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Abstract After proposing a variant of the Poincaré–Bohl theorem, we extend the Poincaré–
Miranda theorem in several directions, by introducing an avoiding cones condition. We are
thus able to deal with functions defined on various types of convex domains, and situations
where the topological degreemay be different from±1.An illustrative application is provided
for the study of functionals having degenerate multi-saddle points.
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1 Introduction

Let us start recalling the Poincaré–Miranda theorem. We consider a rectangle R in R
N ,

R = [a1, b1] × · · · × [aN , bN ],
and a continuous function f : R → R

N . For every x ∈ R, we write

f (x) = ( f1(x), . . . , fN (x)),

thus defining the components fk : R → R, with k = 1, . . . , N . The theorem states that, if
each component fk changes sign on the corresponding opposite faces

F−
k = {x ∈ R : xk = ak}, F+

k = {x ∈ R : xk = bk},
then there is a point in R where all the components of f are equal to zero.
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1348 A. Fonda, P. Gidoni

Theorem 1 (Poincaré–Miranda) Assume that, for k = 1, . . . , N, either

fk(x)

{≤ 0, for every x ∈ F−
k ,

≥ 0, for every x ∈ F+
k ,

(1a)

or

fk(x)

{≥ 0, for every x ∈ F−
k ,

≤ 0, for every x ∈ F+
k .

(1b)

Then, there is an x̄ ∈ R such that f (x̄) = 0.

As recalled in the nice survey paper [20] (see also [19]), this theorem was stated in 1883
by Jules Henri Poincaré [25], with just a hint of proof, and then forgotten for a long time.
In 1940, Silvio Cinquini [6] rediscovered its statement, but his proof was not complete, and
it was one year later that Carlo Miranda [22] proved the equivalence of Theorem 1 with
Brouwer’s fixed point theorem.

Poincaréwasmainlymotivated by the study of periodic solutions for differential equations
arising from the three-body problem, which can be obtained as fixed points of what is now
called thePoincarémap.After his pioneeringwork,manyother researchers found applications
of Theorem 1, and different generalizations have been proposed, see e.g. [5,16,21,23,24,28,
29,31–34].

The aim of this paper is to generalize Theorem 1 by replacing the sign condition on
the components of the vector field with an avoiding cones condition. We will also consider
different shapes for the domain of the function f , instead of just rectangles, leading to
situations where the topological degree can be different from±1. The starting point to obtain
these results will be a variant of the Poincaré–Bohl theorem.

When the domain D of the function f is a convexbody and contains the origin in its interior,
our modification of the Poincaré–Bohl theorem consists in replacing the usual assumption,
requiring the vector field to avoid the rays arising from the origin, by asking instead that it
avoids the normal cones. Clearly enough, when the boundary of the set is smooth, this means
avoiding the rays determined by the normal vector field: in this case, such a condition has
been tackled in [13]. The modified Poincaré–Bohl theorem will be introduced in Sect. 2,
while a first generalization of Theorem 1 will be given in Sect. 3.

We then propose in Sect. 4 a different viewpoint, interpreting the domain D as a truncated
convex body. This leads us to the problem of reconstructing a larger convex body E where to
extend our function f . The set E is obtained by glueing Dwith some convex setsC1, . . . ,CM ,
where M denotes the number of truncations. In Sect. 5, we argue about the optimal choice
of the reconstruction E , which minimizes the amplitude of the cones to be avoided by the
vector field f .

In Sect. 6, we state our main result for truncated convex bodies. Here, the avoiding cones
condition is introduced in its most general form, assuming that the field f avoids the inner
normal cones in the regions of the boundary of D where the truncation occurs, and the outer
normal cones on the remaining part of the boundary. In this situation, we show that the
topological degree of f on D is equal to ±(1 − M). This will proved in Sect. 8, by suitably
extending the function f to the larger set E = D ∪ C1 ∪ · · · ∪ CM , and using the additivity
of the degree. Then we show how the convexity assumption on the set D can be weakened,
by only requiring the set D to be diffeomorphic to a convex body.

The structure of the Poincaré–Miranda theorem is typical of the gradient of a potential
V in a neighbourhood of a non-degenerate saddle point, where the domain is split into two
subspaces, in such a way that the vector field is expansive on one subspace and contractive on
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Generalizing the Poincaré–Miranda theorem: the avoiding cones… 1349

the other one [20,23,24]. More generally, also degenerate saddle points can be characterized
by their associated expansive and contractive directions.

In Sect. 7, we provide an illustrative example showing how our results apply to such
situations, considering the function f = ∇V in a neighbourhood of a degenerate multi-
saddle point. Indeed, we can deal with some more general situations, and show that the
degree of ∇V is equal to ±(1 − M), where M is the number of connected components of
the set of boundary points where ∇V points outwards. This type of results has already been
treated by many authors (see e.g. [9,27,30] and the references therein).

2 A variant of the Poincaré–Bohl theorem

We would like to discuss about the well-known Poincaré–Bohl theorem, which we recall,
together with its proof, for the reader’s convenience.

Theorem 2 (Poincaré–Bohl) Assume that Ω is an open bounded subset of RN , with 0 ∈ Ω ,
and that f : Ω → R

N is a continuous function such that

f (x) /∈ {αx : α > 0}, for every x ∈ ∂Ω. (2)

Then, there is an x̄ ∈ Ω such that f (x̄) = 0.

Proof We may assume that f (x) �= 0 for every x ∈ ∂Ω , since otherwise there is nothing
more to prove. Consider the homotopy F : Ω × [0, 1] → R

N defined by

F(x, λ) = (1 − λ) f (x) − λx .

We show that 0 /∈ F(∂Ω × [0, 1]). By contradiction, assume that there are an x ∈ ∂Ω and
a λ ∈ [0, 1] such that F(x, λ) = 0. Then λ �= 0, since by the above assumption f (x) �= 0,
and λ �= 1, since 0 ∈ Ω . So, λ ∈ ]0, 1[ and, setting α = λ/(1 − λ), we see that α > 0, and
f (x) = αx , a contradiction.
Therefore, we can compute the Brouwer topological degree:

dB( f,Ω) = dB(F(·, 1),Ω) = dB(F(·, 0),Ω) = dB(−I,Ω) = (−1)N .

(Here and in the following, I denotes the identity function.) The conclusion readily follows.
	


We now state a variant of Theorem 2, in the case when the set D = Ω is a convex body, i.e.
a compact convex set in R

N with non-empty interior. Note that every convex body coincides
with the closure of its interior.

Given a point x̄ ∈ D, we define the normal cone to D in x̄ as

ND(x̄) =
{
v ∈ R

N : 〈v, x − x̄〉 ≤ 0, for every x ∈ D
}

, (3)

where as usual, 〈· , ·〉 denotes the Euclidean scalar product in R
N , with associated norm ‖·‖.

Trivially, ND(x) = {0} for every x ∈ int D. On the other hand, it can be shown that, if
x ∈ ∂D, then its normal cone contains at least a halfline. For x ∈ ∂D, we write N 0

D(x) to
denote ND(x) deprived of the origin, i.e. N 0

D(x) = ND(x)\{0}. Clearly, if the boundary is
smooth at x , then N 0

D(x) = {αν(x) : α > 0}, where ν : ∂D → R
N denotes the unit outer

normal vector field.
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1350 A. Fonda, P. Gidoni

We denote by πD : RN → D the projection on the convex set D: for every x̄ ∈ R
N , πD(x̄)

is the only element of D satisfying

dist(x̄, πD(x̄)) ≤ dist(x̄, x), for every x ∈ D.

