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Abstract We consider radial periodic perturbations of a central force field and prove the
existence of rotating periodic solutions, whose orbits are nearly circular. The proof is mainly
based on the Implicit Function Theorem, and it permits to handle some small perturbations
involving the velocity, as well. Our results apply, in particular, to the classical Kepler problem.
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1 Introduction

Let us start by considering the radially perturbed system

ẍ + c

|x |3 x = p(t, |x |; ε) x . (1)

Here, c is a positive constant, while p : R×]0,+∞[×R → R is a continuous function,
T -periodic in its first variable, continuously differentiable in its second and third variables,
with

p(t, ρ; 0) = 0, for every (t, ρ) ∈ R×]0,+∞[. (2)

Notice that, when ε = 0, we have the classical equation for the Kepler problem

ẍ = − c

|x |3 x . (3)
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It is well known that the orbits of the solutions of (1) are planar: Hence, we will always
assume that x(t) ∈ R2, for every t ∈ R. We are looking for periodic solutions of (1) which
never attain the singularity, usually named collisionless solutions, satisfying

x(t) &= 0, for every t ∈ R.

Our first result is the following.

Theorem 1 Let x∗(t) be a circular solution of the unperturbed system (3), having minimal
period τ∗. Assume that

T
τ∗

= n
m

∈ Q \ N. (4)

Then, for any σ > 0 there exists ε̄ > 0 such that, if |ε| ≤ ε̄, Eq. (1) has a mT-periodic
solution x(t) that makes exactly n revolutions around the origin in the period time mT, and
such that

|x(t) − x∗(t)| ≤ σ, for every t ∈ R. (5)

By circular solution we mean a solution whose orbit is a circle centered at the origin.
Condition (4) says that the quotient T/τ∗ has to be a rational number, but not an integer, a
kind of nonresonance condition. However, since the minimal period of the circular orbits of
the Kepler problem is strictly increasing with their radius, we can see that, taking any circular
orbit of the unperturbed system (3), assumption (4) will be verified by infinitely many circular
orbits which are arbitrarily near to it. As a consequence, we have the following result.

Theorem 2 For any circular solution x∗(t) of the unperturbed system (3), for any positive
integer N and any σ > 0, there exists ε̄ > 0 such that, if |ε| ≤ ε̄, Eq. (1) has at least N
periodic solutions x(t) satisfying (5).

Our result can successfully be applied, e.g., to the equation

ẍ = −c + εe(t)

|x |3 x,

where e : R → R is a continuous T -periodic function. This is a model of a Kepler problem
with a periodically varying gravitational force.

The problem of the existence of periodic solutions to the Kepler problem has been studied
by many authors. Even if it enters in the wide class of systems with a singularity, it has
some peculiar degeneracies that makes it rather difficult to solve. Following a pioneering
paper by Gordon (1975), variational methods have been used, e.g., in Ambrosetti and Coti
Zelati (1989), Capozzi et al. (1991), Degiovanni and Giannoni (1989), Serra and Terracini
(1994). In Ambrosetti and Coti Zelati (1989), the authors considered periodic perturbations
of the Kepler problem, and they proved the existence of T -periodic solutions bifurcating from
some circular solutions of the unperturbed problem. Similar bifurcation results were obtained
in Boscaggin and Ortega (2016), Cabral and Vidal (2000), Vidal (2001). In Boscaggin and
Ortega (2016), the stability of such solutions was also studied. In Fonda et al. (2012), a
rotating perturbation was considered. We refer to the books Ambrosetti and Coti Zelati
(1993), Cordani (2003), Torres (2015) for more information and references.

When comparing our theorems with the previous literature, we remark that our results are
stated for the problem of radial perturbations. This fact will allow us to deal separately with
the radial and the angular component of the solutions, a technique introduced in Fonda and
Toader (2008) and already exploited in several papers (Fonda and Sfecci 2017; Fonda and
Toader 2011a, b, 2012; Fonda et al. 2012; Fonda and Ureña 2011; Torres et al. 2013). How-
ever, our approach also permits to deal with small perturbations of the type κq(t)ẋ , provided
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Radial periodic perturbations of the Kepler problem 259

that q(t) is T -periodic and has zero mean. Even if we cannot see in this additional pertur-
bation a direct physical interpretation, we believe it worth to be included in our discussion.
The details are provided below.

