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We consider the T -periodic problem

x′′ + g(t, x) = 0,

x(0) = x(T ), x′(0) = x′(T ),

where g : [0, T ]× ]0, +∞[ → R exhibits a singularity of a repulsive type at the origin,
and an asymptotically linear behaviour at infinity. In particular, for large x, g(t, x) is
controlled from both sides by two consecutive asymptotes of the T -periodic Fučik
spectrum, with possible equality on one side. Using a suitable Landesman–Lazer-type
condition, we prove the existence of a solution.

1. Introduction

Del Pino et al . [6] considered the problem of finding T -periodic positive solutions
of the equation

x′′ + g(t, x) = 0, (1.1)

where g : R× ]0, +∞[ → R is continuous, T -periodic in its first variable and has a
singularity of a repulsive type at the origin. They proved the following result.

Theorem 1.1 (Del Pino et al . [6, theorem 1]). Assume that there exist an integer
N and two constants µ̂, µ̃ such that

(
Nπ

T

)2

< µ̂ ! lim inf
x→+∞

g(t, x)
x

! lim sup
x→+∞

g(t, x)
x

! µ̃ <

(
(N + 1)π

T

)2

, (1.2)

uniformly for every t ∈ [0, T ]. Moreover, suppose that there exist positive constants
c′, c′′, δ and ν " 1 such that

c′

xν
! −g(t, x) ! c′′

xν
for every t ∈ [0, T ] and every x ∈ ]0, δ]. (1.3)

Then equation (1.1) has a T -periodic solution.
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Assumption (1.2) seems to be a kind of non-resonance condition with respect to
the set

Σ =
{(

kπ

T

)2

, k ∈ N
}

,

whose elements correspond to the heights of the asymptotes of the curves in the
Fučik spectrum (see, for example, [10]). They also coincide with the eigenvalues of
the associated Dirichlet problem on the interval [0, T ]. As a direct consequence of
theorem 1.1, the equation

x′′ − 1
xν

+ βx = e(t), (1.4)

where ν " 1 and e(t) is continuous and T -periodic, has a T -periodic solution,
provided that β > 0 satisfies β /∈ Σ.

We mention that the study of the existence of periodic solutions for equations
with a singularity, like (1.1), was first considered by Lazer and Solimini in [14], and
later investigated by many authors (see, for example, [2, 4, 5, 7–9,11,17,19–23]).

A few lines below the statement of their main theorem, del Pino et al . raised the
problem of finding sufficient conditions on e(t) in order to ensure the existence of
a T -periodic solution for equation (1.4) in the case when β belongs to the set Σ.
As a matter of fact, this seems to be a delicate problem for the following reason.
As already noted in [6] (see also [1, 16]), if ν = 3, in the phase plane there is an
isochronous centre for Steen’s equation (see [18]):

x′′ − 1
x3 + βx = 0, (1.5)

for any choice of β > 0, since all the positive solutions have minimal period equal
to π/

√
β. This fact is crucial when dealing with the T -periodic problem associated

with (1.5), in the case when β ∈ Σ. Indeed, it was shown in [16] using a phase plane
analysis that, due to isochronicity, if one considers a forcing made by a T -periodic
chain of Dirac deltas, then all the solutions of the forced equation are unbounded,
both in the past and in the future. The same type of situation arises for the equation

x′′ − 1
x3 + βx = ε sin(

√
βt),

for sufficiently small |ε|, as proved in [4, theorem 3].
However, in the case ν = 3, defining the (π/

√
β)-periodic function

Φ(θ) =
∫ T

0
e(t)| sin(

√
β(t + θ))| dt,

it was shown in [4] that if Φ has only simple zeros, and their number in [0, π/
√

β[
is different from 2, then (1.4) has a T -periodic solution. In particular, this is true
assuming that Φ has a constant sign, which, in this context, corresponds to the
so-called Landesman–Lazer condition. The choice of ν = 3 is crucial in [4] for
exploiting the isochronicity of the homogeneous equation.

