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Abstract

By the use of a generalized version of the Poincaré–Birkhoff fixed point theorem, we prove
the existence of at least two periodic solutions for a class of Hamiltonian systems in the
plane, having in mind the forced pendulum equation as a particular case. Our approach is
closely related to the one used by Franks in [15], but the proof remains at a more elementary
level.
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Key words. Pendulum equation; Poincaré–Birkhoff theorem; nonlinear dynamics.

1 Introduction
For many years, the periodically forced pendulum equation

ẍ + a sin x = e(t) (1.1)

has been a fruitful source of mathematical ideas. We refer to [24] for a comprehensive review on
this subject.
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In 1922, Hamel [17] proved that, if e(t) is T -periodic and has mean value equal to zero, i.e.,∫ T

0
e(t) dt = 0 , (1.2)

then equation (1.1) has at least one T -periodic solution. This result, forgotten for a long time, was
rediscovered independently by Dancer [8] and Willem [36].

In 1984, Mawhin and Willem [26] proved that, if the above assumption (1.2) holds, equa-
tion (1.1) has indeed at least two geometrically distinct T -periodic solutions (i.e., solutions not
differing by a multiple of 2π). Their proof uses variational methods; the first solution is obtained by
minimizing the action functional, as already observed in [8, 17, 36]. Clearly, by the periodicity in x,
this means that there are infinitely many minimum points, differing from each other by a multiple of
2π. So, considering two of them and applying a mountain pass argument, a critical point of saddle
type is obtained, which corresponds to a solution which differs from all the previous ones. The result
by Mawhin and Willem, as already noticed in [26], continues to hold if the restoring force a sin x is
replaced by a Carathéodory function of the type g(t, x), which is T -periodic in t and 2π-periodic in
x, and satisfies

∫ 2π
0 g(t, x) dx = 0.

In 1988, Franks [15] provided a new proof of the existence of at least two T -periodic solutions,
by the use of a variant of the Poincaré–Birkhoff fixed point theorem on a cylindrical annulus. His
idea is to consider the flow generated by the equivalent first order system on the cylinder obtained
by identifying x = 0 with x = 2π, observing that, far from the origin, a twist type property holds on
the upper and lower sections of the cylinder.

Recently, in [3] and [2], similar results were obtained for the so-called “relativistic pendulum”
equation

d
dt

ẋ√
1 − (ẋ/c)2

+ a sin x = e(t) ,

by the use of variational methods combined with topological and nonsmooth analysis techniques.
Under the same assumption (1.2), the existence of at least two geometrically distinct T -periodic
solutions was proved in [2]. On the other hand, in [29], the existence of two T -periodic solutions
was proved for the equation

d
dt

ẋ√
1 + (ẋ/γ)2

+ a sin x = e(t) ,

involving a “mean curvature” type operator, where, besides (1.2), a boundedness condition on E(t) =∫ t
0 e(τ) dτ was assumed, i.e., that ∥E∥∞ < γ. In this case, however, the notion of solution has been

extended to the class of functions of bounded variation, so that a solution may exhibit some points
of discontinuity.

The pendulum equation has been extended in different directions to systems of differential equa-
tions of the type

ẍ + ∇V(t, x) = 0 ,

with x(t) ∈ RN , or to Hamiltonian systems like

Ju̇ = ∇H(t, u) , (1.3)

with u(t) ∈ R2N , where J is the standard 2N × 2N symplectic matrix, namely

J =
(

0 −I
I 0

)
.
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See, e.g., [5, 6, 7, 11, 12, 18, 22, 27, 30, 32, 33, 34], where multiplicity results for the periodic
problem were proved by variational methods. Following Conley and Zehnder [6, 7], these results
are somewhat related to a conjecture by Arnold [1], concerning a possible version of the Poincaré–
Birkhoff fixed point theorem in higher dimensions. Recently, some of these results have been ex-
tended in [4, 25] to systems of relativistic-type pendulums.

Let us also recall that, under the same assumption (1.2), the existence of infinitely many quasi-
periodic solutions for the pendulum equation has been proved in [20, 37] by the use of the Kolmogo-
rov-Arnold-Moser theory.

