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Abstract

We prove the existence of a periodic solution to a nonlinear impact oscillator, whose restor-
ing force has an asymptotically linear behavior. To this aim, after regularizing the problem,
we use phase-plane analysis, and apply the Poincaré–Bohl fixed point Theorem to the as-
sociated Poincaré map, so to find a periodic solution of the regularized problem. Passing
to the limit, we eventually find the “bouncing solution” we are looking for.
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1 Introduction and main result
We consider the differential equation

x′′ + g(t, x) = 0 , (1.1)

where g : R× [0,+∞[→ R is a continuous function, which is T -periodic in its first variable. We look
for T -periodic “bouncing solutions”, i.e., nonnegative solutions such that, if x(t0) = 0, for some t0,

179



180 A. Fonda, A. Sfecci

then x′(t−0 ) = −x′(t+0 ), where

x′(t−0 ) = lim
t→t−0

x′(t) , x′(t+0 ) = lim
t→t+0

x′(t) .

Notice that, by the continuity of g, these limits, when they exist, are finite. Let us make more precise
this notion of solution, recalling the definition given in [3].

Definition 1.1 A bouncing solution to equation (1.1) is a continuous function x(t), defined on some
interval ]a, b[ , such that x(t) ≥ 0 for every t ∈ ]a, b[ , satisfying the following properties:

i. if t0 ∈ ]a, b[ is such that x(t0) > 0, then x(t) is twice differentiable at t = t0, and x′′(t0) +

g(t0, x(t0)) = 0;

ii. if t0 ∈ ]a, b[ is an isolated zero of x(t), then x′(t−0 ) and x′(t+0 ) exist and x′(t−0 ) = −x′(t+0 );

iii. if t0 ∈ ]a, b[ is such that x(t0) = 0 and, either x′(t−0 ), or x′(t+0 ), exists and is different from 0,
then t0 is an isolated zero of x(t);

iv. if x(t) = 0 for all t in a non-trivial interval I ⊆ ]a, b[ , then g(t, 0) ≥ 0 for every t ∈ I.

A brief comment on the above definition. We can imagine a bouncing solution as describing a
particle which, as long as it remains to the right of an obstacle (the origin), it satisfies the differential
equation (1.1). If it reaches the obstacle at a nonzero speed, then it bounces elastically, so that its
velocity simply changes its sign. On the other hand, if the particle reaches the obstacle with zero
speed, then it could remain attached to it for some time, as long as the restoring force g pushes
it against it, but, once the restoring force becomes repulsive, the particle has to leave the obstacle
again.

Figure 1: A model of an impact oscillator.

If g(t, x) = λx + e(t), for some λ > 0, where e(t) is a T -periodic forcing term, this is the classical
model of a linear “impact oscillator”, see Figure 1. In this case, in order to find a T -periodic solution,
one has to avoid some “resonance values” of λ (see [15]), which are given by the eigenvalues of the
corresponding Dirichlet problem, precisely

λ <

{(Nπ
T

)2

: N ∈ N
}
. (1.2)
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Our aim is to consider a nonlinear function g(t, x), which however asymptotically preserves a
linear-like behavior.

Here is our main result.

Theorem 1.1 Let g : R × [0,+∞[→ R be a continuous function, which is T-periodic in the first
variable, and such that

µ1 ≤ lim inf
x→+∞

g(t, x)
x
≤ lim sup

x→+∞

g(t, x)
x
≤ µ2 , (1.3)

uniformly in t ∈ [0,T ], where µ1 and µ2 satisfy

(Nπ
T

)2

< µ1 ≤ µ2 <

(
(N + 1)π

T

)2

, (1.4)

for a suitable nonnegative integer N. Then, there exists at least one T-periodic bouncing solution to
equation (1.1).

The above theorem generalizes a result by Bonheure and Fabry [3, Theorem 1], where g(t, x)−λx
was assumed to be bounded, for some λ > 0 satisfying (1.2). Its proof will be carried out in Section 2.
The idea is to approximate equation (1.1) by regular differential equations, without bouncing, and
then obtain the solution we are looking for by a limit procedure. This device, suggested in [14], has
already been used, for example, in [3, 16, 19]. In our case, in order to get the T -periodic solutions of
the approximating equations, we use some phase-plane analysis methods developed in our previous
papers [10, 11].