In Sect. 2 of the paper we study a very general equation, trying to grasp the main ingredients
needed to obtain our bifurcation results. The principal tool in the proof will be the Implicit
Function Theorem, which will be used twice: a first time for obtaining T -periodic radial
components, the second one to get subharmonic, or quasi-periodic angular components.
Indeed, we will find solutions which in each time interval [t, t + T ] rotate of a given angle,
precisely the one spanned in the same time interval by the circular solution of the unperturbed
problem.

In Sect. 3 we illustrate some examples of applications. In particular, the gravitational
model (1) will be modified so to allow the power 2 in the inverse square law to be replaced
by any real number, with the exception of −1, when some linear resonance phenomena
may appear. We will also deal with a perturbation of Levi-Civita equation approximating
relativistic effects. Finally, we will present a model with two slightly oscillating masses,
describing the motion of a particle on the plane orthogonal to the segment joining them.

2 The general problem

We want to deal with the more general equation

ẍ + g(|x |) x = p(t, |x |; ε) x + κ q(t) ẋ, (6)

where g : ]0,+∞[→ R is assumed to be continuously differentiable. The function
p : R×]0,+∞[×R → R is continuous, T -periodic in its first variable, and continuously
differentiable in its second and third variables, satisfying (2), while q : R → R is continuous,
T -periodic, and such that ∫ T

0
q(t) dt = 0. (7)

First of all, we notice that the orbits arising from Eq. (6) are planar. To see this, assume
for simplicity that we are in a three-dimensional space. Then, if x(t) is a solution,

d
dt

(x(t) ∧ ẋ(t)) = κ q(t) (x(t) ∧ ẋ(t)),

hence,

x(t) ∧ ẋ(t) = eκ
∫ t

0 q(s) ds(x(0) ∧ ẋ(0)),

showing that the direction of x(t)∧ ẋ(t) is always the same. The proof is similar if we are in
any higher dimension, cf. Fonda and Toader (2008, Appendix A). So, we will always assume
that x(t) ∈ R2, for every t ∈ R.

Before stating our main result, we need to recall the notion of rotation number around the
origin for a planar curve. For τ1 < τ2, let γ : [τ1, τ2] → R2 be continuous and such that
γ (t) &= 0, for every t ∈ [τ1, τ2]. Writing γ (t) = ρ(t)(cos θ(t), sin θ(t)), with continuous
functions ρ(t) and θ(t), the rotation number of γ around the origin is defined as

Rot (γ ; [τ1, τ2]) = θ(τ2) − θ(τ1)

2π
.

A solution x : R → R2 is said to be T -radially periodic if the function t *→ |x(t)| is
T -periodic, and t *→ Rot (x; [t, t + T ]) is constant.
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Let ρ∗ > 0 be such that g(ρ∗) > 0. Then, the unperturbed equation

ẍ = −g(|x |) x (8)

has a circular solution x∗(t), with |x∗(t)| = ρ∗, having minimal period

τ∗ = 2π√
g(ρ∗)

. (9)

Notice that Rot(x∗, [0, T ]) = T
2π

√
g(ρ∗). Here is our main result.

Theorem 3 Assume that there is a ρ∗ > 0 such that

g(ρ∗) > 0, g′(ρ∗) &= 0,

and

4g(ρ∗) + g′(ρ∗)ρ∗ /∈
{(

2πk
T

)2

: k ∈ N \ {0}
}

. (10)

Then, for any σ > 0 there exist ε̄ > 0 and κ̄ > 0 such that, if |ε| ≤ ε̄ and |κ| ≤ κ̄ , Eq. (6) has
a T-radially periodic solution x(t), with Rot(x, [0, T ]) = T

2π

√
g(ρ∗), satisfying (5), i.e.,

|x(t) − x∗(t)| ≤ σ, for every t ∈ R.

Proof Let us define the functions

f (ρ) = g(ρ)ρ, p̂(t, ρ; ε) = p(t, ρ; ε)ρ.