The aim of this paper is to generalize the result obtained by Mawhin and Willem for the pendu-
lum equation to a planar Hamiltonian system of the type (1.3), by the use of a generalized version
of the Poincaré–Birkhoff fixed point theorem on a planar annulus (see [9, 31]). We will assume
uniqueness and global existence for the solutions of Cauchy problems and, writing u = (x, y), that
the Hamiltonian function H(t, x, y) is 2π-periodic in x, and satisfies some kind of monotonicity con-
dition in y, for |y| large enough. More precisely, we will ask the function y 7→ H(t, x, y) to be strictly
increasing when y is large and positive, and strictly decreasing for y large and negative.

The idea of the proof is to transform the Hamiltonian system into a new one, where x plays the
role of an angle and y is related to the radial displacement. For a sufficiently large positive number
α, we restrict our analysis to the half plane

Ωα = {(x, y) ∈ R2 : y > −α} ,

and, by the transformation

φα(x, y) =
( √

2(y + α) cos x ,−
√

2(y + α) sin x
)
,

we obtain a new Hamiltonian system to which the Poincaré–Birkhoff theorem can be applied.
Our method applies to the relativistic pendulum equation and to equations involving the curva-

ture operator, as well. It also provides, under suitable assumptions, the existence and multiplicity of
the so-called “periodic solutions of the second kind”, i.e., those satisfying, for some integer k,

u(t + T ) = u(t) + (2πk, 0) , for every t ∈ R .

Such a problem has already been faced for pendulum-like equations in [23]. We will also consider
the existence of “subharmonic solutions of the second kind”, defined as above, when T is replaced
by an integer multiple of T .

2 The main results
We consider the planar Hamiltonian system

Ju̇ = ∇H(t, u) (2.1)

where H : R × R2 → R is T -periodic in the first variable t, and such that ∇H : R × R2 → R2,
the gradient with respect to the second variable u, is a Carathéodory function, locally Lipschitz
continuous in u. More precisely,
(i) ∇H(·, u) is measurable, for every u ∈ R2;
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(ii) for every compact set K ⊆ R2, there exists a function ℓK ∈ L1(0, T ) such that, for almost every
t ∈ [0,T ] and for every u1, u2 ∈ K,

|∇H(t, u1) − ∇H(t, u2)| ≤ ℓK(t)|u1 − u2|.

We look for T -periodic solutions of system (2.1). To this aim, we introduce the following three
assumptions. The first one says that ∇H(t, u) has an at most linear growth in u.

Assumption A1. There are a constant c1 ≥ 0 and a function c2 ∈ L1(0,T ) such that

|∇H(t, u)| ≤ c1|u| + c2(t) , for a.e. t ∈ [0, T ] and every u ∈ R2.

In order to state the next two assumptions, it is more convenient to write system (2.1) in its equivalent
form

ẋ =
∂H
∂y

(t, x, y) , ẏ = −∂H
∂x

(t, x, y) .

We now ask that H(t, x, y) be 2π-periodic in x.

Assumption A2. The function H satisfies

H(t, x + 2π, y) = H(t, x, y) , for a.e. t ∈ [0,T ] and every (x, y) ∈ R2.

In the third assumption we impose a sign condition on ∂H
∂y (t, x, y) when |y| is large enough.

Assumption A3. There is a constant d > 0 such that

|y| ≥ d ⇒ sgn(y)
∂H
∂y

(t, x, y) > 0 ,

for almost every t ∈ [0,T ] and every x ∈ [0, 2π].

We can now state our main result. We say that two solutions are geometrically distinct if they
do not differ by a multiple of 2π. In the sequel, when quoting multiplicity results, we always refer
to geometrically distinct solutions, even if not explicitly stated.

Theorem 2.1 If Assumptions A1, A2, and A3 hold, then system (2.1) has at least two geometrically
distinct T -periodic solutions.

As an example, let us consider the forced pendulum equation

ẍ + a sin x = e(t) , (2.2)

where e : R → R is a T -periodic, locally integrable function, satisfying the zero mean condi-
tion (1.2). Setting E(t) =

∫ t
0 e(τ) dτ, we can write the equivalent system

ẋ = y + E(t) , ẏ = −a sin x .