We remark that πD is a continuous function, and

πD(x̄ + v) = x̄ ⇔ v ∈ ND(x̄).

In the following, when dealing with a continuous function f : D → R
N , defined on a

convex body D, with 0 /∈ f (∂D), we denote by deg( f, D) the Brouwer degree dB( f, int D).

Theorem 3 Assume that D ⊆ R
N is a convex body and that f : D → R

N is a continuous
function such that

f (x) /∈ N 0
D(x), for every x ∈ ∂D. (4)

Then, there is an x̄ ∈ D such that f (x̄) = 0. Furthermore, if 0 /∈ f (∂D), then

deg( f, D) = (−1)N . (5)

Proof We first notice that it is not restrictive to assume that 0 ∈ int D. Moreover, we may
assume that f (x) �= 0 for every x ∈ ∂D, since otherwise there is nothing more to prove.

Let B be an open ball, centred at the origin and such that D ⊆ B. We consider the
homotopy F : B × [0, 1] → R

N defined by

F(x, λ) =
{
2λ(πD(x) − x) + (1 − 2λ) f (πD(x)), for 0 ≤ λ ≤ 1

2 ,

2(1 − λ)πD(x) − x, for 1
2 ≤ λ ≤ 1.

We check that 0 /∈ F(∂B × [0, 1]). For λ ∈ [0, 1/2], we observe that, for every x ∈ ∂B,
πD(x)− x ∈ −N 0

D(πD(x)) but at the same time f (πD(x)) /∈ ND(πD(x)). For λ ∈ [1/2, 1],
we notice that, by construction, ‖x‖ > ‖πD(x)‖ for every x ∈ ∂B. Thus, by the properties
of the topological degree,

(−1)N = dB(−I, B) = dB( f ◦ πD, B) = deg( f, D),

where in the last equality we used the excision property, since f (πD(x)) �= 0 for every
x ∈ B\ int D. 	


Notice that, when D is a ball centred at the origin, then ν(x) = x/ ‖x‖ for every x ∈ ∂D,
so that conditions (2) and (4) are equivalent. The differences between these two conditions
in a general case are illustrated in Fig. 1.

We remark that the notion of normal cone allows to extend the idea of inward and outward
direction to more sophisticated situations. For generalizations of Theorem 3 in this sense, we
refer to [4,8,18].

Clearly, the avoiding outer cones condition (4) can be replaced by an avoiding inner cones
condition, by just changing the sign of the function f . In this case, the degree in (5) becomes
deg( f, D) = 1. However, in analogy with similar results in the literature, in our exposition,
we prefer dealing with outer cones, which also have the advantage to allow a more intuitive
visualization.
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Fig. 1 Comparison between a condition (2) of the Poincaré–Bohl theorem and b the avoiding outer cones
condition (4). The red halflines and cones indicate the regions avoided by f (x) for some x ∈ ∂D (color figure
online)

3 From Poincaré–Bohl to Poincaré–Miranda: a first generalization

Assumption (1) in the Poincaré–Miranda theorem geometrically means that either on both
faces F−

k and F+
k the vector field points outwards, or on both faces it points inwards, for

every k = 1, . . . , N . We will try to replace this assumption by an avoiding inner/outer cones
condition.

Wefirst showhow to prove the Poincaré–Miranda theoremby the use of the Poincaré–Bohl
theorem (i.e. by Theorem 2). This will help us towards some generalizations.

Proof of Theorem 1 We first notice that there is no loss of generality in assuming that 0 is in
the interior ofR. Furthermore, we can define a new function f̃ : R → R

N whose components
are f̃k = ± fk , in such a way that

f̃k(x1, . . . , ak, . . . , xN ) ≥ 0 ≥ f̃k(x1, . . . , bk, . . . , xN ),

for every (x1, . . . , xN ) ∈ R and every k = 1, . . . , N . Notice that

f (x) = 0 ⇔ f̃ (x) = 0.

It is easily verified that, for D = R, the assumptions of Theorem 2 are satisfied, and the
proof is completed. 	


The above proof shows that, defining an appropriate linear function η : RN → R
N with

associated matrix being diagonal, and whose elements on the diagonal are either 1 or −1,
then the transformation f̃ = η◦ f satisfies the assumptions of Theorem 2, and the conclusion
immediately follows. With this idea in mind, we now provide a generalization of Theorem 3.

Theorem 4 Let h : RN → R
N be a homeomorphism, such that h(0) = 0, and assume that

D ⊆ R
N is a convex body. Let f : D → R

N be a continuous function such that

f (x) /∈ h(N 0
D(x)), for every x ∈ ∂D.

Then, there is an x̄ ∈ D such that f (x̄) = 0.

Proof Define g : D → R
N as g = h−1 ◦ f . Then g(x) /∈ N 0

D(x), for every x ∈ ∂D, and
Theorem 3 provides the existence of an x̄ ∈ D such that g(x̄) = 0. Being h invertible, we
have that f (x̄) = 0, as well, thus concluding the proof. 	
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D D

(a) (b)

Fig. 2 Comparison between a condition (1) of the Poincaré–Miranda theorem and b the avoiding cones
condition (6). The red halflines and cones indicate the regions avoided by f (x) for some x ∈ ∂D (color figure
online)

As a simple and direct consequence of Theorem 4, let N1 and N2 be positive integers such
that N1 + N2 = N , and K1 ⊆ R

N1 , K2 ⊆ R
N2 be two convex bodies. Define, for every

x = (x1, x2) ∈ K1 × K2,

Ac(x) =
⎧⎨
⎩

NK1(x1) × {0}, if x ∈ ∂K1 × int K2,

{0} × (−NK2(x2)), if x ∈ int K1 × ∂K2,

NK1(x1) × (−NK2(x2)), if x ∈ ∂K1 × ∂K2,

and let A0
c(x) = Ac(x)\{0}.

Corollary 5 Let f : K1 × K2 → R
N be a continuous function such that

f (x) /∈ A0
c(x), for every x ∈ ∂(K1 × K2). (6)

Then, there is an x̄ = (x̄1, x̄2) ∈ K1 × K2 for which f (x̄) = 0.

Proof It is a straightforward application of Theorem 4, with D = K1 × K2, taking as h the
linear transformation defined as the identity IN1 on R

N1 and its opposite −IN2 on R
N2 . 	


We will refer to the condition (6) as the avoiding cones condition. To compare it with
the “classical” condition (1) in the Poincaré–Miranda theorem, we consider the following
example.