In recent years, different problems related to linear or nonlinear impact oscillators have been
studied by many authors, using topological and variational methods. There is a vast literature on
this subject, due to its great interest in physics and engineering (see, e.g., [1, 2], and the references
therein). Let us just quote a few papers which perhaps are more related to our approach. The problem
of the approximation of solutions was considered in the eighties in [5, 6, 8, 9]. In 1992, Lazer and
McKenna [14] introduced the periodic problem with friction, opening the road to the analysis of
many possible situations, like in [3, 12, 16, 18, 19, 21]. The existence of invariant tori was studied
in [15, 17, 22]. Concerning other types of dynamics and the possibility of chaotic behavior of the
solutions, see, e.g., [4, 7, 13, 20].

2 Proof of Theorem 1.1
The proof is divided in two steps. In the first one we find a candidate for the T -periodic solution,
following a procedure similar to the one in [3] (see also [14]): we introduce a sequence of equations
which approximates (1.1) and, once we have found a T -periodic solution for each approximating
equation, we pass to the limit. In the second step we verify that this limit function satisfies the
conditions defining a bouncing solution.

1st step: find a candidate x̄. Let C > 0 be such that

|g(t, x)| ≤
C
2
(
x + 1

)
, for every t ∈ [0,T ] and x ∈ [0,+∞[ . (2.5)
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Fix δ ∈ ]0, 1
2 [ and let (gn)n be a sequence of continuous functions, which are T -periodic in the first

variable and Lipschitz continuous in the second one, converging uniformly to g. Define, for every
positive integer n,

hn(t, x) =


gn(t, x) if x ≥ 1

n

nx
(
gn(t, x) + δ

)
− δ if 0 < x < 1

n

nx − δ if x ≤ 0 .
(2.6)

We can assume without loss of generality that all hn verify (2.5), i.e.,

|hn(t, x)| ≤
C
2
(
x + 1

)
, for every t ∈ [0,T ] and x ∈ [0,+∞[ , (2.7)

and that (1.3) holds for gn instead of g, uniformly in n, slightly modifying, if necessary, the constants
µ1 and µ2, without affecting (1.4).

Consider the equation
x′′ + hn(t, x) = 0 . (2.8)

We will prove the existence of a T -periodic solution to this equation, for every sufficiently large
integer n, using [10, Theorem 2.3]. In order to have the necessary estimates on the solutions, we
will briefly recall the main points of the proof given there.

The previous equation, written in the phase-plane setting, becomes the first order systemx′ = y
y′ = −hn(t, x) ,

(2.9)

which we can rewrite as u′ = fn(t, u), being u = (x, y) and fn(t, u) =
(
y,−hn(t, x)

)
. It is easily seen

that, for a suitable D > 0,
hn(t, x)x + y2 ≥ D(x2 + y2) = D‖u‖2 , (2.10)

when u is large enough in norm, thus giving a bound from below to the angular velocity of those
solutions (x(t), y(t)) to (2.9) which remain large enough in norm, for every t ∈ [0,T ]. Moreover,
by (1.3) and (2.6), the angular speed of those solutions is controlled by the angular speed of the
solutions of the equations

x′′ + µix+ − nx− = 0 , i = 1, 2 ,

in the phase-plane, whose periods satisfy

lim
n→∞

(
π
√
µi

+
π
√

n

)
=

π
√
µi
.

Hence, by (1.4), any solution to (2.9) which remains large enough in norm makes more than N, and
less than N + 1 clockwise rotations around the origin, in the time T .

For every sufficiently large n, by [10, Proposition 2.5], it is possible to construct an admissible
spiral γn (cf. [10, Definition 2.2]), so that [10, Theorem 2.3] provides a T -periodic solution to equa-
tion (2.9). We recall that, roughly speaking, an admissible spiral is a curve in the plane, rotating
clockwise around the origin, whose amplitude goes to infinity together with the number of rotations,
which controls the solutions of the differential equation, in the sense that, if a solution intersects the
curve at a certain point, then it has to cross it from the outer to the inner part of it.
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Unfortunately, this achievement is not sufficient for us here, since we need more precise es-
timates on these solutions, independently of n. Indeed, we need a uniform bound, leading, by a
compactness argument, to the convergence of these solutions to a limit function, which will be the
candidate for being a bouncing solution. Hence, we now briefly describe how to modify the argu-
ment in the proof of [10, Theorem 2.3] in order to overcome this difficulty. In particular, we need
to construct a more suitable admissible spiral γn.