We thus have a Hamiltonian system, with

H(t, x, y) = 1
2 y2 + E(t) y − a cos x ,

which clearly satisfies Assumptions A1, A2 and A3. So, Theorem 2.1 guarantees the existence of at
least two T -periodic solutions to equation (2.2), a result first proved by Mawhin and Willem [26].
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The same will be true for an equation like

d
dt
ϕ(ẋ) + g(t, x) = e(t) . (2.3)

Here, ϕ : ] − c, c[→ R, with c ∈ ]0,+∞], is a diffeomorphism for which

inf{ϕ′(s) : s ∈ ] − c, c [ } > 0 . (2.4)

Moreover, the function g(t, x) is Carathéodory, T -periodic in t, locally Lipschitz continuous and
2π-periodic in x, and such that ∫ 2π

0
g(t, x) dx = 0 , (2.5)

while the function e : R→ R is T -periodic, locally integrable, and satisfying (1.2).
Writing the equivalent system

ẋ = ϕ−1(y + E(t)) , ẏ = −g(t, x) , (2.6)

condition (2.4) ensures that ϕ−1 is Lipschitz continuous, and it is easily seen that Assumptions A1,
A2 and A3 are satisfied, so that Theorem 2.1 guarantees the existence of at least two T -periodic
solutions to equation (2.3). We thus recover a recent result by Bereanu and Torres [2]. Notice
however that, in [2], the function g(t, x) was not assumed to be locally Lipschitz continuous in x. As
an example, we could have

ϕ(s) =
s√

1 − (s/c)2
,

leading to the so-called “relativistic pendulum”, see [2, 3].
In Section 5 we will see how to generalize this situation so to consider a diffeomorphism ϕ :

I1 → I2 , where I1 and I2 are open intervals in R, thus including also the case of the mean curvature
operator.

3 Proof of Theorem 2.1
Let us first state the version of the Poincaré–Birkhoff theorem [9, 31] which we will use in the proof
of our main result (see also [10], and [13] for a review on this theorem).

Theorem 3.1 Let R1 and R2 be two positive numbers, with R1 < R2 , and consider the annulus

A = {(u, v) ∈ R2 : R1 ≤
√

u2 + v2 ≤ R2} .

Let Ψ : R2 → R2 be an area-preserving homeomorphism such that Ψ(0, 0) = (0, 0). On the uni-
versal covering space {(φ, r) : φ ∈ R, r > 0}, with the standard covering projection Π : (φ, r) 7→
(r cosφ, r sinφ), consider a lifting of Ψ|A of the form

F (φ, r) = (φ + γ(φ, r), η(φ, r)) ,

where γ(φ, r) and η(φ, r) are continuous functions, 2π-periodic in their first variable. Assume the
twist condition

γ(φ, r) > 2πκ , if r = R1 ; γ(φ, r) < 2πκ , if r = R2 ,
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for some κ ∈ Z. Then, Ψ has two fixed points (u1, v1), (u2, v2) in the interior ofA, such that

γ(Π−1(u1, v1)) = γ(Π−1(u2, v2)) = 2πκ .

We now start the proof of Theorem 2.1. For any u0 ∈ R2, let us denote by u(t; t0, u0) the solution
of the Cauchy problem {

Ju̇ = ∇H(t, u)
u(t0) = u0 , (3.1)

which is unique and globally defined, by the assumptions made on H. Writing u0 = (x0, y0), and
correspondingly

u(t; t0, u0) = (x(t; t0, x0, y0), y(t; t0, x0, y0)) ,

we see that the periodicity Assumption A2 implies that

x(t; t0, x0 + 2π, y0) = x(t; t0, x0, y0) + 2π ,

y(t; t0, x0 + 2π, y0) = y(t; t0, x0, y0) .

Moreover, as a consequence of the linear growth Assumption A1 and the periodicity Assumption A2,
we have that ∣∣∣∣∂H

∂x
(t, x, y)

∣∣∣∣ ≤ c1|y| + c̃2(t) , (3.2)

with c̃2(t) = 2πc1 + c2(t), for almost every t ∈ R and every (x, y) ∈ R2. The following proposition is
a rather classical application of the Gronwall inequality, once (3.2) is known.

Proposition 3.1 One has

lim
y0→+∞

y(t; t0, x0, y0) = +∞ , lim
y0→−∞

y(t; t0, x0, y0) = −∞ ,

uniformly for every t, t0 ∈ [0,T ] and x0 ∈ [0, 2π].