The presence of the repulsive singularity has some analogies with the problem of
a bouncing particle, which was treated, for example, in [3, 12, 13, 15]. For instance,
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concerning the simple model

x′′ + βx = e(t),

x(t0) = 0 =⇒ x′(t+0 ) = −x′(t−0 ),

describing the behaviour of a particle bouncing elastically against the barrier {x =
0}, with β > 0 belonging to the set Σ, it was proved in [3] that, defining the
function Φ as above, the same type of result holds. In particular, as also shown
in [15, theorem 4.2], this is true if

∫ T

0
e(t)| sin(

√
β(t + θ))| dt > 0 for every θ ∈ [0, T ]. (1.6)

The aim of this paper is to propose a kind of Landesman–Lazer condition in
the case of a nonlinearity with a singularity like the one considered in [6], with
the strict inequalities in (1.2) possibly replaced by equalities. We will succeed in
replacing the upper inequality with an equality by adding a suitable Landesman–
Lazer-type condition on that side. Moreover, condition (1.3) will be replaced by a
one-sided control on the function g(t, x). We note that, under our assumptions, we
are far from perturbing an isochronous oscillator like the one considered in [4].

Our situation seems to be more delicate than the one studied in [4], or, for the
bouncing problem, in [3, 15]. For example, dealing with equation (1.4) with β > 0
belonging to Σ, and ν (= 3, it is not clear whether a condition like (1.6) is sufficient
for the existence of T -periodic solutions. In order to explain this, we appeal to
the analogy between the perturbed isochronous Steen equation and the bouncing
problem. When looking for a priori estimates in the elastic bouncing problem, it
is clear that the elasticity implies that all the bumps of the ‘limit function’ must
have the same height. Unfortunately, this behaviour is not guaranteed for the limit
function obtained for the singular periodic problem with lack of isochronicity (see
remark 2.5). Hence, since we are unable to predict that the height of each bump
will be the same, we will need a Landesman–Lazer condition that refers to each
bump separately. Thus, defining

ψ(t) =






sin(
√

βt) if t ∈
[
0,

π√
β

]
,

0 if t ∈
[

π√
β

, T

]
,

instead of (1.6) we will ask a stronger condition, namely,
∫ T

0
e(t)ψ(t + θ) dt > 0 for every θ ∈ [0, T ]. (1.7)

Under this assumption, we will prove that equation (1.4) has a T -periodic solution.
However, the possibility of replacing condition (1.7) with (1.6) in our setting remains
an open problem.

Note that, following the arguments in [8], under the assumptions of theorem 2.1
it is possible to prove that the radially symmetric system

z̈ = −g(t, |z|) z

|z| , z ∈ RM \ {0},
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has infinitely many subharmonic solutions rotating around the origin. However, we
will not discuss this argument further for reasons of brevity.

2. The main result

Let us consider the T -periodic problem

x′′ + g(t, x) = 0,

x(0) = x(T ), x′(0) = x′(T ),

}
(2.1)

where g : [0, T ]× ]0, +∞[ → R is an L∞-Carathéodory function, namely,

• t )→ g(t, x) is measurable for every x > 0,

• x )→ g(t, x) is continuous, for almost every t ∈ [0, T ],

• for every compact interval [a, b] ⊂ ]0, +∞[ there exists a constant C > 0 such
that

|g(t, x)| ! C for almost every (a.e.) t ∈ [0, T ] and every x ∈ [a, b].

Henceforth, when dealing with a solution x(t) of (2.1), in the Carathéodory sense,
we will implicitly assume x(t) > 0 for every t ∈ [0, T ]. Moreover, we will assume
that all the functions defined on [0, T ] are extended by T -periodicity to the whole
real line.

Define, for a fixed non-negative integer N ,

µN =
(

Nπ

T

)2

,

and set

ψ(t) =






sin(√µN+1t) if t ∈
[
0,

T

N + 1

]
,

0 if t ∈
[

T

N + 1
, T

]
.

Let us state our main result.

Theorem 2.1. Assume the following hypotheses.