Set Π+ = {(x, y) ∈ R2 : x ≥ 0} and Π− = {(x, y) ∈ R2 : x ≤ 0}. By (2.7), we can find two positive
constants C1 and C2 such that, when x ≥ 0,

〈 fn(t, u) , u〉 = xy − y hn(t, x)

≤ |y|
(
x +

C
2

(x + 1)
)

≤ C1(x2 + y2) + C2 ,

(2.11)

for every n. In this way, we have an estimate of the radial growth of a solution to (2.9), which,
together with the behavior of the angular velocity in (2.10), gives us a control on the direction of
the vector field associated to (2.9). This permits us to build, as in [10, Proposition 2.5], a branch
of the spiral γn in Π+ starting from a point P0 = (0, y0), with y0 > 0 (see also [11, Lemma 4.2]).
The choice of y0 will be clarified later. This curve will rotate clockwise in Π+ intersecting the y-axis
in P1 = (0,−y1) with y1 > y0 > 0. Recalling that the values C1 and C2 in (2.11) could be found
independently of n, we can choose all γn to coincide in this region, starting from P0, with final point
P1.

Now we explain how to construct γn in Π−, for a fixed n. In this region all the solutions to (2.8)
are such that

x′′ + nx − δ = 0 . (2.12)

If we extend this equation to the whole real line, we find that the orbits of this equation in the
phase-plane are ellipses determined by a non-negative parameter c satisfying

y2 + nx2 − 2δx = c2 . (2.13)

We will identify c2 as the energy of the orbit. Notice that all these ellipses intersect the y-axis at the
same points (0,±c), independently of n. On the other hand, the intersections with the x-axis are

x1(n) =
δ −
√
δ2 + c2n
n

, x2(n) =
δ +
√
δ2 + c2n
n

. (2.14)

We can see that the sequence (x1(n))n is strictly increasing and converges to 0. We define the part
of the spiral γn in Π−, starting from the point P1 = (0,−y1), as the curve, parametrized by the polar
angle, with linearly increasing energy (see Figure 2), so that all the solutions to (2.9) which intersect
γn will necessarily enter inside it. Precisely, let, for θ ∈ [0, π],

γn(θ) = −|γn(θ)|(sin θ, cos θ) =
(
ξn(θ), υn(θ)

)
where

υn(θ)2 + n ξn(θ)2 − 2δ ξn(θ) =

(
y1 +

θ

π

)2

.

The final point of γn in Π− is P2 = (0, y1 + 1), which is independent of n. Now the construction
continues, iterating this procedure. It is important to notice that all the intersection points with the
vertical axis are independent of n.
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Figure 2: It is shown how to construct the first lap of the spiral γn, in black. In Π+ two half-balls are drawn,
in dotted grey, and in Π− two branches of two orbits of equation (2.12), in grey. These branches locate two
particular examples of the set En

r .

Define En
r = (Π− ∩ Ωn

r ) ∪ (Π+ ∩ Br), where Br is the open ball of radius r centered in the origin
and Ωn

r is the interior region delimited by the orbit with energy r2 of equation (2.12) (see Figure 2).
By the above arguments, it is possible to find a positive integer n0 and a constant R1 > 0 such that,
for every n ≥ n0, all the solutions to (2.9) which remain outside En

R1
for all times in [0,T ] necessarily

make more than N, and less than N + 1 clockwise rotations around the origin, in the time T .

We now fix y0 = R1, so that the construction of the spiral γn is made starting from P0 = (0,R1).
After N + 1 laps around the origin, the spiral γn intersects the y-axis in a certain point (0,R2), and
after 2N + 2 laps in (0,R3). We have R1 < R2 < R3, and these constants are independent of n.

It is now possible to apply the Poincaré–Bohl Theorem to the Poincaré map associated to (2.9),
restricted to the closure of the set En

R2
. This map takes its values in En

R3
, since a solution starting

from a point in the closure of En
R2

would have to perform at least N + 1 rotations around the origin
to exit from En

R3
, thus needing a time larger than T to do this. In order to verify the hypothesis of

the Poincaré–Bohl Theorem we take Q ∈ ∂En
R2

and distinguish two cases: a solution un(t) to (2.9),
starting from Q, enters En

R1
, for some t ∈ [0,T ], or not. In the first case, once entered En

R1
, the solution

cannot exit from En
R2

in the time T (since it would have to perform N +1 rotations around the origin).
In the other case, we know that the solution cannot perform an integer number of rotations around
the origin, in the time T , for every sufficiently large n. In any case, un(T ) , λQ for every λ ≥ 1, so
that the Poincaré–Bohl Theorem can be applied (cf. [10]).