Let d > 0 be the constant introduced in Assumption A3. By Proposition 3.1 there is a D ≥ d
such that

y0 ≤ −D ⇒ y(t; 0, x0, y0) ≤ −d ,

y0 ≥ D ⇒ y(t; 0, x0, y0) ≥ d ,
(3.3)

for every t ∈ [0,T ] and x0 ∈ [0, 2π]. Moreover, there is a β > D such that

y0 ≥ −D ⇒ y(t; 0, x0, y0) ≥ −β , for every t ∈ [0,T ] and x0 ∈ [0, 2π] . (3.4)

We will now transform system (2.1) into a new system, for which it will be possible to apply the
Poincaré–Birkhoff fixed point theorem. Let us fix an α > β. Set

Ωα = {(x, y) ∈ R2 : y > −α} ,

and let φα : Ωα → R2 \ {(0, 0)} be defined as

φα(x, y) =
( √

2(y + α) cos x ,−
√

2(y + α) sin x
)
.
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Notice that the determinant of the Jacobian matrix φ′α(x, y) is equal to 1, for every (x, y) ∈ Ωα.
Setting

Ω̂α = {(x, y) ∈ R2 : 0 < x < 2π, y > −α} ,

we thus have that the function

φ̂α : Ω̂α → R2 \ {(ξ, η) ∈ R2 : ξ ≥ 0, η = 0} ,

with φ̂α(u) = φα(u), is a symplectic diffeomorphism, i.e.,

φ̂
′

α(u)T J φ̂
′

α(u) = J , (3.5)

for every u ∈ Ω̂α, cf. [16]. (HereMT denotes the transposed of a matrixM.) Then, using (3.5), one
easily sees that the function φ̂α transforms the Hamiltonian system (2.1) on Ω̂α into the Hamiltonian
system

Jv̇ = ∇Lα(t, v) , (3.6)

on R2 \ {(ξ, η) ∈ R2 : ξ ≥ 0, η = 0}, where

Lα(t, v) = H(t, φ̂ −1
α (v)) .

(As usual, we denote by ∇Lα the gradient with respect to the second variable.)
We now need the periodicity Assumption A2 in order to extend the new Hamiltonian function

Lα to R2 \ {(0, 0)}, preserving the regularity assumptions. We will still denote by Lα(t, v) such an
extension. Notice that, if u = (x, y) refers to the original system (2.1), then, for the new system (3.6),
x plays the role of the clockwise angular displacement.

In order to apply Theorem 3.1, we need to modify (3.6). Consider a C2-function χ : [0,+∞[→
[0,+∞[ , such that

χ(r) =


1 if r ≥

√
2(α − β) ,

0 if r ≤ 1
2

√
2(α − β) .

Let L̃α : R × R2 → R be defined as

L̃α(t, v) =


χ(|v|)Lα(t, v) if v , 0 ,

0 if v = 0 .

This function is T -periodic in the first variable t, and ∇L̃α : R × R2 → R2, the gradient with respect
to the second variable v, is a Carathéodory function, locally Lipschitz continuous in v, and has an at
most linear growth in v. Since L̃α and Lα coincide on the set {v ∈ R2 : |v| ≥

√
2(α − β)}, we have

that the Hamiltonian system
Jv̇ = ∇L̃α(t, v) (3.7)

still describes the original system (2.1), as long as u = (x, y) satisfies y ≥ −β. We will denote by
P : R2 → R2 the Poincaré map associated to this new system.
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Let us define the annulus

A = φα(Ω−D \ΩD)

= B
(
(0, 0),

√
2(D + α)

)
\ B

(
(0, 0),

√
2(−D + α)

)
.

Notice that Lα and L̃α coincide onA. We want to apply Theorem 3.1 to the map P over the annulus
A. By Liouville Theorem we know that P is an area-preserving homeomorphism, and since it
coincides with the identity on the disk B

(
(0, 0), 1

2

√
2(α − β)

)
, we have that P(0, 0) = (0, 0).

We now check the twist condition. If |v0| =
√

2(−D + α), let x0 ∈ [0, 2π[ be such that

φ−1
α (v0) = {(x0 + 2kπ,−D) : k ∈ Z} .