Example 6 Let K1 = [a1, b1] and K2 = [a2, b2], so that D = R is a rectangle in R
2. We

write f (x) = ( f1(x), f2(x)), and, for simplicity, we assume that that 0 /∈ f (∂D). Let us
denote by x1 a generic point in ]a1, b1[ and by x2 a generic point in ]a2, b2[. The comparison
between the directions prohibited by Theorem 1 and those by Corollary 5 is illustrated in
Fig. 2 and summarized in the following table:

Poincaré–Miranda Avoiding cones condition
f1(a1, x2) < 0 f1(a1, x2) < 0 or f2(a1, x2) �= 0
f1(b1, x2) > 0 f1(b1, x2) > 0 or f2(b1, x2) �= 0
f2(x1, a2) > 0 f2(x1, a2) > 0 or f1(x1, a2) �= 0
f2(x1, b2) < 0 f2(x1, b2) < 0 or f1(x1, b2) �= 0

f1(a1, a2) < 0 and f2(a1, a2) > 0 f1(a1, a2) < 0 or f2(a1, a2) > 0
f1(a1, b2) < 0 and f2(a1, b2) < 0 f1(a1, b2) < 0 or f2(a1, b2) < 0
f1(b1, a2) > 0 and f2(b1, a2) > 0 f1(b1, a2) > 0 or f2(b1, a2) > 0
f1(b1, b2) > 0 and f2(b1, b2) < 0 f1(b1, b2) > 0 or f2(b1, b2) < 0
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The same behaviour is observed also in higher dimensions. For a general point x ∈ ∂R lying
on an (N − M)-dimensional facet of the rectangle, the Poincaré–Miranda theorem requires
M inequalities, each on a different component of f (x). For the same point x , our avoiding
cones condition requires much less: only if all the other N −M components of f (x) are null,
then at least one of those M inequalities must be satisfied. This shows that our Corollary 5
also generalizes [16, Theorem 3.4].

Similar considerations also apply to other variants of the Poincaré–Miranda theorem for
sets D which are product of balls instead of intervals, as for instance in [21, Corollary 2].
For one of these situations, namely the cylinder, the avoiding cones condition is illustrated
in Fig. 5.

There is a second way to describe the difference between the avoiding cones condition (6)
and assumption (1) in the Poincaré–Miranda theorem.Whereas the avoiding cones condition
requires that f (x) does not lie in Ac(x), the Poincaré–Miranda theorem requires that f (x)
actually lies in the polar cone of Ac(x), defined aŝ

Ac(x) = {v ∈ R
N : 〈v,w〉 ≤ 0, for every w ∈ Ac(x)},

besides possibly excluding the trivial case f (x) = 0.

4 Truncated convex bodies

The Poincaré–Miranda theorem and many of its generalizations consider a rectangular
domain, or at least the product of convex sets. We nowwant to replace this structural assump-
tion by introducing a new class of sets, which will lead us to some topologically different
situations.

Given a convex body D and a set F ⊆ ∂D, we say that D is truncated in F if there exists
a convex body E and a hyperplane H with the following properties (see Fig. 3):

• F = D ∩ H , and H is a supporting hyperplane for the set D;

C

D

F

E

H

Fig. 3 An example of truncation. The sets C and D are truncated with respect to F , and E is a reconstruction
for both
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1354 A. Fonda, P. Gidoni

• D = E ∩ HD , where HD is the closed halfspace bounded by H that includes D;
• the set C := E\HD has non-empty interior.

We call E a reconstruction of D with respect to F . Notice that C = E\D is a convex body,
which is truncated in F , as well.

As possible examples of truncated convex bodies, we have rectangles, polytopes and
cylinders. Balls, on the contrary, are not truncated. Neither, in general, having a (N − 1)-
dimensional face is a sufficient condition to be truncated: just consider a squarewith smoothed
angles.

In order to investigate the properties of a possible face F , let us denote by ∂N−1F the
boundary of F considered as a subset of H . Moreover, along with normal cones, it is useful
to consider also the set-valued analogue of the unit normal vector ν: it is the map νD , from
∂D to SN−1 = {y ∈ R

N : ‖y‖ = 1}, defined as

νD(x) =
{

y

‖y‖ : y ∈ N 0
D(x)

}
.

Denoting with cone[A] the cone generated by a set A, we then have that

ND(x) = cone [νD(x)] .

Since the normal cone ND is a map from D to the set of closed, convex subsets of RN ,
having closed graph, we can see that νD is an upper semicontinuous map from ∂D to the set
of compact subsets of RN (for an introduction to set-valued maps, we refer to [3]).

We remark that our definition (3) of the normal cone for convex sets is equivalent to setting

ND(x̄) =
{
v ∈ R

N : 〈v, x − x̄〉 ≤ o(‖x − x̄‖), x ∈ D
}

, (7)

thus underlining the local nature of the normal cone. This definition is usually adopted to
extend the notion of normal cones to non-convex sets (see e.g. [26]).

Given a point x̄ ∈ ∂D, to every vector v ∈ N 0
D(x̄), we can associate the supporting

hyperplane containing x̄ ,

Hv = {x̄ + w : 〈v,w〉 = 0},
and the corresponding halfspace containing D:

Hv = {x ∈ R
N : 〈v, x − x̄〉 ≤ 0}.

Being D a convex body, it coincides with the intersection of its supporting halfspaces [14,
Prop. 2, p. 58].

Proposition 7 If D is a convex body, truncated in F, then

(i) F is closed, convex, and F = E ∩ H;
(ii) F has a non-empty interior if considered as a subset of H;
(iii) if x ∈ ∂N−1F, then νD(x) is multivalued.

Proof The proof of (i) is immediate, so we start with the proof of (ii). Since D and C are
convex bodies, we can find two open balls BD = BN (pD, ε) ⊆ D and BC = BN (pC , ε) ⊆ C
with the same sufficiently small radius ε. We observe that H separates BD and BC , and so
there is a unique point pF in H ∩ [pD, pC ], the intersection of H with the segment joining
pD and pC . We have
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BN−1
H (pF , ε) = BN (pF , ε) ∩ H ⊆ E ∩ H ⊆ F,

thus showing that F has non-empty interior as a subset of H .
Regarding (iii), it suffices to show that, if x ∈ ∂N−1F , then there exist two different

supporting hyperplanes for D intersecting x , which are associated with different unit outer
normal vectors. Since x ∈ ∂E , there exists a supporting hyperplane H̃ for E , with x ∈ H̃ ,
implying that H̃ is also a supporting hyperplane for D. On the other hand, we know that
H is a supporting hyperplane for D, as well, with x ∈ H , and the set C = E\HD has a
non-empty interior, where HD is the closed halfspace bounded by H that includes D. So, it
has to be that H �= H̃ , thus completing the proof. 	


An immediate consequence is that smooth convex bodies are not truncated. We can inter-
pret (iii) as the necessity for D to have “edges” on the boundary of F .

We now consider multiple truncations. Given a convex body D ⊆ R
N and a family

{F1, . . . , FM } of pairwise disjoint sets, we say that D is truncated in {F1, . . . , FM } if there
exists a convex body E and some hyperplanes H1, . . . , HM with the following properties:

• Fi = D ∩ Hi , for every i , and Hi is a supporting hyperplane for the set D;
• D = E ∩H1

D ∩· · ·∩HM
D , whereHi

D is the closed halfspace bounded by Hi that includes
D;

• for every i , the set Ci := E\Hi
D has non-empty interior.

We call E a reconstruction of Dwith respect to {F1, . . . , FM }. Notice that eachCi is a convex
body, which is truncated in Fi . Moreover, the sets Ci are pairwise disjoint, and one has

C1 ∪ · · · ∪ CM = E\D.

Example 8 (Polygons and polyhedra) In R
2, a polygon with faces Fj is truncated in

{F1, . . . , FM } if the faces F1, . . . , FM are not pairwise adjacent. The simplest way to con-
struct a convex body truncated inM faces is to consider the 2M-agon as truncated on alternate
faces.

For polyhedra in R
3, we need that the faces where truncations occur do not share any

vertices. Thus, the cube canbe truncated in atmost two (opposite) faces, and so theoctahedron,
while the icosahedron can be truncated in at most four faces. One way to construct polyhedra
truncated in M faces is to consider the prism with a 2M-agonal base as truncated on alternate
lateral faces.