So, for every n ≥ n0, there exists a fixed point of the Poincaré map in the closure of En
R2

, giving
us a T -periodic solution un to (2.9). Moreover, un(t) ∈ En

R3
for every t ∈ [0,T ]. Set Σ = En0

R3
. Since
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R1, R2 and R3 do not depend on n, and being

En
r ⊃ En+1

r for every n ∈ N and r > 0 ,

we have that
un(t) =

(
xn(t), x′n(t)

)
∈ Σ , for every t ∈ [0,T ] and every n ≥ n0 . (2.15)

We have thus obtained the needed estimates we were looking for.
We have found a sequence (xn)n of T -periodic C1-functions which are uniformly bounded, to-

gether with their derivatives. By Ascoli–Arzelà Theorem we can then find a T -periodic continuous
function x̄ such that, up to a subsequence, xn → x̄ uniformly in [0,T ]. This function x̄ is the
candidate for being the bouncing solution.

2nd step: prove that x̄ is a bouncing solution. First of all, let us check that x̄(t) is non negative. Since(
xn(t), x′n(t)

)
∈ En

R3
, for every sufficiently large n, using (2.14) we see that

xn(t) ≥
δ −

√
δ2 + R2

3 n

n
, for every t ∈ [0,T ] .

Hence, passing to the limit, we have that x̄(t) ≥ 0 for every t ∈ [0,T ].
Now we verify the four properties that characterize a bouncing solution.

First property. Suppose that there exists a t0 such that x̄(t0) > 0. Therefore, there exist
ε > 0 and a positive integer m such that, for every t ∈ [t0 − ε, t0 + ε],

x̄(t) >
1
m

and xn(t) >
1
m
, for every n ≥ m .

Hence, hn
(
t, xn(t)

)
= gn

(
t, xn(t)

)
in [t0 − ε, t0 + ε], for every n ≥ m, thus converging uniformly

to g(t, x̄(t)). Using (2.15), a standard compactness argument shows that the sequence (xn)n C2-
converges to x̄ on [t0 − ε, t0 + ε], and x̄ solves the differential equation x′′ + g(t, x) = 0 in that
interval.

Second property. Let now t0 be an isolated zero of x̄. Then, there exists α > 0 such that
0 < x̄(t) ≤ 1, for every t ∈ [t0 − α, t0 + α] \ {t0} and, by (2.5), |x̄′′(t)| = |g(t, x̄(t))| ≤ C. We claim that
the limit limt→t−0 x̄′(t) exists and is finite. On the contrary, there would exist a constant χ > 0 and
two sequences (ak)k and (bk)k, such that ak, bk ∈ ]t0 − 1

k , t0[ and |x̄′(ak) − x̄′(bk)| ≥ χ, for every k. By
Lagrange Theorem, for some ξk between ak and bk,

C ≥ |x̄′′(ξk)| =
|x̄′(ak) − x̄′(bk)|
|ak − bk |

≥ k χ ,

which gives a contradiction when k is large enough. Similarly, limt→t+0 x̄′(t) exists and is finite, too.
We now multiply the equation x′′n + hn(t, xn) = 0 by x′n and integrate in [t0 − ε, t0 + ε], taking

ε < α, thus obtaining

0 =
1
2

x′n(t0 + ε)2 −
1
2

x′n(t0 − ε)2 +

∫ t0+ε

t0−ε
hn(t, xn(t)) x′n(t) dt .



186 A. Fonda, A. Sfecci

Since
lim
n→∞

hn(t, xn(t))x′n(t) = g(t, x̄(t))x̄′(t) ,

pointwise in [t0 − ε, t0 + ε] \ {t0}, using Lebesgue dominated convergence Theorem we have

0 =
1
2

x̄′(t0 + ε)2 −
1
2

x̄′(t0 − ε)2 +

∫ t0+ε

t0−ε
g(t, x̄(t)) x̄′(t) dt .

Passing to the limit as ε → 0, we see that x̄′(t+0 )2 = x̄′(t−0 )2. Clearly, the only reasonable conclusion
is that x̄′(t+0 ) = −x̄′(t−0 ).

Third property. Let t0 be such that x̄(t0) = 0, and x̄′(t−0 ) = −η < 0. There is an α > 0 such
that x̄(t) < 1 for every t ∈ ]t0 − α, t0 + α[ , and

−
3
2
η < x̄′(t) < −

1
2
η , for every t ∈ ]t0 − α, t0[ . (2.16)

In particular, x̄(t) > 0 in an interval ]t0 − α, t0[ . Set

τ̄ = min
{
η

24C
,
α

9

}
, (2.17)

where C is the constant introduced in (2.5). We will prove that x̄(t) has no zeros in ]t0, t0 + 8τ̄[ . Let
us fix τ ∈ ]0, τ̄[ . By (2.16),

0 < x̄(t0 − τ) <
3
2
ητ , −

3
2
η < x̄′(t0 − τ) < −

1
2
η .