(H1) There exists a constant µ̂ such that

lim inf
x→+∞

g(t, x)
x

" µ̂ > µN ,

uniformly for almost every t ∈ [0, T ].

(H2) There exists a constant η̂ such that

g(t, x) ! µN+1x + η̂ for a.e. t ∈ [0, T ] and every x " 1.

Moreover, for every θ ∈ [0, T ],
∫ T

0
lim sup
x→+∞

(g(t, x) − µN+1x)ψ(t + θ) dt < 0. (2.2)
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(H3) There exist a constant δ > 0 and a continuous function f : ]0, δ] → R such
that

g(t, x) ! f(x) for a.e. t ∈ [0, T ] and every x ∈ ]0, δ],

with

lim
x→0+

f(x) = −∞,

∫ δ

0
f(x) dx = −∞.

Then, problem (2.1) has a solution.

Remark 2.2. Theorem 2.1 clearly generalizes theorem 1.1, since (1.2) implies (H1)
and (H2), while (1.3) implies (H3), being, in this case, the left-hand side of (2.2)
equal to −∞.

Let us introduce, for λ ∈ [0, 1], the family of functions

gλ(t, x) = λg(t, x) + (1 − λ)
(

− 1
x3 + 1

2 (µN + µN+1)x
)

. (2.3)

Moreover, for R > 1, let

ΛR =
{

x ∈ C([0, T ])
∣∣∣∣

1
R

< x(t) < R for every t ∈ [0, T ]
}

.

Following the arguments in [8, § 2], it is sufficient to prove that there exists an
R > 1 such that, for any λ ∈ [0, 1], every solution of the problem

x′′ + gλ(t, x) = 0,

x(0) = x(T ), x′(0) = x′(T ),

}
(2.4)

belongs to ΛR. We will prove this using the following two lemmas, the first of which
gives the estimate for the maxima, and the second of which focuses on minima.

Lemma 2.3. There exists a constant R > 1 such that, for any λ ∈ [0, 1], if x(t) is
a solution of (2.4), then

max
t∈[0,T ]

x(t) < R.

Proof. By contradiction, assume that there exist (λn)n ⊂ [0, 1] and a sequence
(xn)n satisfying

x′′
n + gλn(t, xn) = 0,

xn(0) = xn(T ), x′
n(0) = x′

n(T ),

}
(2.5)

with ‖xn‖∞ → +∞. Up to a subsequence, we can assume λn → λ̄ ∈ [0, 1]. We will
prove the following claims.

Claim 1. There exists M > 1 such that

min
t∈[0,T ]

xn(t) ! M for every n ∈ N.
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Proof of claim 1. By contradiction, assume that this is not the case. Namely, there
exists a subsequence, still denoted by (xn)n, such that xn(t) → +∞ uniformly in
t ∈ [0, T ]. Integrating (2.5), we see that

∫ T

0
gλn(t, xn(t)) dt = 0.

On the other hand, in view of (H1), there exists d > 0 such that

gλn(t, x) " 1
2 µ̂x for a.e. t ∈ [0, T ] and every x " d.

Since, for n large, xn(t) " d for every t ∈ [0, T ], this is clearly impossible.

Claim 2. For large n, (xn(t), x′
n(t)) makes exactly N + 1 clockwise revolutions

around the point (1, 0) when t varies from 0 to T .

Proof of claim 2. We will use some arguments from [8], introducing, with the same
notation, the function N : ]0, +∞[ → R, defined as

N (u, v) =
(

1
u2 + u2 + v2

)1/2

.

Let ε̄ > 0 be such that
ε̄ <

T

(N + 1)(N + 2)
. (2.6)

It is possible to see [8, lemma 2] that there exist ζ > 0 and a sufficiently large
R1 > M with the following property.

