C|x| − C|x| = βx2 ,

for every t ∈ [0, T ], x /∈ ]ap1,1, a
p
1,2[ and y ∈ R, thus concluding the proof.

We can now proceed with the proof of Proposition 2. Given the integer K, we
fix a constant b, so to have

b >
2π

T
K . (11)

Use Lemma 2.2, with β = b, to find the value p1 = p(b). Then use Lemma 2.1, with
p = p1, and find A = A(p1). Now, set

d = max


∣∣∣∣∣a
p1
1,j

ap12,k

∣∣∣∣∣ ,
∣∣∣∣∣a
p1
1,j

ap12,k

∣∣∣∣∣
−1

: j, k ∈ {1, 2}

 ,

∆ = min
{∣∣ap1i,j∣∣ : i, j ∈ {1, 2}

}
,

and define

b′ = b(1 + d2) + d2A+
Cd

∆
,

where C is the constant introduced in (4). Notice that b′ > b. Use again Lemma 2.2,
with β = b′, in order to find p2 = p(b′) > p1.

Figure 1. The regions where we estimate the angular velocity of
the solutions, in the three cases (a), (b) and (c).

Let z(t) =
(
x(t), y(t)

)
be a solution of (7), with p > p2, which remains outside

R(p2) for some time. As long as t varies, z(t) may cross different regions in the
plane, and we distinguish three situations, as shown in Figure 1:
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(a) If x(t) /∈
]
ap11,1, a

p1
1,2

[
and y(t) /∈

]
ap12,1, a

p1
2,2

[
, it is easy to check that

−ϑ′(t) > b .

(b) If x(t) ∈
[
ap11,1, a

p1
1,2

]
and y(t) /∈

]
ap22,1, a

p2
2,2

[
, then one has |x(t)| < d |y(t)| and

|x(t)| < y2(t) d/∆, so that

−ϑ′(t)> 1

x2(t) + y2(t)

(
−Ax2(t)− C |x(t)|+ b′ y2(t)

)
>

y2(t)

x2(t) + y2(t)

(
−d2A− Cd

∆
+ b′

)
>
b′ − d2A− C d/∆

1 + d2
= b .

(c) If x(t) /∈
]
ap21,1, a

p2
1,2

[
and y(t) ∈

[
ap12,1, a

p1
2,2

]
, one has similarly |y(t)| < d |x(t)|

and |y(t)| < x2(t) d/∆, so that

−ϑ′(t)> 1

x2(t) + y2(t)

(
b′ x2(t)−Ay2(t)− C |y(t)|

)
>

x2(t)

x2(t) + y2(t)

(
b′ − d2A− Cd

∆

)
>
b′ − d2A− C d/∆

1 + d2
= b .

As a consequence, every solution z(t) to (7), with p > p2, which remains outside
R(p2), has to rotate clockwise, with an angular velocity bounded below by b. In
particular, by (11), if z(t) /∈ R(p2) for every t ∈ [0, T ], then rot

(
z, [0, T ]

)
> K.

Let us now focus our attention on the solutions which enter the region R(p2),
coming from the outside, and remain inside this region in a time interval [τ0, τ1],
with τ1 − τ0 ≤ T . Applying Proposition 1, such solutions cannot reach the origin:
more precisely, they remain outside the ball Bη, for every t ∈ [τ0, τ1]. Following
one of these solutions, we see that, after entering the set R(p2), it could perform a
certain number of counter-clockwise rotations while remaining inside it. However,
since R(p2) \ Bη is compact, the angular velocity will remain bounded. So, there
exists a constant D ≥ 0 such that, for every such solution z(t) which remains inside
R(p2) in a time interval [τ0, τ1], it has to be

rot
(
z, [τ0, τ1]

)
≥ −D τ1 − τ0

T
.