5 Optimal reconstructions

Let us spend a few words about reconstructions. Clearly, for every truncated convex body
D, there are infinitely many possible reconstructions; our plan is to focus on some special
reconstructions which are optimal for our purposes. They will indeed minimize the cones
Ac(x) to be avoided by the vector field, and hence provide the best choice for the application
of the results to be stated in Sect. 6. Some preliminary remarks are in order.

Given x̄ ∈ ∂D, we can consider the intersection of all those supporting halfspaces whose
boundary contains x̄ . Using the relationship with the normal cone, we can write this inter-
section as

{x ∈ R
N : 〈v, x − x̄〉 ≤ 0, for every v ∈ ND(x̄)} = x̄ +

̂

ND(x̄). (8)

The polar

̂

ND(x̄) of the normal cone is the so-called tangent cone [7,26].
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1356 A. Fonda, P. Gidoni

In the following, we denote by conv[A] the convex hull of a given set A, that is the smallest
convex set including A. The following lemma is a first step towards optimal reconstructions.

Lemma 9 Let D ⊆ R
N be a convex body truncated in F. Then, there exists a closed convex

set Emax such that Emax ∩ HD = D, with the property that, if E is any reconstruction of D
with respect to F, then E ⊆ Emax.

Proof If x ∈ ∂D\F , then, in a sufficiently small neighbourhood of x , the set D coincides
with any reconstruction E with respect to F , and hence ND(x) = NE (x). This means that
E and D have the same supporting hyperplanes containing x and therefore, by (8), we have

that E ⊆ x +

̂

ND(x). Now, let us set

Emax =
⋂

x∈∂D\F

[
x +

̂

ND(x)

]
.

By what we have just seen, it follows that E ⊆ Emax for every possible reconstruction E .
Hence, D ⊆ Emax ∩HD . Furthermore, Emax is a closed convex set since it is the intersection
of closed convex sets.

We want to prove that Emax ∩HD = D. First of all, we prove that ∂D ⊆ ∂(Emax ∩HD).
Indeed, each point x of ∂D belongs to Emax ∩ HD , since D ⊆ Emax ∩ HD . If x ∈ ∂D\F ,
then there is a supporting hyperplane of Emax containing x ; on the other hand, if x ∈ F ,
then x ∈ HD . In any case, there is a supporting hyperplane of Emax ∩ HD containing x , so
x ∈ ∂(Emax ∩ HD).

Suppose now by contradiction that there exists y ∈ Emax ∩ HD such that y /∈ D. Let
U = B(x0, r) be an open ball contained in D. By convexity, there exists a unique x̄ ∈
∂D ∩ [x0, y]. It is easy to show that there exists an open neighbourhood V of x̄ such that
V ⊆ conv[U ∪ {y}] ⊆ Emax ∩ HD . Then, x̄ /∈ ∂(Emax ∩ HD), contradicting the fact that
x̄ ∈ ∂D. Thus, Emax ∩ HD = D, and the proof is completed. 	


An immediate consequence of the above lemma is that Emax is the smallest set contain-
ing every reconstruction of D with respect to F . More precisely, since the intersection of
Emax with any arbitrarily large closed ball containing D is a reconstruction, we deduce that
every point of Emax is contained in a reconstruction. So, Emax is the union of all possible
reconstructions of D with respect to F .

We say that a reconstruction E is optimal if, for every x ∈ F ,

NC (x) = NCmax(x), where Cmax = Emax\D.

Since, for every reconstruction, the inclusion NC (x) ⊇ NCmax(x) holds for every x ∈ F , an
optimal reconstruction minimizes NC (x), as illustrated in Fig. 4.

In general, Emax is not bounded and therefore it is not a reconstruction; however, it is
always possible to build an optimal reconstruction simply taking E = Emax ∩ K , where K
is a convex body such that D ⊆ int K . Moreover, one can find an optimal reconstruction E
which is as close to D as desired. Indeed, given ε > 0, it suffices to take E = Emax ∩ B[D, ε],
where

B[D, ε] = {x ∈ R
N : dist(x, D) ≤ ε},

to have an optimal reconstruction whose distance from D is at most ε.

Example 10 (Cylinders/prisms) Let D = K × [−1, 1], where K is a convex body in R
N−1.

Then, D is truncated in any of its two bases. For instance, we can take H = R
N−1 × {1},
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D

Cmax

F

C

Fig. 4 Anexample of non-optimal reconstruction E = D∪C (blue), comparedwith the optimal reconstruction
Emax (red, starred), with emphasis on their respective normal cones (color figure online)

and F = K × {1}. In this case, we see that Emax = K × [−1,+∞), and a possible optimal
reconstruction with respect to the face F is given by E = D ∪ C , where C = K × [1, 2].
Notice that, if instead of C we take, e.g., C ′ = {(x, y + 1) : x ∈ K , 0 ≤ y ≤ dist(x, ∂K )},
it is true that we have a reconstruction, but it is not optimal.

Example 11 (Polytopes) If D is a convex polytope with faces F1, . . . , Fm , it is truncated
with respect to any of them. Let us focus on a particular one, F = Fj . Correspondingly, we
will have

E j,max =
m⋂
i=1
i �= j

Hi
D,

where Hi
D denotes the halfspace including D bounded by the supporting hyperplane Hi

generated by the face Fi . If E j,max is bounded, then it is an optimal reconstruction.

In the case of a convex body D truncated at {F1, . . . , FM }, we say that a reconstruction
E = D∪C1∪· · ·∪CM is optimal if, for every truncation Fi , the reconstruction Ei = D∪Ci

is optimal.

6 Main results

Let D ⊆ R
N be a convex body truncated in {F1, . . . , FM }, with an optimal reconstruction

E = D ∪ C1 ∪ · · · ∪ CM . We define the map Ac, from ∂D to the closed, convex cones of
R
N , as

Ac(x) =
{
NCi (x), if x ∈ Fi ,

ND(x), if x ∈ ∂D\⋃M
i=1 Fi .
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Fig. 5 Avoiding cones in the
case of the cylinder

D

Moreover, as usual, we denote by A0
c(x) the set Ac(x) deprived of the origin. We now state

the main theorem of this paper.

Theorem 12 Let D ⊆ R
N be a convex body truncated in {F1, . . . , FM }, with M ≥ 2, and

let f : D → R
N be a continuous function satisfying

f (x) /∈ A0
c(x), for every x ∈ ∂D.

Then, there is an x̄ ∈ D such that f (x̄) = 0. Furthermore, if 0 /∈ f (∂D), then

deg( f, D) = (−1)N (1 − M).

The proof of Theorem 12 will be given in Sect. 8. We now provide some examples where
it can be applied.

Example 13 (Cylinders/prisms) Let D = K × [−1, 1], where K ⊆ R
N−1 is a convex body.

The set D is truncated in F− = K × {−1} and F+ = K × {1}, and we have

Ac(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ND(x), if x ∈ ∂K×] − 1, 1[,
−ND(x), if x ∈ int K × {−1, 1},
NK (y)×] − ∞, 0], if x = (y, 1),with y ∈ ∂K ,

NK (y) × [0,+∞[, if x = (y,−1),with y ∈ ∂K .

These cones are illustrated for the three-dimensional case in Fig. 5, where K is a circle in
R
2. We remark that, in the case of cylinders, Theorem 12 coincides with Corollary 5.