If τ1 < τ2 are such that (xn(t), x′
n(t)) makes exactly one rotation in the phase

plane around the point (1, 0) when t varies from τ1 to τ2, and N (xn(t), x′
n(t)) " R1

for every t ∈ [τ1, τ2], then

T

N + 1
− ε̄ ! τ2 − τ1 ! ζ <

T

N
. (2.7)

Now choose a positive integer n̄ such that

n̄

(
T

N + 1
− ε̄

)
> T. (2.8)

Using [8, lemma 1], there exists R2 > R1 such that if, for some t1 < t2,

N (xn(t1), x′
n(t1)) = R1, N (xn(t2), x′

n(t2)) = R2,

and
R1 < N (xn(t), x′

n(t)) < R2 for every t ∈ ]t1, t2[ ,

then (xn(t), x′
n(t)) makes at least n̄ clockwise turns in the phase plane around (1, 0)

when t varies from t1 to t2. Since ‖xn‖∞ → +∞, for every large n we will have

max{N (xn(t), x′
n(t)) | t ∈ [0, T ]} > R2.

Consequently, xn(t) being T -periodic, for sufficiently large n, it will be N (xn(t),
x′

n(t)) > R1 for every t ∈ [0, T ], otherwise (xn(t), x′
n(t)) would make at least n̄

turns around (1, 0) in the time period T , which is impossible due to (2.7) and (2.8).
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Since N (xn(t), x′
n(t)) > R1 for every t ∈ [0, T ], enlarging R1 if necessary, as

shown in the proof of [8, lemma 2], (xn(t), x′
n(t)) clockwise rotates at least once

around (1, 0) in the time T . Taking into account (2.6) and (2.7), then, for sufficiently
large n, (xn(t), x′

n(t)) will make, in the phase plane, strictly more than N and
strictly less than N +2 turns around (1, 0) in time T . Since xn(t) is T -periodic, this
implies that (xn(t), x′

n(t)) will make exactly N + 1 such turns in the time T .

Claim 3. Setting
vn =

xn

‖xn‖∞
,

the sequence (vn)n converges uniformly, up to a subsequence, to a continuous func-
tion v. This function is not identically zero and it is twice continuously differentiable,
except on a finite subset of [0, T ]. Moreover, v satisfies v′′(t) + µN+1v(t) = 0 for
almost every t ∈ [0, T ].

Proof of claim 3. For every n, the T -periodic function vn solves

v′′
n +

gλn(t, xn(t))
‖xn‖∞

= 0. (2.9)

Multiplying both sides of equation (2.9) by vn and integrating between 0 and T ,
we have ∫ T

0
v′

n(t)2 dt =
∫ T

0

gλn(t, xn(t))
‖xn‖∞

vn(t) dt.

By (H3), we can choose δ̄ ∈ ]0, 1[ such that, for every n,

gλn(t, x) ! 0 for a.e. t ∈ [0, T ] and every x ∈ ]0, δ̄].

For large n, it follows that
∫ T

0

gλn(t, xn(t))
‖xn‖∞

vn(t) dt =
∫

{xn!δ̄}
· · · +

∫

{δ̄<xn<1}
· · · +

∫

{xn"1}
· · ·

! CT +
∫

{xn"1}

µN+1xn(t) + η̂

‖xn‖∞
dt

! (C + µN+1)T + 1,

for a suitable constant C > 0 coming from the Carathéodory condition. This imme-
diately gives an estimate of the L2-norm of v′

n which is independent of n. It follows
that (vn)n is bounded in H1(0, T ), so there exists v ∈ H1(0, T ) such that, up to
a subsequence, vn ⇀ v (weakly) in H1(0, T ) and vn → v uniformly. Let us still
denote such a subsequence by (vn)n. Since ‖vn‖∞ = 1 for every n, we have that
‖v‖∞ = 1. Hence, v is not identically zero. Moreover, it is clear that, since v is
the uniform limit of positive continuous T -periodic functions, it is a non-negative
continuous T -periodic function.