Writing Eq. (6) in polar coordinates

x(t) = ρ(t)
(

cos θ(t), sin θ(t)
)
, (11)

a standard procedure [see, e.g., Arnold (1978)] leads to the system
{

ρ̈ − ρθ̇2 = − f (ρ) + p̂(t, ρ; ε) + κ q(t)ρ̇,

2ρ̇θ̇ + ρθ̈ = κ q(t)ρθ̇ .
(12)

Defining the scalar angular momentum

M(t) = ρ2(t)θ̇(t),

we see that the second equation in (12) becomes

Ṁ = κ q(t)M,

so that

M(t) = µeκ
∫ t

0 q(s) ds,

for some constant µ ∈ R. We will consider only the case when µ > 0, since the other
case can be obtained symmetrically: This means that our solutions rotate counterclockwise.
By assumption (7), the function M(t) is T -periodic. Notice that, for the circular solution
x∗(t) =

(
ρ∗ cos θ∗(t), ρ∗ sin θ∗(t)

)
, we have

θ∗(t) = θ∗(0) + 2π

τ∗
t,

and its angular momentum is constantly equal to

µ∗ = ρ2
∗
√

g(ρ∗). (13)
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Radial periodic perturbations of the Kepler problem 261

We begin by proving the existence of a T -periodic solution ρ(t) of the first equation
in (12): Hence, we consider the problem





ρ̈ − µ2

ρ3 e2κ
∫ t

0 q(s) ds + f (ρ) = p̂(t, ρ; ε) + κ q(t)ρ̇,

ρ(0) = ρ(T ), ρ̇(0) = ρ̇(T ).

(14)

We are looking for solutions ρ(t) in a small neighborhood of ρ∗.
We fix σ > 0 and, without loss of generality, we can assume that σ < 1

2ρ∗. Let us define
the truncated continuous function ĝ : R4 → R as

ĝ(t, ρ;µ, ε) =






−µ2

ρ3 e2κ
∫ t

0 q(s) ds + f (ρ) − p̂(t, ρ; ε), if ρ ≥ ρ∗
2

,

−8µ2

ρ3∗
e2κ

∫ t
0 q(s) ds + f

(ρ∗
2

)
− p̂

(
t,

ρ∗
2

; ε
)

, if ρ ≤ ρ∗
2

,

and consider the modified problem
{

ρ̈ + ĝ(t, ρ;µ, ε) = κ q(t)ρ̇,

ρ(0) = ρ(T ), ρ̇(0) = ρ̇(T ).
(15)

Let us introduce the following Banach spaces:

X = C([0, T ]), Y = C1([0, T ]), Z = C2([0, T ]).
We interpret problem (15) as

Lρ = Nµ,ε,κρ, (16)

where L : D(L) ⊆ Y → X is the linear operator defined as

D(L) = {ρ ∈ Z : ρ(0) = ρ(T ), ρ̇(0) = ρ̇(T )},
Lρ = −ρ̈,

and Nµ,ε,κ : Y → X is the Nemytzkii operator:

(Nµ,ε,κρ)(t) = ĝ(t, ρ(t);µ, ε) − κ q(t)ρ̇(t).

Let P : X → X be the projection associating to any function ρ(t) the constant valued
function

Pρ = 1
T

∫ T

0
ρ(t) dt,

and set X0 = ker P . Identifying the subspace of constant functions with R, we have that
X = R ⊕ X0, and we will write each function ρ ∈ X as

ρ(t) = λ + r(t),

with λ = Pρ ∈ R and r = (I − P)ρ ∈ X0.
Let Y0 = Y ∩ X0. For every h ∈ X0, the equation Lρ = h has a unique solution ρ in

D(L) ∩ Y0, which we denote by K h. Since, by the Ascoli–Arzelà Theorem, D(L) ∩ Y0 is
compactly imbedded in Y0, the linear operator K : X0 → Y0 thus defined is compact.

Following a standard Lyapunov–Schmidt method, we can now project Eq. (16) by the use
of P and I − P , respectively, so to obtain an equivalent system which, after inversion in the
first equation, can be written as
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{
r = K (I − P)Nµ,ε,κ (λ + r),

0 = P Nµ,ε,κ (λ + r).