Example 14 (Polytopes) Let the convex polytope D, with faces Fj , be truncated in
{F1, . . . , FM }. For every x ∈ ∂D, we denote by I (x) = {i : x ∈ Fi } the set of indices
of those faces containing x , and by νi the outward unit vector normal to Fi . Furthermore, we
denote by σ(i) the sign of the avoiding cones condition in Fi , namely

σ(i) =
{

−1, if i = 1, . . . , M (avoiding inner normal cones),

+1, otherwise (avoiding outer normal cones).
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D

Fig. 6 Avoiding cones in the case of a hexagon

Then, Ac(x) corresponds to the convex cone generated by the set

{σ(i)νi : i ∈ I (x)},
whose elements are the outer/inner normal cones assigned byAc to the points in the interior
of the faces containing x . We illustrate in Fig. 6 the particular case of an hexagon truncated
in three alternate faces. We highlight that, being in this case N = 2 and M = 3, if f satisfies
the avoiding cones condition of Theorem 12, then

deg( f, D) = (−1)2(1 − 3) = −2.

We finally notice that Theorem 3 can be interpreted as a version of Theorem 12, with
M = 0. So, having Theorem 4 in mind, we can also write the following extension of
Theorem 12.

Theorem 15 Let h : RN → R
N be a homeomorphism, such that h(0) = 0, and assume that

D ⊆ R
N is a convex body truncated in {F1, . . . , FM }, with M ≥ 2. Let f : D → R

N be a
continuous function such that

f (x) /∈ h(A0
c(x)), for every x ∈ ∂D.

Then, there is an x̄ ∈ D such that f (x̄) = 0.

Until now, the domain D of our functions has been supposed to be a convex body.However,
all our results can be easily extended to setsD which are just diffeomorphic to a convex body
D. By this, we mean that there are two open sets A, B in R

N , with D ⊆ A, D ⊆ B, and a
diffeomorphism ϕ : A → B, such that

D = ϕ(D).

To define the normal cone to D at a boundary point y ∈ ∂D, let ψ = ϕ−1 : B → A, so that
ψ(y) ∈ ∂D, and set

ND(y) = (ψ ′(y))TND(ψ(y)).

We remark that this choice preserves the extended notion of normal cone recalled in (7).
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x2

x1

0

D
x1

x2

D

(a) (b)

Fig. 7 Comparison between a condition (2) of the Poincaré–Bohl theorem and b the avoiding outer cones
condition (9). The red halflines and cones indicate the regions avoided by f (x) for some x ∈ ∂D (color figure
online)

Let us first go back to our variant of the Poincaré–Bohl theorem. Writing, as usual,
N 0

D(y) = ND(y)\{0}, we have the following extension of Theorem 3.

Theorem 16 Assume thatD is a subset ofRN , diffeomorphic to a convex body. Let f : D →
R
N be a continuous function such that

f (y) /∈ N 0
D(y), for every y ∈ ∂D. (9)

Then, there is a ȳ ∈ D such that f (ȳ) = 0.

Proof Using the above notation, we have D = ψ(D) and we define f̃ : D → R
N as

f̃ (x) = (ϕ′(x))T f (ϕ(x)).

Then, condition (4) holds replacing f by f̃ , so Theorem 3 applies, and we easily conclude.
	


In Fig. 7, we illustrate the avoiding cones condition of Theorem 16, in the case when D
has a smooth boundary.

Now, in order to extend Theorem 12, let us consider a set D which is diffeomorphic to a
convex body D, truncated in {F1, . . . , FM }. Since D ⊆ A, D ⊆ B, and both sets A an B are
open, we can choose a reconstruction E of D with respect to {F1, . . . , FM }, even an optimal
reconstruction, to be contained in A, as well. Setting

E = ϕ(E),F1 = ϕ(F1), . . . ,FM = ϕ(FM ),

we say that E is a reconstruction of D with respect to {F1, . . . ,FM }. We also say that D is
truncated in {F1, . . . ,FM }. Then, referring to the notation introduced in Sect. 4, we have
E = D ∪ C1 ∪ · · · ∪ CM , and setting C1 = ϕ(C1), . . . , CM = ϕ(CM ), we can define the
cones

Ac(x) =
{
NCi (y), if y ∈ Fi ,

ND(y), if y ∈ ∂D\⋃M
i=1 Fi .

Writing, as usual, A0
c(x) = Ac(x)\{0}, we can state the following.
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Fig. 8 Avoiding cones in the
case of a non-convex set
diffeomorphic to a hexagon

D

Theorem 17 Let D ⊆ R
N , diffeomorphic to a convex body, be truncated in {F1, . . . ,FM },

with M ≥ 2, and let f : D → R
N be a continuous function satisfying

f (y) /∈ A0
c(y), for every y ∈ ∂D.

Then, there is a ȳ ∈ D such that f (ȳ) = 0.

An example of the avoiding cones condition of Theorem 17 is illustrated in Fig. 8, where
the set D is diffeomorphic to a hexagon D (cf. Fig. 6).

We end this section with the analogue of Theorem 15.

Theorem 18 Let h : R
N → R

N be a homeomorphism, such that h(0) = 0, assume that
D ⊆ R

N , diffeomorphic to a convex body, is truncated in {F1, . . . ,FM }, with M ≥ 2, and
let f : D → R

N be a continuous function satisfying

f (y) /∈ h(A0
c(y)), for every y ∈ ∂D.

Then, there is a ȳ ∈ D such that f (ȳ) = 0.

7 An application to multi-saddles

In this section, we will show that our results can be applied to deal with the gradient of a
potential V having degenerate multi-saddle points, where multiple expansive and contractive
directions appear.

A detailed exposition for the planar case can be found in [10], where the authors considered
k-fold saddles formedby the alternation, around the critical point, of k+1 ascendingdirections
and k + 1 descending directions: the first ones identified by trajectories of the flow of ∇V
escaping from the critical point, while the second ones by trajectories converging to the
critical point. (For a similar situation, see also [1,11,12].) With this description, the standard
non-degenerate saddle is an example of onefold saddle, whereas the monkey saddle is a
twofold saddle (cf. Fig. 9).
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Fig. 9 The monkey saddle V (x1, x2) = x31 − 3x1x
2
2

In higher dimensions, the criterion of alternation is no longer applicable and more sophis-
ticated situationsmay arise. Different approaches, mainly related to the Conley index or some
of its generalizations, have been used to study the degree in the case of higher-dimensional
multiple saddle points (cf. [9,27,30]). We propose here a simpler strategy, based on our
Theorem 12, to recover some of those results.

We consider a continuously differentiable function V : B[0, R] → R, and assume that,
near the boundary of the domain, namely for 0 < r ≤ ‖x‖ ≤ R, it can be written in the form

V (x) = ρ(‖x‖)S
(

x

‖x‖
)

, (10)

where ρ : [r, R] → ]0,+∞[ and S : SN−1 → R are continuously differentiable functions,
and ρ′(ξ) > 0, for every ξ ∈ [r, R]. This factorization, in a certain sense, generalizes the idea
of positive homogeneity, which corresponds to the choice ρ(t) = tα , for a certain α > 0.

In this region of the domain, ∇V (x) can be decomposed in radial and tangential compo-
nents as

∇V (x) = ρ′(‖x‖) x

‖x‖ S
(

x

‖x‖
)

+ ρ(‖x‖)
‖x‖ ∇S S

(
x

‖x‖
)

, (11)

where ∇S S(y) denotes the tangential gradient of S(y), i.e., for every y ∈ SN−1,

∇S S(y) = ∇S(y) − 〈∇S(y), y〉 y .