We now prove that v′′(t) + µN+1v(t) = 0 almost everywhere in [0, T ]. To this
end, define the open set

Ω+ = {t ∈ R | v(t) > 0},
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which is an at most countable union of open intervals, and consider a C1-function
ϕ with compact support Kϕ contained in Ω+. Multiplying equation (2.9) by ϕ and
integrating on Kϕ, we obtain

∫

Kϕ

v′
n(t)ϕ′(t) dt =

∫

Kϕ

gλn(t, xn(t))
‖xn‖∞

ϕ(t) dt

=
∫

Kϕ

gλn(t, xn(t))
xn(t)

vn(t)ϕ(t) dt. (2.10)

Observe now that, in view of the continuity of v (which is strictly greater than 0 on
Kϕ) and recalling that Kϕ is compact and strictly contained in Ω+, we have that
xn(t) → +∞ uniformly for every t ∈ Kϕ. By hypotheses (H1) and (H2), for every
positive integer m, there exists a sufficiently large nm such that

µN < µ̂ − 1
m

! gλnm
(t, xnm(t))
xnm(t)

! µN+1 +
1
m

, (2.11)

for almost every t ∈ Kϕ. We can assume the sequence (nm)m to be strictly increas-
ing. Considering the subsequence

(
gλnm

(t, xnm(t))
xnm(t)

)

m

,

it then turns out that it is bounded in L2(Kϕ), so that (up to a further subsequence)
it converges weakly in L2(Kϕ) to a function γ(t) which, in view of (2.11), satisfies

µN < µ̂ ! γ(t) ! µN+1 for a.e. t ∈ Kϕ. (2.12)

Since vn → v uniformly and vn ⇀ v in H1(0, T ), passing to the limit in (2.10) then
yields ∫

Kϕ

v′(t)ϕ′(t) dt =
∫

Kϕ

γ(t)v(t)ϕ(t) dt.

By the uniqueness of the weak limit, γ(t) can be uniquely extended on the whole
set Ω+, hence, we have

∫

Ω+
v′(t)ϕ′(t) dt =

∫

Ω+
γ(t)v(t)ϕ(t) dt

for every C1-function ϕ with compact support in Ω+. This implies that v(t) is a
weak solution of the equation

v′′ + γ(t)v = 0 (2.13)

in Ω+. Hence, v ∈ H2
loc(Ω

+), and satisfies (2.13) for almost every t ∈ Ω+. Moreover,
v(t) is continuously differentiable at any point t ∈ Ω+.

We now aim to prove that γ(t) = µN+1 for almost every t ∈ Ω+. Observe first
that, writing the equation as a first-order system, and taking into account that,
for every n, the angular velocity of (vn, v′

n) has to be non-positive (see [8]), the set
{t ∈ [0, T ] | xn(t) = R1} (which is non-empty since R1 > M) is discrete. Moreover,
returning to claim 2, we know that, in the phase plane, (xn(t), x′

n(t)) has to perform



Second-order singular equations at resonance 1271

exactly N + 1 turns around the point (1, 0) in time T . Then, in the interval [0, 2T ],
we can find

αn
1 < βn

1 < αn
2 < βn

2 < · · · < αn
N+1 < βn

N+1 < αn
1 + T

such that, setting αn
N+2 = αn

1 + T ,

xn(t) > R1 if t ∈ ]αn
r , βn

r [ , r = 1, . . . , N + 1,

and

xn(t) < R1 if t ∈ ]βn
r , αn

r+1[ , r = 1, . . . , N + 1.

Since both the sequences (βn
r )n and (αn

r )n are bounded, there exist ξ−
r and ξ+

r , with
r = 1, . . . , N + 1 such that, up to subsequences,

αn
r → ξ−

r , βn
r → ξ+

r , r = 1, . . . , N + 1,

with
ξ−
1 ! ξ+

1 ! ξ−
2 ! ξ+

2 ! · · · ! ξ−
N+1 ! ξ+

N+1 ! ξ−
1 + T. (2.14)

By the estimates in [8, lemma 2], given any ε > 0, for sufficiently large n we have

βn
r − αn

r " T

N + 1
− ε, r = 1, . . . , N + 1.

Passing to the limit, since ε is arbitrary, we deduce

ξ+
r − ξ−

r " T

N + 1
, r = 1, . . . , N + 1.