Now, we will provide the existence of a guiding curve γ which controls the solu-
tions of system (1). As a consequence, we will see that this curve guides also the
solutions of system (7), when p is chosen large enough. By Assumption A2, we can
find four functions gi,` such that

g1,1(x) <
∂H
∂x

(t, x, y) < g1,2(x) , g2,1(y) <
∂H
∂y

(t, x, y) < g2,2(y) ,

for every (t, x, y) ∈ [0, T ]×R, and it is not restrictive to assume these functions to
be strictly increasing. Define, then, their primitives

Gi,`(ξ) =

∫ ξ

0

gi,`(σ) dσ .
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It is possible to choose all the functions gi,` in order to ensure that

lim
ξ→ai,j

gi,`(ξ)

ξ
= +∞ , i, j, ` ∈ {1, 2} , (12)

lim
ξ→ai,j

Gi,`(ξ) = +∞ , i, j, ` ∈ {1, 2} . (13)

Being the functions gi,` strictly increasing, there are x1 < 0 < x2 and y1 < 0 < y2
such that

g1,1(x2) = g1,2(x1) = g2,1(y2) = g2,2(y1) = 0 ,

and these points are unique. Define the four regions in R, depicted in Figure 2,

R1,1 = R∩ {x ≥ x2 , y ≤ y2} ,
R1,2 = R∩ {x ≤ x2 , y ≤ y1} ,
R2,1 = R∩ {x ≥ x1 , y ≥ y2} ,
R2,2 = R∩ {x ≤ x1 , y ≥ y1} ,

and the energy functions

Eµ,ν(x, y) = G1,µ(x) +G2,ν(y) ,

where µ, ν ∈ {1, 2}. Then, for every solution z(t) to (1),

d

dt
Eµ,ν

(
z(t)

)
> 0 , if z(t) ∈ Rµ,ν .

Figure 2. The construction of the first lap of the guiding curve,
outside the rectangle R(p2), using the level curves of the energy
functions.

Now, starting from a point not belonging to R(p2), we construct a guiding curve
γ, glueing together different branches of the level sets of the energy functions Eµ,ν ,
in the corresponding regions Rµ,ν . Precisely, such a curve starts from a point P0,
belonging to the segment R2,1 ∩ R2,2, and proceeds counter-clockwise, as shown
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in Figure 2, remaining in the rectangle R2,2 until it reaches the point P1, on the
segment R2,2 ∩ R1,2. Then, it enters and remains in R1,2 till it reaches the point
P2 on R1,2 ∩R1,1. And so on, crossing the four regions, and thus completing a first
lap at the point P4, which again belongs to the segment R2,1 ∩R2,2. Since

E2,2(P0) =E2,2(P1) < E1,2(P1) = E1,2(P2)

<E1,1(P2) = E1,1(P3) < E2,1(P3) = E2,1(P4) < E2,2(P4) ,

we have that P4 necessarily lies above P0.
Iterating such a construction, we can obtain a curve having the shape of a spiral,

which rotates counter-clockwise around the origin while becoming larger and larger,
having the following property: if a solution z(t) to system (1) intersects the guiding
curve γ at a certain time, then it must cross γ from the inner part to the outer
part. As a consequence we have that, roughly speaking, a solution coming from
some point near the boundary of R, and approaching R(p2), will have to rotate
clockwise several times, guided by the curve γ.

It is possible to verify that the curve γ, so to speak, gets nearer and nearer the
boundary of R while it rotates counter-clockwise in the plane. This is certainly true
when R is a bounded rectangle. If not, in the case when R is unbounded in some
directions, the curve will become larger and larger in those directions. Moreover,
we can choose the starting point of the curve in order that the first lap, and hence
the whole curve, lays outside R(p2). Hence, we can draw K + D + 1 laps of the
curve γ, starting outside the region R(p2), and then find some pK ∈ ]p2, 1[ such
that all the K +D+ 1 laps of γ are contained in the set R(pK). Notice that, being
Hp = H in R(p), all the previous considerations on the guiding curve γ still hold
for every solution to system (7), when p is chosen greater than pK .

Let us show that this constant pK verifies the property that, if z(t) is a solution
to (7), with p > pK , and z(t0) /∈ R(pK) at a certain time t0, then rot

(
z, [t0, t0 +

T ]
)
> K. By the above computation on the angular velocity, we only need to

examine the case when there exists a time t1 ∈ [t0, t0 + T ] at which the solution
enters the rectangle R(p2), since otherwise the solution would perform more than
K clockwise rotations around the origin in a period time T . Therefore, in some
interval [t0, t1], the solution goes from outside R(pK) to inside R(p2), guided by
the curve γ, thus performing at least K+D+1 clockwise rotations around the origin.
Recalling that, as long as z(t) remains inside R(p2) in a time interval [τ0, τ1], with
τ1 − τ0 ≤ T , it never attains the origin and rot

(
z, [τ0, τ1]

)
≥ −D(τ1 − τ0)/T , we

finally deduce that

rot
(
z, [t0, t0 + T ]

)
≥ (K +D + 1)−D > K .