We see that ∇S S corresponds to the surface gradient on the unit sphere of the function
x �→ S(x/ ‖x‖), defined on R

N\{0}.
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Since in (11) the two terms in the sum are orthogonal, their sum vanishes if and only if
they are both zero. Hence, if r ≤ ‖x‖ ≤ R, we have that

∇V (x) = 0 ⇔ S

(
x

‖x‖
)

= 0 and ∇S S
(

x

‖x‖
)

= 0.

In particular, if we want the degree deg(∇V,B[0, R]) to be well defined, we need to ask that
S(x) and ∇S S(x) do not vanish simultaneously at any x ∈ SN−1.

Let us state the main result of this section.

Theorem 19 In the above setting, assume that

(i) if x ∈ SN−1 satisfies ∇S S(x) = 0, then S(x) �= 0;
(ii) the set {x ∈ SN−1 : S(x) ≥ 0} is the union of M disjoint subsets, which are diffeomorphic

to an (N − 1)-dimensional ball.

Then, deg(∇V,B[0, R]) = (−1)N (1 − M).

Proof If M = 0, we have that S(x) < 0 for every x ∈ SN−1. Taking D = B[0, R], we have
that, for every x ∈ ∂D, the cone to avoid is ND(x) = {λx : λ ≥ 0}. Being V (x) < 0, the
radial component of ∇V (x) is not zero and points inward, so ∇V (x) /∈ ND(x). Theorem 3
can then be applied to conclude.

So, from now on, we can assume M ≥ 1. Given a vector y ∈ SN−1, for every x ∈ SN−1

such that x �= ±y, we define

σ(x; y) = y − x − 〈x, y − x〉 x
‖y − x − 〈x, y − x〉 x‖ .

It is the unit vector on the tangent space to SN−1 in x , associated with the shortest path
from x to y. We say that a local maximum point y ∈ SN−1 for S is regular if there exists a
neighbourhood U of y, with the property that

〈σ(x; y),∇S S(x)〉 > 0, for every x ∈ U ∩ SN−1.

This condition is true, for instance, if y is a non-degenerate local maximum point. We first
prove the theorem when (ii) is replaced by the following stronger assumption:

(ii∗) if y ∈ SN−1 satisfies ∇S S(y) = 0 and S(y) ≥ 0, then y is a regular local maximum
point for S, and S(y) > 0. Moreover, there are exactly M of such points.

Let s1, . . . , sM be the regular maximum points of condition (ii∗). For any ε ∈ ]0, R − r [, we
set

Hi = {x ∈ R
N : 〈x, si 〉 ≤ R − ε}.

Let

D = B[0, R] ∩ H1 ∩ H2 ∩ · · · ∩ HM ,

and define Hi = ∂Hi . If ε is sufficiently small, then D is a convex body truncated in
{F1, . . . FM }, with Fi = B[0, R] ∪ Hi , and E = B[0, R] is an optimal reconstruction. Let us
verify that the avoiding cones condition holds, provided that ε is sufficiently small.

For x ∈ ∂D\⋃M
i=1 Fi , the cone to avoid isAc(x) = ND(x) = {λx : λ ≥ 0}. If V (x) < 0,

then the radial component of ∇V (x) is not zero and points inward, so ∇V (x) /∈ Ac(x). If
V (x) ≥ 0, since x �= Rsi for each i = 1, . . . , M , the tangential component of ∇V (x) is not
zero and so ∇V (x) /∈ Ac(x).
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If x ∈ int∂D Fi , for some i = 1, . . . , M , then Ac(x) = {−λsi : λ ≥ 0}. (Note that
int∂D Fi is a (N − 1)-dimensional ball of radius

√
ε(2R − ε) centred in (R − ε)si .) Since

∇V ((R − ε)si ) = λi si , for some λi > 0, if ε is sufficiently small, by continuity, it has to be
∇V (x) /∈ Ac(x).

If x ∈ ∂N−1Fi , the boundary with respect to Hi , for some i = 1, . . . , M , then Ac(x)
is the convex cone generated by {−si , x}. By definition, we have that 〈σ(x; si ), x〉 = 0
and, if ‖x − Rsi‖ ≤ √

2R, then also 〈σ(x; si ),−si 〉 ≤ 0. Thus, if ε is sufficiently small,
〈σ(x; si ), v〉 ≤ 0 for every v ∈ Ac(x). On the other hand, since si is a regular maximum
point, taking ε sufficiently small we get

〈σ(x; si ),∇V (x)〉 =
〈
σ(x; si ), ρ(‖x‖)

‖x‖ ∇S S
(

x

‖x‖
)〉

> 0,

so that ∇V (x) /∈ Ac(x).
So, in all cases, we have that ∇V (x) /∈ Ac(x). Then, by Theorem 12, deg(∇V, D) =

(−1)N (1 − M). Since there are no critical points of V in B[0, R]\D, the excision property
of the degree leads us to the end of the proof, in this case.

Let us now consider the general case. We write

{x ∈ SN−1 : S(x) ≥ 0} = Σ1 ∪ · · · ∪ ΣM ,

and assume that, for every i = 1, . . . , M , there are an open set Ui ⊆ SN−1 containing
Σi , an open set Vi containing BN−1[0, 1] and a diffeomorphism ψi : Ui → Vi , such that
ψi (Σi ) = BN−1[0, 1]; moreover, the sets Ui can be assumed pairwise disjoint.

Define Pi : Ui → R as

Pi (x) = 1 − ‖ψi (x)‖2.
Then, for every x ∈ ∂Σi , there is a λi (x) > 0 for which ∇S S(x) = λi (x)∇S Pi (x). Hence,
for δ > 0 sufficiently small, BN−1[0, 1+ δ] ⊆ Vi and, writing U δ

i = ψ−1
i (BN−1[0, 1+ δ]),

we have that Σi ⊆ U δ
i ⊆ Ui . Furthermore, for δ sufficiently small, we have also

〈∇S S(x),∇S Pi (x)〉 > 0, for every x ∈ U δ
i \Σi .

Let μ : R → R be an increasing continuously differentiable function such that

μ(s) =
{
0, if s ≤ 0,
1, if s ≥ δ,

μ′(0) = μ′(δ) = 0.

Define W : SN−1 × [0, 1] → R as follows:

W (x, λ) =

⎧⎪⎪⎨
⎪⎪⎩

[
1 − μ

(
dist

(
ψi (x),BN−1[0, 1]

) )] (
λPi (x) + (1 − λ)S(x)

)
+

+μ
(
dist

(
ψi (x),BN−1[0, 1]

) )
S(x), if x ∈ U δ

i , for some i,

S(x), otherwise.

This function is continuously differentiable and transforms S(x) = W (x, 0) into a function
S̃(x) = W (x, 1), satisfying (ii∗). Moreover, the following two additional properties hold:

– the sign of W (x, λ) does not depend on λ;
– the functions W (·, λ) have no critical points y with W (y, λ) = 0.

Such a functionW induces an admissible homotopy H : B[0, R]× [0, 1] → R
N , defined as

H(x, λ) = ∇
[
ρ(‖x‖)W

(
x

‖x‖ , λ

)]
,
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which transforms ∇V (x) = H(x, 0) into ∇ Ṽ (x), where Ṽ (x) satisfies the assumptions of
the theorem, and also the additional condition (ii∗). Since the admissible homotopy preserves
the degree, the proof is completed. 	


The following symmetrical version of Theorem 19 holds.