Since, by (2.14), ξ+
N+1 − ξ−

1 ! T , this implies

ξ+
r = ξ−

r +
T

N + 1
and ξ−

r+1 = ξ+
r , r = 1, . . . , N + 1.

For simplicity of notation, we set ξr = ξ−
r for r = 1, . . . , N + 1. Recalling that

vn(αn
r ) = vn(βn

r ) =
R1

‖xn‖∞
,

we deduce that v(ξr) = 0 for every r = 1, . . . , N + 1, since v is continuous and
vn → v uniformly.

Let us now focus on an interval [α̃, β̃] such that v > 0 on ]α̃, β̃[ , with v(α̃) =
v(β̃) = 0. Since, on ]α̃, β̃[ , v is continuously differentiable and satisfies (2.13) almost
everywhere, writing

v(t) = ρ(t) cos(θ(t)), v′(t) = ρ(t) sin(θ(t)),

we have
−θ′(t) =

γ(t)v(t)2 + v′(t)2

v(t)2 + v′(t)2
,

which yields, in view of (2.12),

−θ′(t)
µN+1 cos2 θ(t) + sin2 θ(t)

! 1 <
−θ′(t)

µ̂ cos2 θ(t) + sin2 θ(t)
.
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Consequently, integrating between α̃ and β̃, we infer, taking into account that
µ̂ > µN ,

T

N + 1
! β̃ − α̃ <

T

N
.

However, since v(ξr) = 0 for every r = 1, . . . , N + 1, and the points ξr are equally
distributed at a distance T/(N + 1) from each other, then it must be the case that
β̃ − α̃ = T/(N + 1). This means that, whenever v becomes positive, it is forced
to remain positive for a time exactly equal to T/(N + 1). Recalling that v solves
v′′ + γ(t)v = 0 on ]α̃, β̃[ , we now pass to generalized polar coordinates by writing

v(t) =
1

√
µN+1

ρ̂(t) cos(θ̂(t)), v′(t) = ρ̂(t) sin(θ̂(t)).

Integrating θ̂′(t) on [α̃, β̃], we have

π =
√

µN+1

∫ β̃

α̃

γ(t)v(t)2 + v′(t)2

µN+1v(t)2 + v′(t)2
dt ! √

µN+1
T

N + 1
= π,

from which we deduce that

γ(t) = µN+1 for a.e. t ∈ [α̃, β̃].

This means, in particular, that Ω+ is the union of some intervals of the type
]ξr, ξr+1[ , on which we have

v(t) = cr sin(
√

µN+1(t − ξr)),

where, for every r, the constants cr are in [0, 1], and at least one of them is equal
to 1. The claim is thus proved.

Conclusion of the proof of lemma 2.3. Let us focus again on an interval [α̃, β̃] such
that v(α̃) = v(β̃) = 0, and v > 0 on ]α̃, β̃[ . Note first that, since γ(t) = µN+1 almost
everywhere in Ω+, it must be the case that λn → 1. Indeed, if it were λn → λ̄ < 1,
taking any interval I ⊂ ]α̃, β̃[ , for every t ∈ I it would be, for large n,

gλn(t, xn(t))
xn(t)

! ζ̃ < µN+1,

for a suitable constant ζ̃ and, taking the weak limit, we would reach the contradic-
tion γ(t) < µN+1 for almost every t ∈ I. By the previous discussion, we know that
β̃ − α̃ = T/(N + 1) and that, on ]α̃, β̃[ , v solves the Dirichlet problem

v′′ + µN+1v = 0,

v(α̃) = 0 = v(β̃).

Explicitly, for some C > 0,

v(t) = C sin
(

(N + 1)π
T

(t − α̃)
)

. (2.15)
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Let (φk)k"1 be the orthonormal L2(α̃, β̃)-basis made of the solutions of the Dirichlet
problem

φ′′
k + µkφk = 0,

φk(α̃) = 0 = φk(β̃),

where µk is the kth eigenvalue. Let us denote by 〈·, ·〉 the scalar product in L2(α̃, β̃)
and by ‖ · ‖2 the L2(α̃, β̃)-norm. We write, for every n, the Fourier series of xn,

xn =
+∞∑

k=1

〈xn, φk〉φk.