Then, by (3.3) and (3.4),

−β ≤ y(t; 0, x0,−D) ≤ −d , for every t ∈ [0,T ] , (3.8)

and, by Assumption A3, x(· ; 0, x0,−D) is strictly decreasing on [0,T ], so we conclude that

x(T ; 0, x0,−D) < x0 .

Similarly, if |v0| =
√

2(D + α), taking x0 ∈ [0, 2π[ for which

φ−1
α (v0) = {(x0 + 2kπ,D) : k ∈ Z} ,

we have that y(t; 0, x0,D) ≥ d, for every t ∈ [0,T ]. Hence, by Assumption A3, x(· ; 0, x0,D) is
strictly increasing on [0,T ], so that

x(T ; 0, x0,D) > x0 .

Since, as long as y ≥ −β, we know that x gives the clockwise angular displacement for system (3.7),
the twist condition is verified, and Theorem 3.1 applies, with κ = 0, providing the existence of two
fixed points v(1)

0 , v(2)
0 of P inA, such that, taking u( j)

0 = (x( j)
0 , y( j)

0 ) ∈ φ−1
α (v( j)

0 ), one has

x(T ; 0, x( j)
0 , y( j)

0 ) = x( j)
0 ,

for j = 1, 2. Therefore, u(1)
0 and u(2)

0 are the starting points of the two T -periodic solutions of
system (2.1) we are looking for. The proof is thus completed.

4 Periodic solutions of the second kind
In this section we study the existence of the so-called “periodic solutions of the second kind”, those
satisfying, for some integer k,

u(t + T ) = u(t) + (2πk, 0) , for every t ∈ R . (4.1)

These are sometimes called “running solutions”. Clearly, if k = 0, we recover the usual periodicity.
Notice that (4.1) is equivalent to ask that the function

ũ1(t) = u(t) −
( 2πk

T
t , 0

)
be T -periodic. Let us introduce a new assumption.
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Assumption A4. There are two integers k1, k2, with k1 ≤ k2 and two constants d1 < d2, such that

y ≤ d1 ⇒ ∂H
∂y

(t, x, y) <
2πk1

T
,

y ≥ d2 ⇒ ∂H
∂y

(t, x, y) >
2πk2

T
,

for almost every t ∈ [0,T ] and every x ∈ [0, 2π].

The following theorem generalizes Theorem 2.1.

Theorem 4.1 If Assumptions A1, A2, and A4 hold, then, for every integer k ∈ {k1, k1 + 1, . . . , k2},
system (2.1) has at least two geometrically distinct periodic solutions of the second kind, satisfy-
ing (4.1).

The proof is a straightforward modification of the proof of Theorem 2.1. The only difference is
that Theorem 3.1 applies, this time, with κ = k−1, with k = k1, k1+1, . . . , k2, so that Assumption A4
provides the necessary twist property.

For a second order differential equation like (2.3), we have the following.

Corollary 4.1 Taking ϕ : ] − c, c[→ R as in Section 2, with c ∈ ]0,+∞], for any integer k in the
interval ]− T

2πc, T
2πc[ , equation (2.3) has at least two geometrically distinct periodic solutions of the

second kind, satisfying
x(t + T ) = x(t) + 2πk , for every t ∈ R .

Proof. It is sufficient to observe that, in this case,

lim
y→−∞

∂H
∂y

(t, x, y) = lim
y→−∞

ϕ−1(y + E(t)) = −c ,

lim
y→+∞

∂H
∂y

(t, x, y) = lim
y→+∞

ϕ−1(y + E(t)) = c ,

uniformly for every t ∈ [0,T ] and every x ∈ [0, 2π]. If c is finite, we take k2 to be the largest integer
less than T

2πc ; otherwise, if c = +∞, k2 can be an arbitrary positive integer. Setting k1 = −k2, we see
that Assumption A4 is verified. Theorem 4.1 then applies.

We could also look for “subharmonic solutions of the second kind”, those satisfying, for some
integer k, and for some positive integer m,

u(t + mT ) = u(t) + (2πk, 0) , for every t ∈ R . (4.2)

To this aim, we introduce the following.