In a neighborhood of t0 − τ we have that (xn)n C2-converges to x̄ so that, for every n large enough,

0 < xn(t0 − τ) <
3
2
ητ , −

3
2
η < x̄′n(t0 − τ) < −

1
2
η .

Without loss of generality, we can assume that xn < 1 in ]t0 − α, t0 + α[ so that, by (2.7), as long
as xn remains positive, its second derivatives are bounded:

|x′′n (t)| ≤ C , for every t ∈ ]t0 − α, t0 + α[ such that xn(t) ≥ 0 . (2.18)

Let p1 : R→ R be the parabola characterized by

p1(t0 − τ) =
3
2
ητ , p′1(t0 − τ) = −

1
2
η , p′′1 ≡ C .

The function p1(t) vanishes at two points, the first of which we denote by t1. It is easy to see that
t1 ≤ t0 + 5τ. By (2.18), we have that xn(t) < p1(t) and x′n(t) < p′1(t) for all those t ∈ [t0 − τ, t1] having
the property that xn(s) ≥ 0 for every s ∈ [t0 − τ, t ]. So, xn must vanish in ]t0 − τ, t1[ , giving the
existence of a tn

1 ∈ ]t0 − τ, t1[ such that

xn(tn
1) = 0 and xn(t) > 0 , for every t ∈ [t0 − τ, tn

1[ .

Being tn
1 ≤ t0 + 5τ, and τ < τ̄, by (2.17) we see that

x′n(tn
1) < p′1(tn

1) < p′1(t1) < −η/4 .
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So, in a right neighborhood of tn
1, the solution is negative and satisfies the differential equation

x′′n + nxn − δ = 0. Therefore, there exists a tn
2 < tn

1 + π/
√

n such that xn(tn
2) = 0 and, by the symmetry

of the equation, x′n(tn
2) = −x′n(tn

1) > η/4. We can suppose that tn
2 < tn

1 + τ ≤ t0 + 6τ, choosing n large
enough.

Define pn
2 as the parabola such that

pn
2(tn

2) = 0 , (pn
2)′(tn

2) = η/4 , (pn
2)′′ ≡ −C ,

and let tn
3 = tn

2 + η/2C be its second zero. By (2.17) and the previous construction, the following
inequalities hold:

t0 − τ < tn
2 < t0 + 6τ < t0 + 9τ < min{tn

3, t0 + α} .

In a right neighborhood of tn
2, the solution xn is positive. More precisely, by (2.18), xn ≥ pn

2 in the
interval ]tn

2,min{tn
3, t0 + α}[ .

Being pn
2(t) = −C

2 (t− tn
2)(t− tn

3), we have that pn
2(t0 + 7τ) ≥ Cτ2 and pn

2(t0 + 8τ) ≥ Cτ2 and, since
pn

2 is concave, the same inequality holds for every t ∈ [t0 + 7τ, t0 + 8τ], so that

xn(t) ≥ Cτ2, for every t ∈ [t0 + 7τ, t0 + 8τ] .

Notice that both this interval and the value Cτ2 do not depend on n.

Figure 3: The figure shows how the two parabolas p1 and pn
2 control the solution xn. In the interval [t0 +

7τ, t0 + 8τ], one has that xn(t) is greater than Cτ2.

Now we can conclude. Suppose by contradiction that there is a t̄ ∈ ]t0, t0 + 8τ̄[ such that x̄(t̄) = 0.
Let τ ∈ ]0, τ̄[ verify

t0 + 7τ < t̄ < t0 + 8τ .

Then, as shown above, xn(t̄) ≥ Cτ2 > 0 for every n large enough, and we have a contradiction with
the fact that limn xn(t̄) = x̄(t̄) = 0.

Fourth property. Suppose now that x̄(t) = 0 for every t in a non-trivial interval I and assume
by contradiction that there exists a t0 ∈ I such that g(t0, 0) < 0. Then, there exist β ∈ ]0, δ[ , a non-
trivial interval J ⊂ I containing t0, a constant ε > 0 and a positive integer m, with 1/m < ε, such
that

gn(t, x) < −β , for every t ∈ J, x ∈ [0, ε] and n > m ,
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and
xn(t) ≤ ε for every t ∈ J and n > m .

It is easy to see that, hn(t, x) < −β for every t ∈ J, x ∈ [0, ε] and n > m. We then have that
x′′n (t) > β > 0, for every t ∈ J and n > m, contradicting the fact that limn xn(t) = 0 for every t ∈ J.

The four properties of a bouncing solution are satisfied by x̄, and the proof is thus completed.
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