Theorem 20 Let the assumptions of Theorem 19 hold, with only (ii) replaced by

(ii−) the set {x ∈ SN−1 : S(x) ≤ 0} is the union of M disjoint subsets, which are diffeo-
morphic to an (N − 1)-dimensional ball.

Then, deg(∇V,B[0, R]) = 1 − M.

Proof It is sufficient to apply Theorem 19 to −V instead of V . 	


The above result should be compared with [30, Theorem 4.4], which is stated in a more
general setting. We also notice that, when M = 0, Theorem 20 is related to a result by
Krasnosel’skii [17] (see also [2]) stating that, when V is coercive, then, for R large enough,
deg(∇V,B[0, R]) = 1.

In the planar case, conditions (ii) and (ii−) can be simplified, as follows.

Corollary 21 Let the assumptions of Theorem 19 hold, for N = 2, with only (ii) replaced
by

(ii2) the function S changes sign exactly 2M times on S1.

Then, deg(∇V,B[0, R]) = 1 − M.

Proof Since the zeros of S are simple, the set {x ∈ S1 : S(x) ≥ 0} is the union of M disjoint
arcs, each of which is diffeomorphic to a compact interval of R. 	


We have thus recovered, in the planar case, a variant of the alternation criterion described
in [10]. We now give two simple examples where our results directly apply. The first one
deals with a planar situation.

Example 22 Let us consider, for a positive integer k, the family of potentials

Sk(s) = cos[(k + 1)s],
where s ∈ [0, 2π[ is the angle which determines a point x ∈ S1. Taking ρk(t) = tk+1 and
identifying R

2 with the complex plane, we get

Vk(z) = ρk(|z|)Sk(arg z) = �
(
zk+1

)
.

The saddle generated by Sk has k + 1 ascending directions at the points of maximum for
Sk , namely s = 2 jπ/(k + 1), with j = 0, 1, . . . , k, and k + 1 descending directions at the
points of minimum for Sk , i.e. s = (2 j + 1)π/(k + 1). We thus see that this choice of Sk
produces a model of k-fold saddle for every k ≥ 1. In this case, deg(∇Vk,B[0, R]) = −k,
for any R > 0.

As we said above, our main purpose is to study also non-planar situations. In our second
example, we show an illustrative application in R

3.
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Fig. 10 Behaviour of the functions Sa(s) and Sb(s) of Example 23 on the unit sphere. The black thick line
indicates where they take value zero. The functions are positive in the red regions and negative in the blue
ones. a The potential Sa(x). b The potential Sb(x) (color figure online)

Example 23 Let v1, v2, v3, v4 be the vertices of a tetrahedron centred in the origin, namely

v1 =
(
0, 0,

√
6

4

)
, v2 =

(
−

√
3

6
,−1

2
,−

√
6

12

)
,

v3 =
(

−
√
3

6
,
1

2
,−

√
6

12

)
, v4 =

(√
3

3
, 0,−

√
6

12

)
.

Let us consider the functions Va, Vb : R3 → R, defined as

Va(x) = ‖x‖2
[
1

5
− min

i=1,...,4
dist

(
x

‖x‖ , vi

)2
]

,

Vb(x) =
4∏

i=1

〈x, vi 〉 − ‖x‖4
150

.

Both potentials admit the factorization (10), since they are positively homogeneous of degree
two and four, respectively. The behaviour of their spherical components Sa(x) and Sb(x) is
illustrated in Fig. 10.

The potential Sa has four positive maximum points, placed in correspondence of the
vertices of the tetrahedron, four negative minima, in correspondence of the centres of the
faces of the tetrahedron, and six negative saddle points, in correspondence of the midpoints
of the edges of the tetrahedron.

The potential Sb instead has six positive maximum points, placed in correspondence of the
midpoints of the edges of the tetrahedron, defining in this way the vertices of an octahedron.
It also has eight negative minima, in correspondence of both the vertices and the centres
of the faces of the tetrahedron (i.e. the centres of the faces of the octahedron), and twelve
negative saddle points, corresponding to the midpoints of the edges of the octahedron.
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Moreover, we observe that both Va and Vb satisfy the hypotheses of Theorem 19, with
Ma = 4 and Mb = 6, respectively, so that, for every R > 0, we have

deg(∇Va,B[0, R]) = (−1)3(1 − Ma) = 3,

deg(∇Vb,B[0, R]) = (−1)3(1 − Mb) = 5.

8 Proof of Theorem 12

In this section, in order to provide a proof for Theorem 12, we will need some basic facts
from the theory of set-valued maps, for which we refer to the book of Aubin and Cellina [3].

Let us start showing that if D is a convex body, then, for every x ∈ D,

v ∈ N 0
D(x) ⇒ −v /∈ N 0

D(x).

Indeed, if on the contrary both v and −v belong to N 0
D(x), then, for every x ∈ D, it would

be

0 ≥ 〈v, x − x̄〉 = − 〈−v, x − x̄〉 ≥ 0.

Hence, D would be included in a hyperplane orthogonal to v and so it would have empty
interior, in contradiction with the assumption of being a convex body.

The following lemma will be crucial for the proof of Theorem 12.

Lemma 24 Let D ⊆ R
N be a convex body truncated in F, and E = D∪C be a reconstruc-

tion of D with respect to F. If f : D → R
N is a continuous map such that f (x) /∈ NC (x),

for every x ∈ F, then f can be extended to a continuous function f̂ : E → R
N , such that

f̂ (x) /∈ NC (x), for every x ∈ ∂C.

Proof The core of the proof is to show the existence of a map N̂C from ∂C to the closed,
convex cones of RN , with closed graph and such that

(N1) for every x ∈ ∂C , NC (x) ⊆ N̂C (x) and

v ∈ N̂C (x)\{0} ⇒ −v /∈ N̂C (x) ;
(N2) N̂C admits a continuous selection α : ∂C → R

N such that

α(x) ∈ N̂C (x) \ {0}, for every x ∈ ∂C ;
(N3) f (x) /∈ N̂C (x), for every x ∈ F .

Step 1 Let us define the set-valued map Φ from ∂C to R
N as

Φ(x) = conv [νC (x)] .

Its values are convex and compact. Let us show that Φ is upper semicontinuous. To do so,
we first observe that, for a compact convex set K ⊆ R

N , the ε-neighbourhood B(K , ε)

is convex because of the convexity of the Euclidean distance. Now, take x ∈ ∂C and fix
ε > 0. Since νC is upper semicontinuous and B(Φ(x), ε) is a neighbourhood of νC (x), there
exists a neighbourhood U of x in ∂C such that νC (U ) ⊆ B(Φ(x), ε). From the convexity
of B(Φ(x), ε), it follows that Φ(U ) ⊆ B(Φ(x), ε). The upper semicontinuity of Φ is thus
proved.
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Since Φ(x) ⊆ NC (x), we have that

v ∈ Φ(x)\{0} ⇒ −v /∈ Φ(x).

Let us now prove that 0 /∈ Φ(∂C). Suppose by contradiction that 0 ∈ Φ(x) for some x ∈ ∂C ;
then there exist v1, . . . , vk ∈ νC (x) and λ1, . . . , λk in ]0, 1[, with λ1 + · · · + λk = 1, such
that

0 =
k∑

i=1

λivi = λ1v1 + (1 − λ1)ṽ, with ṽ =
k∑

i=2

λivi

1 − λ1
∈ Φ(x).

