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Abstract. We consider the problem of the existence and uniqueness of solutions to a
semilinear equation in a Hilbert space, of the type Lu ¼ Nu, where the linear operator L
is assumed to be anti-selfadjoint, and the nonlinear part N is controlled by two bounded
selfadjoint operators A and B. As an example of application, we study the existence and
uniqueness of periodic solutions for a system of transport equations. Precisely, we look for
solutions which are periodic in each of their variables, the periods being determined by the
forcing term.
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1. Introduction

Let H be a Hilbert space over the field K, where K ¼ R or C. We are interested in
finding solutions of the semilinear equation

Lu ¼ Nu ; ð1Þ

where L : DðLÞJH ! H is an unbounded normal operator, and N : H ! H is
a continuous nonlinear function. We assume that the nonlinearity is of gradient-
type, i.e., that there is a function h : H ! K such that N ¼ ‘h. Moreover, N will
be assumed to be controlled by two bounded selfadjoint operators A;B : H ! H.

Systems of this type have been extensively considered in the literature. A com-
prehensive review on the subject can be found in [9], where the following result
was obtained.
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Theorem 1. Let L be selfadjoint, and N be a gradient-type nonlinearity such that

N % A and B%N are monotone:(i)

If moreover

0 B s
!
L% ð1% lÞA% lB

"
; for every l a ½0; 1';(ii)

then equation ð1Þ has a unique solution, which can be obtained as the limit of the
iterative process defined by

Lunþ1 % 1
2 ðAþ BÞunþ1 ¼ Nun % 1

2 ðAþ BÞun;

where u0 a H is arbitrary.

The above theorem was motivated by a series of previous papers, see [1], [2],
[3], [4], [5], [6], [7], [8], [11], [12], [14], [15], [16], [18], [19], where di¤erent kinds of
selfadjoint operators had been considered.

As condition (ii) could not be so easy to verify in practice, the following vari-
ant was proposed in [10].

Proposition 2. Let L be selfadjoint and assume that it commutes with A and B.
Then, condition (ii) of Theorem 1 holds if

sðLÞBs
!
ð1% lÞAþ lB

"
¼ j; for every l a ½0; 1':(ii) 0

The commutativity of L with A and B is verified in many practical cases, and
applications were given in [10] to elliptic or hyperbolic systems, with several types
of boundary conditions.

In this paper, we are interested in the complementary situation when L is anti-
selfadjoint, i.e., when L) ¼ %L. In order to deal with this case, we will also need
to assume that A and B commute. Here is our main result.

Theorem 3. Let L be anti-selfadjoint, and assume that it commutes with A and B,
which also commute with each other. Let N be a gradient-type nonlinearity such
that

N % A and B%N are monotone:(i)

If moreover

0 B s
!
ð1% lÞAþ lB

"
; for every l a ½0; 1';(ii) 00

then the same conclusion of Theorem 1 holds.
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The proof of Theorem 3 is given is Section 2. In Section 3 we propose an ex-
ample of application to the search of periodic solutions for a system of transport
equations of the type

XN

j¼1

cj
qu

qxj
¼ Fðx; uÞ;

where the nonlinear function F is periodic in its first variables x1; . . . ; xN .
In the following, if H is a real Hilbert space, it will sometimes be convenient

to extend the linear operators to the complexified space, while keeping the same
notations for the extended operators.

2. Proof of the main result

We now prove Theorem 3.
First of all, we observe that there is an e > 0 such that, setting Ae ¼ A% eI and

Be ¼ Bþ eI , condition (ii) 00 still holds for Ae and Be, i.e.,

0 B s
!
ð1% lÞAe þ lBe

"
; for every l a ½0; 1':(ii) 00e

Hence, without loss of generality, we can assume that the selfadjoint operator
S ¼ B% A, besides being monotone, is also invertible. We denote by S1=2 and
S%1=2 the square roots of S and S%1, respectively.

We can now write (ii) 00 as

0 B sðAþ Bþ nSÞ; for every n a ½%1; 1';

and, since

Aþ Bþ nS ¼ S1=2
!
S%1=2ðAþ BÞS%1=2 þ nI

"
S1=2;

we see that (ii) 00 is equivalent to

s
!
S%1=2ðAþ BÞS%1=2

"
B ½%1; 1' ¼ j: ð2Þ

Define the operator ~LL : S1=2
!
DðLÞ

"
JH ! H by

~LL ¼ S%1=2
!
L% 1

2 ðAþ BÞ
"
S%1=2:
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Since L, A and B commute with one another, we see that ~LL is a normal operator.
We would like to prove that

sð~LLÞB fz a C : jzja 1
2g ¼ j: ð3Þ

We will show indeed that sð~LLÞ has no elements in the strip
#
% 1

2 ;
1
2

$
$ R. To

this aim, choose some m ¼ aþ ib a C, with a a
#
% 1

2 ;
1
2

$
and b a R, and set

Y ¼ %iL. Then, we can write

~LL% mI ¼ ~XXa þ i ~YYb

where

~XXa ¼ % 1
2S

%1=2ðAþ BÞS%1=2 % aI ; ~YYb ¼ S%1=2YS%1=2 % bI

are both selfadjoint, and commute. Let Emðx; hÞ denote the spectral family of the
normal operator ~LL% mI (cf. [17], Chapter 9), so that