We are going to apply the Implicit Function Theorem to the function F : (Y0 × R) × R3 →
Y0 × R, defined as

F
(
(r, µ), (λ, ε, κ)

)
=

(
r − K (I − P)Nµ,ε,κ (λ + r), P Nµ,ε,κ (λ + r)

)
.

Recalling (13), we have that
(
(0, µ∗), (ρ∗, 0, 0)

)
∈ (Y0 × R) × R3 corresponds to a circular

solution of the unperturbed problem (8) with radius ρ∗ and angular momentum µ∗; hence,

F
(
(0, µ∗), (ρ∗, 0, 0)

)
= (0, 0).

We notice that F is a continuously differentiable function on the open set

* =
{(

(r, µ), (λ, ε, κ)
)

: µ > 0, λ + r(t) > 1
2ρ∗, for every t ∈ [0, T ]

}
,

containing
(
(0, µ∗), (ρ∗, 0, 0)

)
, and we compute the partial differential of F with respect to

(r, µ). If (r, µ) ∈ * and (h, s) ∈ Y0 × R, writing F = (F1, F2), we have

∂F1

∂(r, µ)

(
(r, µ), (λ, ε, κ))(h, s) = h − K (I − P)

[(
3µ2h

(λ + r)4 − 2µs
(λ + r)3

)
e2κ

∫ ·
0 q(s) ds

+ f ′(λ + r)h − ∂ p̂
∂ρ

(·, λ + r; ε)h + κqḣ
]

,

and

∂F2

∂(r, µ)

(
(r, µ), (λ, ε, κ))(h, s) = P

[(
3µ2h

(λ + r)4 − 2µs
(λ + r)3

)
e2κ

∫ ·
0 q(s) ds

+ f ′(λ + r)h − ∂ p̂
∂ρ

(·, λ + r; ε)h + κqḣ
]

.

Let us prove that

A := ∂F
∂(r, µ)

(
(0, µ∗), (ρ∗, 0, 0)

)
∈ L(Y0 × R) is an isomorphism.

Indeed, for (h, s) ∈ Y0 × R, we have

A(h, s) =
(

h − σ∗K h,−2µ∗
ρ3∗

s
)

,

where

σ∗ = 3µ2
∗

ρ4∗
+ f ′(ρ∗) = 4g(ρ∗) + g′(ρ∗)ρ∗.

Hence, I − A is a compact operator and, using assumption (10), we see that 0 is not an
eigenvalue of A. Therefore, A is invertible, with bounded inverse, and the claim is proved.

By the Implicit Function Theorem we can find an open neighborhood U of (ρ∗, 0, 0) in
R3, an open neighborhood V of (0, µ∗) in Y0 × R, and a C1-function η : U → V such that
V × U ⊆ * and, if (λ, ε, κ) ∈ U , (r, µ) ∈ V , then

F
(
(r, µ), (λ, ε, κ)

)
= (0, 0) ⇔ (r, µ) = η(λ, ε, κ)

⇔
{

r = η1 (λ, ε, κ) ,

µ = η2(λ, ε, κ).
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The function ρ(t) = λ+r(t) can now be extended by T -periodicity on the whole real line R.
Now we are going to deal with the second equation in (12). We are looking for solutions

with rotation number equal to T/τ∗, i.e., we want θ(t) to satisfy

θ(t + T ) − θ(t) = 2πT
τ∗

= T
√

g(ρ∗). (17)

Notice that θ(0) can be chosen arbitrarily; hence, we can take θ(0) = θ∗(0). It is then easily
seen that (17) is equivalent to

T
√

g(ρ∗) =
∫ t+T

t
θ̇ (s) ds

=
∫ t+T

t

M(s)
ρ2(s)

ds

=
∫ T

0

M(t)
ρ2(t)

dt

=
∫ T

0

µ eκ
∫ t

0 q(s) ds

ρ2(t)
dt

=
∫ T

0

η2(λ, ε, κ) eκ
∫ t

0 q(s) ds

(λ + η1(λ, ε, κ)(t))2 dt.