The proof of Proposition 2 is thus completed.

2.4. The Poincaré – Birkhoff setting. The proof of Theorem 1.1 will now be
concluded by the use of a generalized version of the Poincaré – Birkhoff theorem
provided in [7], which does not require uniqueness for the Cauchy problems associ-
ated with our equations.

Let K0 and δ be given by Proposition 1, and fix an integer K > K0. Once K has
been fixed, let pK ∈

]
1
2 , 1
[

be given by Proposition 2, and fix a p ∈ ]pK , 1[ . Notice

that, necessarily, the closed ball Bδ is contained in R(pK). We want to apply [7,
Theorem 1.2] to system (7), with respect to the annulus

A = R(pK) \Bδ .
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Let us check that the twist condition holds. With this aim, let z(t) be a so-
lution of (7). If |z(0)| = δ, then Proposition 1 guarantees that rot

(
z, [0, T ]

)
≤

K0 < K. On the other hand, if z(0) ∈ ∂R(pK), then Proposition 2 tells us that
rot
(
z, [0, T ]

)
> K. The twist condition is thus verified.

Hence, by [7, Theorem 1.2], system (7) has at least two T -periodic solutions
z(t), z̃(t), with rot

(
z, [0, T ]

)
= rot

(
z̃, [0, T ]

)
= K. By Proposition 2 again, it has to

be that z(t), z̃(t) ∈ R(pK), for every t ∈ [0, T ], so that these are indeed solutions of
the original system (1). The proof of Theorem 1.1 is thus completed.

Remark 1. In the case when the rectangle R reduces to a strip, like e.g. ]a, b[×R,
with a and b real numbers, the superlinear growth assumption in the y variable can
be weakended, in the spirit of [4]. Indeed, being b− a finite, the time needed for a
large amplitude solution to go from one side to the other will be small, even if the
angular speed does not necessarily approach infinity.

3. Higher dimensional Hamiltonian systems. Let us consider a higher dimen-
sional system of the type

x′ = ∇yH(t, x, y) , y′ = −∇xH(t, x, y) . (14)

We are dealing with a Hamiltonian function H : R×R → R which is T -periodic in
its first variable and continuously differentiable in x and y. Here, R is a subset of
R2N of the type

R = R1 × · · · × RN ,
where the sets

Rm = ]am1,1, a
m
1,2[× ]am2,1, a

m
2,2[

are some “generalized rectangles”, in the above sense. A solution z(t) =
(
x(t), y(t)

)
of system (14) is such that

x(t) =
(
x1(t), . . . , xN (t)

)
, y(t) =

(
y1(t), . . . , yN (t)

)
,

with the component zm(t) =
(
xm(t), ym(t)

)
varying in Rm, for every m = 1, . . . , N .

We will assume that the Hamiltonian function can be decomposed as

H(t, x, y) =

N∑
m=1

(
H1,m(t, xm) +H2,m(t, ym)

)
+ U(t, x, y) .

Let us introduce the analogues of Assumptions A1, A2, and A3.

Assumption A1′. There exists an equilibrium point (x0, y0) in R, with x0 =
(x01, . . . , x

0
N ) and y0 = (y01 , . . . , y

0
N ), and there exist a constant α > 0 and a neigh-

borhood V of (x0, y0) such that∣∣∣∣∂H1,m

∂xm
(t, xm)

∣∣∣∣+

∣∣∣∣ ∂U∂xm (t, x, y)

∣∣∣∣ ≤ α|xm − x0m| ,
and ∣∣∣∣∂H2,m

∂ym
(t, ym)

∣∣∣∣+

∣∣∣∣ ∂U∂ym (t, x, y)

∣∣∣∣ ≤ α|ym − y0m| ,
for every (t, x, y) ∈ [0, T ]× V, and m = 1, . . . , N .

Assumption A2 ′. There exist some continuous and increasing functions κmi,` :

]ami,1, a
m
i,2[→ R such that

κm1,1(ξ) <
∂H1,m

∂xm
(t, ξ) < κm1,2(ξ) , κm2,1(υ) <

∂H2,m

∂ym
(t, υ) < κm2,2(υ) , (15)
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for every (t, ξ, υ) ∈ [0, T ]×Rm, with

lim
ξ→am1,j

κm1,`(ξ)

ξ − x0m
= +∞ and lim

υ→am2,j

κm2,`(υ)

υ − y0m
= +∞ , j, ` ∈ {1, 2} , (16)

and their primitive functions

Km1,`(ξ) =

∫ ξ

x0
m

κm1,`(σ) dσ , Km2,`(υ) =

∫ υ

y0m

κm2,`(σ) dσ

satisfy

lim
ξ→am1,j

Km1,`(ξ) = +∞ and lim
υ→am2,j

Km2,`(υ) = +∞ , j, ` ∈ {1, 2} , (17)

for every m = 1, . . . , N .