It is useful to split such an expression as follows:

xn = x0
n + x⊥

n ,

where
x0

n = 〈xn, φN+1〉φN+1,

while
x⊥

n =
∑

k '=N+1

〈xn, φk〉φk.

It is known that x⊥
n is L2-orthogonal to x0

n in view of the properties of the eigen-
functions φk. Dividing xn by ‖xn‖∞, we have vn = v0

n + v⊥
n with

v0
n =

x0
n

‖xn‖∞
, v⊥

n =
x⊥

n

‖xn‖∞
.

Since v = v0, we have

v0
n =

〈vn, v〉
‖v‖2

v → v uniformly in t ∈ [α̃, β̃].

As

x′′
n =

+∞∑

k=1

〈xn, φk〉φ′′
k

= −
+∞∑

k=1

〈xn, φk〉µkφk,

we have that
(x′′

n)0 = (x0
n)′′, (x′′

n)⊥ = (x⊥
n )′′.

Multiplying equation (2.5) by v0
n and integrating between α̃ and β̃, we then have

−
∫ β̃

α̃
(x0

n)′′(t)v0
n(t) dt =

∫ β̃

α̃
gλn(t, xn(t))v0

n(t) dt. (2.16)
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Integrating twice by parts, we obtain

∫ β̃

α̃
(x0

n)′′(t)v0
n(t) dt =

∫ β̃

α̃
x0

n(t)(v0
n)′′(t) dt

= −
∫ β̃

α̃
µN+1x

0
n(t)v0

n(t) dt. (2.17)

On the other hand, note that, by (H3), there exists ω ∈ ]0, min{δ, 1}[ such that

g(t, x) ! f(x) ! 0 for every x ∈ ]0, ω[ .

Define the two L∞-Carathéodory functions

σ(t, x) =






g(t, x) if x ∈ ]0, 1
2ω[,

2
ω

g(t, x)(ω − x) if x ∈ [ 12ω, ω],

0 if x ∈ ]ω, +∞[ ,

and
r(t, x) = g(t, x) − µN+1x − σ(t, x).

Using (H2), together with the fact that σ(t, x) ! 0, there exists a positive constant
η̃ such that

r(t, x) ! η̃ for a.e. t ∈ [0, T ] and every x > 0. (2.18)

As a consequence,

∫ β̃

α̃
gλn(t, xn(t))v0

n(t) dt

= λn

∫ β̃

α̃
σ(t, xn(t))v0

n(t) dt + λn

∫ β̃

α̃
µN+1xn(t)v0

n(t) dt

+ λn

∫ β̃

α̃
r(t, xn(t))v0

n(t) dt

+ (1 − λn)
∫ β̃

α̃

(
− 1

xn(t)3
+ 1

2 (µN + µN+1)xn(t)
)

v0
n(t) dt,

so that
∫ β̃

α̃
gλn(t, xn(t))v0

n(t) dt !
∫ β̃

α̃
µN+1x

0
n(t)v0

n(t) dt + λn

∫ β̃

α̃
r(t, xn(t))v0

n(t) dt,

in view of the fact that xn and v0
n are positive. Using (2.16), (2.17) and the fact

that λn → 1, we deduce that, for sufficiently large n,

∫ β̃

α̃
r(t, xn(t))v0

n(t) dt " 0.
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As v0
n → v uniformly, by (2.18) the integrand is bounded from above by a positive

constant. It is then possible to apply Fatou’s lemma, so that
∫ β̃

α̃
lim sup
n→+∞

r(t, xn(t))v0
n(t) dt " 0,

whence, since limn→+∞ v0
n(t) = v(t) for every t ∈ [α̃, β̃],

∫ β̃

α̃
lim sup
n→+∞

r(t, xn(t))v(t) dt " 0.

As
r(t, x) = g(t, x) − µN+1x for a.e. t ∈ [0, T ] and every x " 1,

and xn(t) → +∞ for every t ∈ ]α̃, β̃[ , we deduce that

∫ β̃

α̃
lim sup
x→+∞

(g(t, x) − µN+1x)v(t) dt " 0.