Assumption A5. For some positive integer m, there are two integers k1, k2, with k1 ≤ k2 and two
constants d1 < d2, such that

y ≤ d1 ⇒ ∂H
∂y

(t, x, y) <
2πk1

mT
,

y ≥ d2 ⇒ ∂H
∂y

(t, x, y) >
2πk2

mT
,

for almost every t ∈ [0,T ] and every x ∈ [0, 2π].
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Let us now state the corresponding existence result.

Theorem 4.2 If Assumptions A1, A2, and A5 hold, then, for every nonzero integer k ∈ {k1, k1 +

1, . . . , k2}, with |k| and m relatively prime, system (2.1) has at least two geometrically distinct sub-
harmonic solutions of the second kind, satisfying (4.2), for which there is no other ℓ ∈ {1, 2, . . . ,m−
1} such that, for some integer j,

u(t + ℓT ) = u(t) + (2π j, 0) , for every t ∈ R . (4.3)

Proof. Let k and m be as in the statement. By Theorem 4.1, with T replaced by mT , we find two
solutions satisfying (4.2). Let u be one of them. Assume by contradiction that (4.3) holds, for some
integers ℓ ∈ {1, 2, . . . ,m − 1} and j. Let p and n be positive integers such that pℓ = nm . By (4.2), it
has to be

u(t + nmT ) = u(t) + (2πkn , 0), for every t ∈ R ,

and, by (4.3),
u(t + pℓT ) = u(t) + (2π jp , 0), for every t ∈ R .

Hence, nk = p j, so that
k
m
=

j
ℓ
,

a contradiction, since |k| and m are relatively prime, and 1 ≤ ℓ ≤ m − 1.

5 Further results
In this section we discuss on possible generalizations of our assumptions and on different applica-
tions of our results.

As an alternative to Assumption A3, let us introduce the following.

Assumption A3′. There exists a ζ ∈ L1(0,T ) such that

sgn(y)
∂H
∂y

(t, x, y) ≥ ζ(t) ,

for almost every t ∈ [0,T ] and every (x, y) ∈ R2, and∫ T

0
lim sup

y→−∞

(
sup

x∈[0,2π]

∂H
∂y

(t, x, y)
)

dt < 0 <
∫ T

0
lim inf
y→+∞

(
inf

x∈[0,2π]

∂H
∂y

(t, x, y)
)

dt.

This is a Landesman-Lazer type of condition. Notice, however, that such kind of condition
usually regards the inferior and superior limits as x goes to ±∞, when dealing with second order
scalar equations. Here, since the nonlinearity is periodic in x, and we deal with a more general
Hamiltonian system, we propose the above version, with the inferior and superior limits as y goes to
±∞.

We can then state the following variant of Theorem 2.1.
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Theorem 5.1 If Assumptions A1, A2, and A3′ hold, then system (2.1) has at least two geometrically
distinct T -periodic solutions.

Proof. Following [14, Lemma 1], if Assumption A3′ holds, there are a constant d ≥ 1 and two
functions ψ1, ψ2 ∈ L1(0,T ) such that

∂H
∂y

(t, x, y) ≤ ψ1(t), for a.e. t ∈ [0,T ], every x ∈ [0, 2π], and every y ≤ −d ,

∂H
∂y

(t, x, y) ≥ ψ2(t), for a.e. t ∈ [0,T ], every x ∈ [0, 2π], and every y ≥ d ,

and ∫ T

0
ψ1(t) dt < 0 <

∫ T

0
ψ2(t) dt .

We now follow the lines of the proof of Theorem 2.1, until we obtain (3.8), when y0 = −D. At this
point, writing for simplicity x(t), y(t) instead of x(t; 0, x0,−D), y(t; 0, x0,−D), respectively, we have
that

x(T ; 0, x0,−D) − x0 =

∫ T

0

∂H
∂y

(t, x(t), y(t)) dt ≤
∫ T

0
ψ1(t) dt < 0 ,

so that x(T ; 0, x0,−D) < x0. Similarly, when y0 = D, we get x(T ; 0, x0,D) > x0, and the proof is
completed.

Let us now focus our attention on Assumption A1: It has been used in order that the Poincaré
map be well defined, and to obtain Proposition 3.1. To this aim, it would be enough to assume global
existence for the solutions of the Cauchy problems (3.1), cf. [19]. Or else, we could try to follow the
proof of Theorem 2.1 anyway, being careful that the Poincaré map be well defined on the annulus
we are interested in, and obtaining the desired estimates anyway.