Assumption A3 ′. The function U : R×R → R is continuous and has a bounded
continuous gradient with respect to (x, y) belonging to R.

Theorem 3.1. Let Assumptions A1′, A2 ′, and A3 ′ be satisfied. Then, there exists
a positive integer K0 such that, for any choice of N integers K1, . . . , KN ≥ K0, the
Hamiltonian system (14) has at least N+1 distinct T -periodic solutions

(
x(t), y(t)

)
,

such that, for every index m = 1, . . . , N , the component
(
xm(t), ym(t)

)
performs

exactly Km clockwise rotations around (x0m, y
0
m) in the time interval [0, T ].

Proof. We follow the lines of the proof of Theorem 1.1, working on each component
(xm, ym) separately. It is not restrictive to assume that (x0, y0) = (0, 0), and we
can extend the function U to the whole space R×R2N , preserving the boundedness
of its gradient. We define, for every p ∈ ]0, 1[ ,

R(p) = R1(p)× · · · × RN (p) ,

where the rectangles Rm(p) are defined as in (5). Then, following the procedure
described in Section 2.1, we accordingly modify the functions H1,m and H2,m, so to
obtain the new Hamiltonian function Hp : R× R2N → R, defined as

Hp(t, x, y) =

N∑
m=1

(
Hp

1,m(t, xm) +Hp
2,m(t, ym)

)
+ U(t, x, y) .

Consider now the modified system

x′ = ∇yHp(t, x, y) , y′ = −∇xHp(t, x, y) . (18)

The following are the analogues of Propositions 1 and 2.

Proposition 3. There exist a positive integer K0 and some positive constants η, δ, ε,
with η < δ < ε, with the following property: if z(t) =

(
x(t), y(t)

)
is a solution to

system (18), with p ∈
]
1
2 , 1
[

, and |zm(t0)| = δ at a certain time t0, for some
m ∈ {1, . . . , N}, then

η < |zm(t)| < ε , for every t ∈ [t0, t0 + T ] ,

and

rot
(
zm, [t0, t0 + T ]

)
≤ K0 .

Proof. Just follow the lines of the proof of Proposition 1.
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Proposition 4. For every positive integer K, there exists a constant pK ∈
]
1
2 , 1
[

with the following property: if z(t) =
(
x(t), y(t)

)
is a solution to system (18), with

p ∈ ]pK , 1[ , and zm(t0) /∈ Rm(pK) at a certain time t0, for some m ∈ {1, . . . , N},
then zm(t) 6= 0 for every t ∈ [t0, t0 + T ], and rot

(
zm, [t0, t0 + T ]

)
> K.

Proof. The main difference with the proof of Proposition 2 is the fact that we now
need to construct N planar spirals, in R1, . . . ,RN , respectively (see [5] for a similar
approach). The construction of these curves is the same as the one performed in
Section 2.3, so we avoid it, for briefness.

Let us now conclude the proof of Theorem 3.1. Given some integers K1, . . . ,KN ,
greater than K0, let us define K = max{K1, . . . ,KN}, and consider the generalized
annulus

A =
(
R1(pK) \Bδ

)
× · · · ×

(
RN (pK) \Bδ

)
.

Let z(t) be a solution of (18). If |zm(0)| = δ, for some m ∈ {1, . . . , N}, then
Proposition 3 guarantees that rot

(
zm, [0, T ]

)
< Km. On the other hand, if zm(0) ∈

∂Rm(pK), then Proposition 4 tells us that rot
(
zm, [0, T ]

)
> Km. Hence, by [7,

Theorem 1.2], system (18) has at least N + 1 distinct T -periodic solutions, say

z(1)(t), . . . , z(N+1)(t), with rot
(
z
(n)
m , [0, T ]

)
= Km. By Proposition 4 again, it has

to be that z
(n)
m (t) ∈ Rm(pK), for every t ∈ [0, T ], so that these are indeed solutions

of the original system (14). The proof of Theorem 3.1 is thus completed.
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