We would like to apply the Implicit Function Theorem to the function G : U → R defined
as

G(λ, ε, κ) =
∫ T

0

η2(λ, ε, κ) eκ
∫ t

0 q(s) ds

(λ + η1(λ, ε, κ)(t))2 dt − T
√

g(ρ∗).

We notice that G is a continuously differentiable function. Let us determine G(λ, 0, 0). We
know that, if (λ, 0, 0) ∈ U , the only solution (r, µ) ∈ V of F

(
(r, µ), (λ, 0, 0)

)
= (0, 0) is

given by (r, µ) = η(λ, 0, 0), and that ρ(t) = λ + r(t) solves (15) with ε = 0 and κ = 0:
Hence, being ρ(t) > 1

2ρ∗, it solves




r̈ − µ2

(λ + r)3 + f (λ + r) = 0,

r(0) = r(T ), ṙ(0) = ṙ(T ).

But we see that a particular solution (r, µ) of such a problem is

r ≡ 0, µ =
√

λ3 f (λ),

and it belongs to V if λ is near ρ∗. Therefore, by uniqueness, if λ is near ρ∗, it has to be

η1(λ, 0, 0) ≡ 0, η2(λ, 0, 0) =
√

λ3 f (λ),

and hence,

G(λ, 0, 0) =
∫ T

0

√
λ3 f (λ)

λ2 dt − T
√

g(ρ∗) = T
(√

g(λ) −
√

g(ρ∗)
)
.

Then, since g′(ρ∗) &= 0,

G(ρ∗, 0, 0) = 0, and
∂G
∂λ

(ρ∗, 0, 0) &= 0.
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By the Implicit Function Theorem there exist ε̄ > 0, κ̄ > 0, δ̄ > 0 and a C1-function
ν : ] − ε̄, ε̄[× ] − κ̄, κ̄[→ ]ρ∗ − δ̄, ρ∗ + δ̄[ such that, if ε ∈ ] − ε̄, ε̄[, κ ∈ ] − κ̄, κ̄[ and
λ ∈ ]ρ∗ − δ̄, ρ∗ + δ̄[,

G(λ, ε, κ) = 0 ⇔ λ = ν(ε, κ).

Therefore, if |ε| ≤ ε̄ and |κ| ≤ κ̄ , we have found a solution x(t) of (6) of the type (11), with
ρ = ρε,κ = ν(ε, κ) + η1(ν(ε, κ), ε, κ) and θ = θε,κ satisfying (17). Since the dependence
on ε, κ is continuous, and when ε = κ = 0 we have the circular solution x∗(t), we can take
some smaller ε̄ and κ̄ , if necessary, so that ‖x − x∗‖∞ ≤ σ , i.e., also (5) is verified. The
proof is thus completed. 45

We have the following immediate consequence of Theorem 3.

Corollary 4 Under the assumptions of Theorem 3, if moreover

T
2π

√
g(ρ∗) = n

m
∈ Q,

then the solution x(t)of Eq. (6) provided by Theorem 3 is mT-periodic, and Rot(x, [0, mT ]) =
n.

We thus also find a myriad of periodic solutions near the circular solution x∗(t) of the
unperturbed equation.

Corollary 5 Under the assumptions of Theorem 3, for any positive integer N and any σ

> 0, there exist ε̄ > 0 and κ̄ > 0 such that, if |ε| ≤ ε̄ and |κ| ≤ κ̄ , Eq. (6) has at least N
periodic solutions x(t), which are T-radially periodic, and ‖x − x∗‖∞ ≤ σ .

Proof Since g′(ρ∗) &= 0, it is possible to find infinitely many values of ρ in ]ρ∗− 1
2σ, ρ∗+ 1

2σ [
for which the assumptions of Theorem 3 are satisfied, with (T/2π)

√
g(ρ) ∈ Q. Take N of

these, ρ1,…, ρN , with the corresponding rational numbers n1/m1, . . . , nN /m N , respectively,
and assume these numbers to be pairwise different. Let x1

∗(t),…, x N
∗ (t) denote some circular

solutions of (8) having those radii. By Corollary 4, we will find 2N positive numbers ε̄1,…,
ε̄N and κ̄1,…, κ̄N such that, if |ε| ≤ ε̄ j and |κ| ≤ κ̄ j , Eq. (1) has a m j T -periodic solu-
tion x j (t) that makes exactly n j revolutions around the origin, in the period time m j T ,
and ‖x j − x j