To show how this can be done, consider again the equation

d
dt
ϕ(ẋ) + g(t, x) = e(t) , (5.1)

and assume now that ϕ : ] − c, c[→ ] − γ, γ[ is a diffeomorphism satisfying ϕ(0) = 0, with c, γ ∈
]0,+∞], and such that ϕ−1 is locally Lipschitz continuous. As before, the function g(t, x) is assumed
to be Carathéodory, T -periodic in t, locally Lipschitz continuous and 2π-periodic in x, and such
that (2.5) holds. The function e : R → R is T -periodic, locally integrable, and satisfying (1.2), so
that we can write the equation in its equivalent form (2.6).

By the above assumptions, there is an h ∈ L1(0,T ) such that

|g(t, x)| ≤ h(t) , for a.e. t ∈ [0,T ] and every x ∈ R .

Set, for ε > 0 sufficiently small,

d̃ = ∥E∥∞ + ε , D̃ = d̃ + ∥h∥1 , β̃ = D̃ + ∥h∥1 .

Then, for any solution of the corresponding Cauchy problem, since

|ẏ(t; 0, x0, y0)| ≤ h(t) , for a.e. t ∈ [0,T ] ,
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we have that
y0 < ] − D̃, D̃[ ⇒ y(t; 0, x0, y0) < ] − d̃, d̃ [ ,

and
y0 ∈ [−D̃, D̃] ⇒ y(t; 0, x0, y0) ∈ [−β̃, β̃] ,

for every t ∈ [0,T ] and x0 ∈ [0, 2π]. Following the lines of the proof of Theorem 2.1, we can thus
conclude that, if

2(∥E∥∞ + ∥h∥1) < γ ,

then equation (5.1) has at least two geometrically distinct T -periodic solutions. Moreover, in the
spirit of Theorem 4.1, for every integer k such that

|k| < T
2π

ϕ−1(γ − 2∥E∥∞ − 2∥h∥1) ,

equation (5.1) has at least two geometrically distinct periodic solutions of the second kind, satisfying

x(t + T ) = x(t) + 2πk , for every t ∈ R .

Notice that, since adding a constant to E(t) does not affect the original differential equation, we can
always replace ∥E∥∞ by 1

2 (max E −min E).
As an example, we could take

ϕ(s) =
s√

1 + (s/γ)2
, (5.2)

(here c = +∞), leading to the mean curvature operator. We then get the following immediate
consequence.

Corollary 5.1 Assume that e(t) satisfies (1.2) and let a > 0 and γ > 0 be such that 2(∥E∥∞+aT ) < γ.
Then, the equation

d
dt

ẋ√
1 + (ẋ/γ)2

+ a sin x = e(t)

has at least two geometrically distinct T -periodic solutions. Moreover, for every integer k such that

|k| < T
2π

ϕ−1(γ − 2∥E∥∞ − 2aT ) ,

where ϕ is given by (5.2), there are at least two geometrically distinct periodic solutions of the
second kind, satisfying

x(t + T ) = x(t) + 2πk , for every t ∈ R .

The problem of subharmonic solutions of the second kind can be treated similarly, in the spirit
of Theorem 4.2. For briefness, we prefer not entering into details.

This type of equations, with the mean curvature operator, has been studied using a variational
method by Obersnel and Omari [29], who proved that, under the weaker condition ∥E∥∞ < γ, there
are at least two geometrically distinct T -periodic “bounded variation” solutions. Here, however,
we are always dealing with regular solutions. See also [35], where a different topological approach
has been used. Notice that, as proved in [29, Proposition 1.1], the zero mean condition (1.2) is
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not sufficient to ensure the existence of T -periodic solutions, so that some additional assumption is
indeed needed.

More general situations can be considered, where ϕ is a diffeomorphism between any two open
intervals I1 and I2. These intervals may be bounded or not on one or both sides. We avoid the details,
for briefness.
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[36] M. Willem, Oscillations Forcées de l’Équation du Pendule, Publ. IRMA Lille 3 (1981), v1–v3.

[37] J. You, Invariant tori and Lagrange stability of pendulum-type equations, J. Differential Equations 85
(1990), 54–65.