~LL% mI ¼
ðþl

%l

ðþl

%l
ðxþ ihÞ dEmðx; hÞ:

Since a a
#
% 1

2 ;
1
2

$
, by (2) we know that 0 B sð ~XXaÞ. Then, there is a d > 0 for

which

½%d; d'Bsð ~XXaÞ ¼ j;

whence Emð*; hÞ is constant in ½%d; d'. Recalling the properties of the spectral
family, we can then conclude that the spectrum of ~LL% mI has no elements in the
strip ½%d; d' $ R. In particular, 0 B sð~LL% mIÞ, i.e., m B sð~LLÞ.

Having proved (3), let us now define ~NN : H ! H as

~NNv ¼ S%1=2
!
NðS%1=2vÞ % 1

2 ðAþ BÞS%1=2v
"
:

By the change of variable v ¼ S1=2u, equation (1) becomes

~LLv ¼ ~NNv;

which is equivalent to the fixed point problem

v ¼ ~LL%1 ~NNv :¼ TðvÞ:
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Since ~LL is normal, using (3) we have that

k~LL%1k ¼ 1

d
!
0; sð~LLÞ

" < 2:

On the other hand, since N ¼ ‘h, we have that ~NN ¼ ‘~hh, with

~hhðvÞ ¼ hðS%1=2vÞ % 1
4 3ðAþ BÞS%1=2v;S%1=2v4:

Moreover, from (i) we deduce that, for every v, w in H,

j3 ~NNv% ~NNw; v% w4ja 1
2 kv% wk2:

Following [13], we have that, for every v, w in H,

k ~NNv% ~NNwka 1
2 kv% wk;

so that

kTðvÞ %TðwÞka 1
2 k~LL

%1k kv% wk:

Hence, the function T : H ! H is Lipschitz continuous, with Lipschitz constant
1
2 k~LL

%1k < 1. By the contraction mapping theorem it has a unique fixed point
v a H, which can be obtained as the limit of the iterative process defined by
vnþ1 ¼ TðvnÞ, with v0 a H arbitrary. Setting u ¼ S%1=2v, we have that u solves
(1), and writing un ¼ S%1=2vn the conclusion readily follows.

3. An example of application

We are interested in finding periodic solutions of the first order system

XN

j¼1

cj
qu

qxj
¼ Fðx; uÞ; ð4Þ

where c1; . . . ; cN are nonzero real constants. Writing x ¼ ðx1; . . . ; xNÞ a RN , the
Carathéodory function F : RN $ RM ! RM is assumed to be periodic in each of
the variables x1; . . . ; xN . We then look for solutions uðxÞ which have the same
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type of periodicity in the variables x1; . . . ; xN . Denoting by T1; . . . ;TN the given
periods, the periodicity conditions then read as

uðx1 þ T1; x2; . . . ; xNÞ ¼ uðx1; x2 þ T2; . . . ; xNÞ ¼ * * *
¼ uðx1; x2; . . . ; xN þ TNÞ ¼ uðx1; x2; . . . ; xNÞ: ð5Þ

We look for L2-solutions, i.e., solutions in the Hilbert space H ¼ L2ðQ;RMÞ,
where

Q ¼ ½0;T1' $ * * * $ ½0;TN ':

Here is our result.

Theorem 4. Assume that Fðx; uÞ ¼ ‘uHðx; uÞ, for some function H : Q$ RM !
R. Let A, B be two symmetric M $M matrices, commuting with each other, such
that

3Aðv% wÞ; v% w4a3Fðx; vÞ %Fðx;wÞ; v% w4a3Bðv% wÞ; v% w4; ð6Þ

for almost every x a Q and every v;w a RM. Let us order the eigenvalues of A
and B as follows:

sðAÞ ¼ fa1a a2a * * *a aMg; sðBÞ ¼ fb1a b2a * * *a bMg:

If, for every l ¼ 1; 2; . . . ;M, the corresponding eigenvalues al and bl have the same
sign, then problem (4)–(5) has a unique L2-solution, which can be obtained as the
L2-limit of the iterative process defined by

XN

j¼1

cj
qunþ1

qxj
¼ Fðx; unÞ;

where u0 a L2ðQ;RMÞ is arbitrary.