∗‖∞ ≤ 1
2σ , for every j = 1, . . . , N . Taking ε̄ = min{ε̄1, . . . , ε̄N } and

κ̄ = min{κ̄1, . . . , κ̄N }, we easily see that, if |ε| ≤ ε̄ and |κ| ≤ κ̄ , the solutions x1(t),…,
xN (t) are all different from one another, thus proving the result. 45

We now look for a condition guaranteeing the assumptions of Theorem 3 to be satisfied
by infinitely many values of ρ in a neighborhood of ρ∗.

Corollary 6 Assume that there is a ρ∗ > 0 such that g(ρ∗) > 0 and g′(ρ∗) &= 0. If g is twice
differentiable and

5g′(ρ∗) + g′′(ρ∗)ρ∗ &= 0, (18)

then the same conclusion of Corollary 5 holds.

Proof Let us introduce the function

h(ρ) = 4g(ρ) + g′(ρ)ρ,

so that condition (10) reads as

h(ρ∗) /∈
{(

2πk
T

)2

: k ∈ N \ {0}
}

.
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Radial periodic perturbations of the Kepler problem 265

We see that (18) implies

h′(ρ∗) = 5g′(ρ∗) + g′′(ρ∗)ρ∗ &= 0.

Hence, arbitrarily near ρ∗ there will be infinitely many values of ρ for which the assumptions
of Theorem 3 hold true. 45

Remark 7 All the results in this paper hold under some more general Carathéodory regularity
assumptions. Indeed, we could assume that q ∈ L1(0, T ), extended by T -periodicity, and

– p(·, ρ; ε) is measurable, for every (ρ, ε) ∈ ]0,+∞[×R,
– p(t, ·, ·) is continuously differentiable, for almost every t ∈ [0, T ],
– for every a, b ∈ R such that 0 < a < b and every c > 0 there is a function / ∈ L1(0, T )

such that, for almost every t ∈ [0, T ],
[

a ≤ ρ ≤ b and |ε| ≤ c
]

⇒ |p(t, ρ; ε)| +
∣∣∣∣
∂p
∂ρ

(t, ρ; ε)

∣∣∣∣ +
∣∣∣∣
∂p
∂ε

(t, ρ; ε)

∣∣∣∣ ≤ /(t).

The only modification in the proof of Theorem 3 will be in the choice of the function
spaces. A possibility could be, e.g., taking

X = L1(0, T ), Y = W 1,1(0, T ), Z = W 2,1(0, T ).

In this case, the solutions will not be twice continuously differentiable, but only once,
with second derivative in L1(0, T ), so that the differential equation will be satisfied for
almost every t ∈ R.

3 Some applications

As a particular case of (6), we consider the equation

ẍ + c
|x |α+1 x = p(t, |x |; ε) x + κ q(t) ẋ, (19)

where c is a positive constant, and α ∈ R. The function p : R×]0,+∞[×R → R is as
above, and we still assume (7), i.e., that

∫ T
0 q(t) dt = 0. Moreover, we assume α &= −1. (The

case α = −1 may lead to some linear resonance phenomena and will not be stressed here.)
We fix a circular orbit x∗(t) of the unperturbed system

ẍ = − c
|x |α+1 x, (20)

with radius ρ∗ > 0. By (9), the corresponding minimal period is then

τ∗ = 2π

√
ρα+1∗

c
. (21)

Corollary 8 Assume α &= −1 and

(3 − α)

(
T
τ∗

)2

/∈
{
k2 : k ∈ N \ {0}

}
. (22)

Then, the same conclusion of Theorem 3 holds for Eq. (19). If, moreover,

T
τ∗

= n
m

∈ Q,
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266 A. Fonda, A. C. Gallo

then, for any σ > 0 there exist ε̄ > 0 and κ̄ > 0 such that, if |ε| ≤ ε̄ and |κ| ≤ κ̄ , Eq. (19)
has a mT-periodic solution x(t), which is T-radially periodic, Rot(x, [0, mT ]) = n, and
‖x − x∗‖∞ ≤ σ .