Let us set μ = min{λ1/2, (1 − λ1)/2}; then,
0 �= w1 = (λ1 + μ)v1 + (1 − λ1 − μ)ṽ ∈ Φ(x),

0 �= w2 = (λ1 − μ)v1 + (1 − λ1 + μ)ṽ ∈ Φ(x),

with w2 = −w1, in contradiction with the fact that Φ(x) does not contain opposite vectors.
Hence, 0 /∈ Φ(x) for every x ∈ ∂C .

Since Φ is upper semicontinuous and thus has a closed graph, we can set

δ0 := dist(∂C × {0}, graph
∂C

Φ) > 0. (12)

Furthermore, we note that Φ(∂C) ⊆ B[0, 1], for the convexity of the Euclidean distance,
and so Φ(∂C) is compact.

Step 2 Since 0 /∈ f (F), we can define f1 : F → SN−1 ⊆ R
N as

f1(x) = f (x)

‖ f (x)‖ .

The function f1 is continuous and the hypothesis f (x) /∈ NC (x) is equivalent to f1(x) /∈
νC (x), from which it follows that f1(x) /∈ Φ(x), for every x ∈ F . Thus we can define

δ1 := dist(graph
F

f1, graph
∂C

Φ) > 0. (13)

We remark that we are considering the distance in R
N × R

N between two compact sets
corresponding to the graphs of two functions with different domains.

By [3, Sect. 1.13,Theorem 1] (cf. also [15]), there exists a sequence of upper semicontin-
uous set-valued maps Φi , from ∂C to R

N , satisfying

(S1) for every i ∈ N, Φi has a continuous selection αi ;
(S2) for every i ∈ N, Φi has closed graph and compact values;
(S3) for every x ∈ ∂C ,

Φ(x) ⊆ · · · ⊆ Φi+1(x) ⊆ Φi (x) ⊆ · · · ⊆ Φ0(x),

and

Φ(x) =
⋂
i∈N

Φi (x).

Moreover, since Φ(∂C) is compact, the maps Φi can be taken with convex values.
Let us introduce the set-valued maps νi from ∂C to R

N as

νi (x) =
{

y

‖y‖ : y ∈ Φi (x)\{0}
}

.
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Note that the maps νi have compact graph. Moreover, for every x ∈ ∂C ,

νi+1(x) ⊆ νi (x), and
⋂
i∈N

νi (x) = νC (x).

From this and the continuity of the distance, we get that there exists an index i ′ ∈ N such
that, for every i ≥ i ′,

dist(graph
F

f1, graph
∂C

νi ) >
δ1

2
, (14)

where δ1 has been defined in (13). Similarly, from (12), we get that there exists ı̄ ≥ i ′ such
that 0 /∈ Φi (∂C), for every i ≥ ı̄ .

Step 3 We claim that, for any j ≥ ı̄ , the choice

N̂C (x) = cone[Φ j (x)]
satisfies all the requirements (N1), (N2) and (N3). First of all,wenotice that the conegenerated
by a compact, convex set is always closed and convex. Similarly, since the graph of Φ j is
compact, it follows that the graph of N̂C is closed. Furthermore, since νC (x) ⊆ Φ(x) ⊆
Φ j (x) ⊆ N̂C (x), it follows that NC (x) ⊆ N̂C (x).

Now let us suppose by contradiction that, for some x ∈ ∂C , there exists v ∈ N̂C (x)\{0}
such that −v ∈ N̂C (x). Then there exist v1 = a1v and v2 = −a2v, with a1 > 0, a2 > 0,
such that both v1 ∈ Φ j (x) and v2 ∈ Φ j (x). Since Φ j (x) is convex, it follows that

0 = a2
a1 + a2

v1 + a1
a1 + a2

v2 ∈ Φ j (x),

a contradiction, since j ≥ ı̄ . Hence, (N1) is satisfied.
To satisfy (N2), it is sufficient to take α = α j , where α j is a continuous selection of Φ j

given by (S1). Since 0 /∈ Φ j (x) for every x ∈ ∂C , we have that α j (x) �= 0 for every x ∈ ∂C .
Let us now define ν̂C (x) = ν j (x), for a fixed j ≥ ı̄ . Then, from (14), we have the estimate

dist(graph
F

f1, graph
∂C

ν̂C ) >
δ1

2
,

from which (N3) follows straightforwardly.

Step 4Nowweare ready to construct the sought prolongation f̂ . Let us pick any0 < δ < δ1/2.
We define Fδ = ∂C ∩ B(F, δ) and introduce the function f2 : Fδ → SN−1 ⊆ R

N as

f2(x) = f1(πF (x)) = f (πF (x))

‖ f (πF (x))‖ .

For every x ∈ Fδ , we have

dist
(
(x, f2(x)), graph

F
f1
) ≤ dist

(
(x, f2(x)), (πF (x), f2(x))

) ≤ δ.

Using the triangle inequality, this implies

dist((x, f2(x)), graph
∂C

ν̂C ) ≥
≥ dist(graph

F
f1, graph

∂C
ν̂C ) − dist((x, f2(x)), graph

F
f1)

≥ δ1

2
− δ > 0,
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and so

dist(graph
Fδ

f2, graph
∂C

ν̂C ) ≥ δ1

2
− δ > 0,

from which it follows that f2(x) /∈ ν̂C (x), for every x ∈ Fδ , and consequently f (πF (x)) /∈
N̂C (x).

Writing λx = dist(x, F)/δ, we now set

f̂ (x) =

⎧⎪⎨
⎪⎩

f (x), if x ∈ D,

(1 − λx ) f (πF (x)) − λxα(x), if x ∈ Fδ\F,

−α(x), if x ∈ ∂C\Fδ,

where α : ∂C → R
N is the continuous selection provided by (N2).We thus have a continuous

function defined on D ∪ ∂C . If we prove that f̂ satisfies the desired property on ∂C , then
the proof is completed, since we can apply Tietze’s theorem to get a continuous extension
f̂ : E → R

N . What we are actually going to show now is that

f̂ (x) /∈ N̂C (x), for every x ∈ ∂C.

We already know by (N3) that f̂ (x) /∈ N̂C (x), for every x ∈ F . On the other hand, if
x ∈ ∂C\Fδ , it is sufficient to combine (N1) and (N2). Let us now take x ∈ Fδ\F and assume
by contradiction that f̂ (x) ∈ N̂C (x). Then, since N̂C (x) is a convex cone andα(x) ∈ N̂C (x),

f (πF (x)) = 1

1 − λx
f̂ (x) + λx

1 − λx
α(x) ∈ N̂C (x),

a contradiction since f (πF (x)) /∈ N̂C (x) for every x ∈ Fδ . The lemma is thus proved. 	

We can now proceed to complete the proof of our theorem.
Let E = D ∪ C1 ∪ · · · ∪ CM be an optimal reconstruction of the truncated convex body

D. Applying iteratively Lemma 24 to each single partial reconstruction Ci , we obtain a
continuous extension f̂ : E → R

N such that

f̂ (x) /∈ NCi (x), for every x ∈ ∂Ci ,

for i = 1, . . . , M , and hence also

f̂ (x) /∈ NE (x), for every x ∈ ∂E .

Thus, by Theorem 3, we have that

deg( f̂ , E) = deg( f̂ ,C1) = · · · = deg( f̂ ,CM ) = (−1)N .

By the additivity property of the topological degree, we have

deg( f̂ , D) = deg( f̂ , E) −
M∑
i=1

deg( f̂ ,Ci ) = (−1)N (1 − M).

Since f coincides with f̂ on D, the theorem is proved.
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