Proof. We show how to apply Theorem 3. For simplicity, we assume

T1 ¼ * * * ¼ TN ¼ 2p: ð7Þ

Clearly, we can always reduce to this case with a change of variables, which will
have the only e¤ect of changing the constants c1; . . . ; cN .
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Let us first introduce the linear operator L : DðLÞHH ! H. As a basis of H
we consider, as usual, ðfm;nÞm;n AZ, with

fm;nðx1; x2Þ ¼
1

2p
eiðmx1þnx2Þ:

For any f a H, we can write its Fourier series

f ¼
X

m;n AZ

f̂fm;nfm;n; with f̂fm;n ¼ 3 f ; fm;n4;

and define

DðLÞ ¼
n
u a H :

X

m;n AZ

jðmc1 þ nc2Þûum;nj2 < þl
o
;

Lu ¼
X

m;n AZ

iðmc1 þ nc2Þûum;nfm;n: ð8Þ

The operator L is anti-selfadjoint. This well-known fact will be proved, for the
reader’s convenience, in the Appendix.

Since assumption (6) implies thatF has an at most linear growth, the Nemytzkii
operator N : H ! H is well defined, by setting

ðNuÞðxÞ ¼ F
!
x; uðxÞ

"
:

It is continuous, and maps bounded sets into bounded sets. The selfadjoint oper-
ators A;B : H ! H are defined as follows:

ðAuÞðxÞ ¼ AuðxÞ; ðBuÞðxÞ ¼ BuðxÞ:

Clearly enough, L, A and B commute with one another, and condition (i) follows
from (6). Notice moreover that condition (ii) 00 holds as well, since we are assum-
ing that

0 B 6
M

l¼1

½al; bl':

Theorem 3 then applies, to give the conclusion.

4. Appendix

We prove here that the linear operator L : DðLÞHH ! H defined in (8) is
anti-selfadjoint. To simplify the exposition, we will assume that M ¼ 1 and
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N ¼ 2. It will be easily checked that analogous considerations hold in the gen-
eral case.

Let us first show that sðLÞJ iR. Assume that l B iR. Then, for every f a H,

ðL% lIÞu ¼ f () iðmc1 þ nc2Þûum;n % lûum;n ¼ f̂fm;n; for every m; n a Z

() ûum;n ¼
f̂fm;n

iðmc1 þ nc2Þ % l
; for every m; n a Z;

and, in that case,

kuk22 ¼
X

m;n AZ

f̂fm;n

iðmc1 þ nc2Þ % l

&&&&&

&&&&&

2

a
1

distðl; iRÞ2
X

m;n AZ

j f̂fm;nj
2

¼ 1

distðl; iRÞ2
k f k22:

So, ðL% lIÞ%1 a LðHÞ, i.e., l B sðLÞ.
The domain DðLÞ is dense in H, since every u a H can be written as

u ¼ lim
N!þl

XN

m;n¼%N

ûum;nfm;n

 !
;

and each of the above finite sums belong to DðLÞ. Let us show that L is a closed
operator. Indeed, let ðukÞk and ð fkÞk be two sequences in DðLÞ and in H, respec-
tively, such that Luk ¼ fk, for every k, and uk ! u, fk ! f , for some u a H and
f a H. Then,

3uk; fm;n4 ! 3u; fm;n4; 3 fk; fm;n4 ! 3 f ; fm;n4;

for every m; n a Z, and, since

iðmc1 þ nc2Þ3uk; fm;n4 ¼ 3 fk; fm;n4;

we conclude that iðmc1 þ nc2Þûum;n ¼ f̂fm;n, for every m; n a Z, i.e., u a DðLÞ and
Lu ¼ f . This shows that L is closed.

As a consequence, we know that L ¼ L)). Now, if u; v a DðLÞ, then, since c1
and c2 are real,
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3Lu; v4 ¼
X

m;n AZ

iðmc1 þ nc2Þûum;nv̂v
)
m;n

¼ %
X

m;n AZ

ûum;n½iðmc1 þ nc2Þv̂vm;n') ¼ %3u;Lv4;

so that v a DðL)Þ and L)v ¼ %Lv. In particular, this shows that DðLÞJDðL)Þ.
Let us now show that DðL)ÞJDðLÞ, thus completing the proof. Take v a DðL)Þ.
Since Lþ I : DðLÞ ! H is invertible, there is a u a DðLÞ such that ðLþ IÞu ¼
ðL) % IÞv. Since DðLÞJDðL)Þ, we have that uþ v a DðL)Þ, and L)ðuþ vÞ ¼
%Luþ L)v, so that

ðL) % IÞðuþ vÞ ¼ %ðLþ IÞuþ ðL) % IÞv ¼ 0:

Then, recalling that L)) ¼ L, since L% I : DðLÞ ! H is invertible,

NðL) % IÞ ¼ I
!
ðL) % IÞ)

"? ¼ IðL)) % IÞ? ¼ IðL% IÞ? ¼ f0g:

Therefore, it has to be uþ v ¼ 0, so that v ¼ %u a DðLÞ. The proof is thus
completed.
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