Proof Writing g(ρ) = cρ−α−1, we see that g(ρ∗) > 0 and g′(ρ∗) &= 0, while (22) is just a
restatement of (10), so that the assumptions of Theorem 3 are verified. The second part of
the statement is a direct consequence of Corollary 4. 45

Notice that Theorem 1 follows immediately from Corollary 8, since in that case α = 2;
hence, condition (22) simply becomes T/τ∗ /∈ N.

On the other hand, as a consequence of Corollaries 5 and 6, we have the following rather
surprising result.

Corollary 9 Assume α &= −1. Then, for any circular solution x∗(t) of the unperturbed
system (20), for any positive integer N and any σ > 0, there exist ε̄ > 0 and κ̄ > 0 such that,
if |ε| ≤ ε̄ and |κ| ≤ κ̄ , Eq. (19) has at least N periodic solutions x(t), which are T-radially
periodic, and ‖x − x∗‖∞ ≤ σ .

Proof As seen above, writing g(ρ) = cρ−α−1, we see that g(ρ∗) > 0 and g′(ρ∗) &= 0.
Concerning (18), it holds if and only if α &= 3. However, if α = 3, we see that (10) holds.
The conclusion then follows from Corollaries 5 and 6. 45

Notice that Theorem 2 is a direct consequence of Corollary 9, since α = 2 there.
Another interesting equation we can deal with is

ẍ + c

|x |3 x + d

|x |4 x = p(t, |x |; ε) x + κ q(t) ẋ, (23)

where both c and d are positive, and (7) holds. This is a perturbation of Levi-Civita equation

ẍ = −
(

c

|x |3 + d

|x |4
)

x, (24)

which was introduced in Levi-Civita (1928) in order to approximate relativistic effects. The
periodic problem for the perturbed equation has been faced, e.g., in Ambrosetti and Bessi
(1990), by the use of a variational method. Setting g(ρ) = cρ−3 + dρ−4, it can be seen that
the assumptions of Corollary 6 are always satisfied, thus proving the following result.

Corollary 10 For any circular solution x∗(t) of the unperturbed system (24), for any positive
integer N and any σ > 0, there exist ε̄ > 0 and κ̄ > 0 such that, if |ε| ≤ ε̄ and |κ| ≤ κ̄ ,
Eq. (23) has at least N periodic solutions x(t), which are T-radially periodic, and ‖x −
x∗‖∞ ≤ σ .

As a final example, let us illustrate the situation, depicted in Fig. 1, describing the motion
of a particle gravitationally attracted by two masses, which slightly oscillate near two given
points.
Consider at first two fixed unitary masses in the three-dimensional space. Without loss of
generality, we can assume that the origin lies at the midpoint of the segment joining them.
Consider the plane π , orthogonal to the line / joining the two masses, containing the origin.
If 2d0 denotes the distance between the two masses, we obtain the equation

ẍ = − 2

[ |x |2 + d2
0 ]3/2

x . (25)

123



Radial periodic perturbations of the Kepler problem 267

Fig. 1 The two oscillating
masses problem

Assume now the two masses not to be fixed, but to display a slight periodic oscillation near
the previously fixed points, in such a way that they remain on the line / and they are always
in a symmetric position with respect to the origin. If moreover there is a small perturbation
of the type κ q(t)ẋ , the differential equation becomes

ẍ = − 2
[ |x |2 + (d0 + εe(t))2 ]3/2 x + κ q(t)ẋ, (26)

where e(t) is a T -periodic function. As before, we assume that q(t) has zero mean, i.e.,
that (7) holds. Setting g(ρ) = 2[ ρ2 + d2

0 ]−3/2, the assumptions of Corollary 6 are again
satisfied, so that we have the following result.

Corollary 11 For any circular solution x∗(t) of the unperturbed system (25), for any positive
integer N and any σ > 0, there exist ε̄ > 0 and κ̄ > 0 such that, if |ε| ≤ ε̄ and |κ| ≤ κ̄ ,
Eq. (26) has at least N periodic solutions x(t), which are T-radially periodic, and ‖x −
x∗‖∞ ≤ σ .
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