Since, in view of (2.15), v(t) = Cψ(t − α̃) for every t ∈ [α̃, β̃], this contradicts
(2.2).

We now prove the counterpart of lemma 2.3 for minima.

Lemma 2.4. There exists a constant R′ ∈ ]0, 1[ such that, for any λ ∈ [0, 1], if x(t)
is a solution of (2.4), then

min
t∈[0,T ]

x(t) > R′.

Proof. By contradiction, assume that there exist two sequences (λn)n ⊂ [0, 1] and
(xn)n, with xn(t) solving (2.4) for λ = λn, such that mint∈[0,T ] xn(t) → 0. Let
R > 1 be as in lemma 2.3 and fix a sufficiently small ε > 0. As we have already
recalled, by [8, lemma 2] there exists a sufficiently large R1 > N (R, 0) such that if
(xn(t), x′

n(t)) makes exactly one rotation around the point (1, 0) when t varies from
τ1 to τ2, and N (xn(t), x′

n(t)) " R1 for every t ∈ [τ1, τ2], then

τ2 − τ1 " T

N + 1
− ε.

Now choose a positive integer n̄ such that

n̄

(
T

N + 1
− ε

)
> T.

Recalling again [8, lemma 1], as used in the proof of lemma 2.3, there exists R2 > R1
such that if

N (xn(t1), x′
n(t1)) = R1, N (xn(t2), x′

n(t2)) = R2,

for some t1 < t2, and

R1 < N (xn(t), x′
n(t)) < R2 for every t ∈ ]t1, t2[ ,
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then (xn(t), x′
n(t)) turns at least n̄ times around (1, 0) in the phase plane when t

varies from t1 to t2. As mint∈[0,T ] xn(t) → 0, for every large n, we will have

max{N (xn(t), x′
n(t)) | t ∈ [0, T ]} > R2.

Since xn(t) is T -periodic, and in view of the continuity of N (xn(t), x′
n(t)), for suf-

ficiently large n it follows that N (xn(t), x′
n(t)) > R1 for every t ∈ [0, T ], otherwise

(xn(t), x′
n(t)) would turn at least n̄ times around (1, 0) in time T , which is impos-

sible. Choosing t̄n such that xn(t̄n) = maxt∈[0,T ] xn(t), being x′
n(t̄n) = 0 it would

then be, for large n,
N (xn(t̄n), 0) > R1,

which, since xn(t̄n) < R, contradicts the inequality N (R, 0) < R1.

Remark 2.5. As mentioned in § 1, for the special case of equation (1.4), condi-
tion (2.2) reads as (1.7). Let us try to explain why we are not able to replace (1.7)
with the more general assumption (1.6). We recall that, in [8], a curve Γ : [0, +∞[ →
R2 was constructed in order to control the solutions in the phase plane. One could
try to estimate the height of the bumps of v(t) by using such a curve for the solu-
tions xn(t). However, consider, for example, equation (1.5) and define gλ(t, x) as in
(2.3). We would then have

gλ(t, x) = − 1
x3 + ( 1

2 (µN + µN+1) + 1
2λ(µN+1 − µN ))x.

Hence, the curve Γ (t), as it is constructed in [8], should use the level lines of the
functions

V1(u, v) =
1
2

(
1
u2 +µN+1u

2 + v2
)

, V2(u, v) =
1
2

(
1
u2 + 1

2 (µN +µN+1)u2 + v2
)

.

A straightforward computation shows, however, that, denoting by Pm = (um, 0) and
Pm+1 = (um+1, 0) two consecutive intersections of Γ (t) with the half-line {(u, v) ∈
R2 | u " 1, v = 0}, it is

lim inf
m→+∞

um+1

um
> 1.

This fact makes us unable to prove that the height of the bumps of v(t), which is
obtained as the limit of the normalized sequence (vn)n, is always the same. This is
why we did not manage, in our setting, to assume a Landesman–Lazer condition
like (1.6).
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