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Abstract

We show that the Ahmad-Lazer-Paul condition for resonant problems is more general than

the Landesman-Lazer one, discussing some relations with other existence conditions, as

well. As a consequence, such a relation holds, for example, when considering resonant

boundary value problems associated with linear elliptic operators, the p-Laplacian and, in

the scalar case, with an asymmetric oscillator.

1991 Mathematics Subject Classification. 34B15, 35J25.

Key words. Nonlinear boundary value problems, resonance, Landesman-Lazer condition.

1 Introduction
The aim of this paper is to establish some connections between classical existence conditions for

nonlinear problems at resonance. In 1969, a paper by Lazer and Leach [29] for the periodic problem
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opened the way towards what today is usually called the Landesman-Lazer condition, introduced

one year later in [26] for a semilinear elliptic problem. This type of condition has inspired several

authors in the attempt of finding the right abstract formulation and providing different generaliza-

tions. Contributions in this direction were given, among others, by Brezis and Nirenberg [6], de

Figueiredo [8], Fučik [20], Hess [23], Mawhin [32], Nečas [35], and Williams [41]. A significant

alternative to the Landesman-Lazer condition was proposed by Ahmad, Lazer and Paul [1] in 1976.

A variational formulation for it was given by Rabinowitz [36] in 1978, who introduced, for that

purpose, his Saddle Point Theorem. More recent contributions in this direction can be found, e.g.,

in [9, 10, 13, 14, 15, 16, 17, 18, 24, 27, 28, 34].

For a general semilinear problem of the type

Lu = g(x, u),

where L is a linear differential operator with nontrivial kernel, there is a large literature dealing

with different kinds of conditions to be imposed on the nonlinear function g in order to guarantee

the existence of a solution. To this aim, different techniques have been exploited: Leray-Schauder

degree theory, variational methods, and fixed point theorems in the phase plane.

Let us recall the nonresonance conditions proposed by Landesman-Lazer [26] and Ahmad-

Lazer-Paul [1]. To fix the ideas, let Ω be a bounded open subset of Rn with smooth boundary,

and L : D(L) ⊂ L2(Ω) → L2(Ω) a linear operator with compact resolvent. Assume g : Ω × R → R
to be a L2-bounded function, i.e., there exists h ∈ L2(Ω) such that

|g(x, s)| ≤ h(x),

for almost every x ∈ Ω and every s ∈ R. Let G be a primitive of g in the second variable, i.e.,

G(x, s) =

∫ s

0

g(x, τ) dτ.

The Landesman-Lazer condition reads as follows:

(LL) for every v ∈ ker L \ {0},∫
{v>0}

lim inf
s→+∞

g(x, s)v(x) dx +
∫
{v<0}

lim sup
s→−∞

g(x, s)v(x) dx > 0,

while the Ahmad-Lazer-Paul condition can be written as

(ALP) as long as v ∈ ker L,

lim
‖v‖2→+∞

∫
Ω

G(x, v(x)) dx = +∞.

In the above, we used the notation

{v > 0} = {x ∈ Ω | v(x) > 0}, {v < 0} = {x ∈ Ω | v(x) < 0}.

It is well known that (LL) and (ALP) are strongly related. Indeed, it was already proved in [1]

(see also [33]) that, in some special cases, (LL) implies (ALP). For instance, this is surely true if the

kernel of L has dimension equal to 1. However, even if it is commonly believed that (ALP) is more

general than (LL), the implication in the general case, to our knowledge, has not been established

yet.
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In this paper, we will give a characterization of the Landesman-Lazer condition which allows

to prove that (LL) implies (ALP) in a very general setting. Proposition 3.1 below provides this

characterization, which can be of independent interest for a better understanding of (LL). No bound-

edness assumptions will be necessary on the set Ω - indeed, Ω can be an arbitrary σ-finite measure

space - and more general nonlinearities and differential operators will be admitted in our framework.

Moreover, we do not need a linear subspace as the kernel of L, but just a cone Σ, with some compact-

ness properties. As possible examples, the nonlinear asymmetric oscillator equation and equations

involving the p-Laplacian will be included in this setting. At the end of the paper, we will take

into consideration another alternative condition related to both (LL) and (ALP), sometimes called

potential Landesman-Lazer condition (see [39] and [40]).

2 Main result
Let (Ω, μ) be a σ-finite measure space (in the applications, Ω is usually an open subset of Rn with

the standard Lebesgue measure). We will briefly write “measurable” in place of μ-measurable, and

Lq(Ω) instead of Lq(Ω, dμ). Let g : Ω × R→ R be a L1-Carathéodory function, i.e.,

- x �→ g(x, s) is measurable for every s ∈ R;

- s �→ g(x, s) is continuous for almost every x ∈ Ω;

- for every R > 0, there exists ηR ∈ L1(Ω) such that, for almost every x ∈ Ω, and every s ∈ R
with |s| ≤ R,

|g(x, s)| ≤ ηR(x),

and let p, q ∈ [1,+∞] be conjugate exponents, i.e.,

1

p
+

1

q
= 1.

We assume that there exist d > 0 and a nonnegative function h ∈ Lq(Ω) such that, for almost every

x ∈ Ω,

|s| ≥ d ⇒ sgn(s)g(x, s) ≥ −h(x). (2.1)

Let Σ ⊂ Lp(Ω) satisfy the following properties:

- if u ∈ Σ, and λ > 0, then λu ∈ Σ;

- Σ ∩ S 1 is compact in Lp(Ω), where S 1 = {u ∈ Lp(Ω) | ‖u‖p = 1}.

Set G(x, s) =
∫ s

0
g(x, τ) dτ. We consider the following two conditions:

(LL) for every v ∈ Σ \ {0},∫
{v>0}

lim inf
s→+∞

g(x, s)v(x) dμ +
∫
{v<0}

lim sup
s→−∞

g(x, s)v(x) dμ > 0;

(ALP) as long as v ∈ Σ,

lim
‖v‖p→+∞

∫
Ω

G(x, v(x)) dμ = +∞.
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In this framework, we will prove the following statement:

Theorem 2.1 (LL) implies (ALP).

Several boundary value problems fit in the above setting. For example, the T -periodic problem

associated with the differential equation ü + λu = g(t, u), as first considered in [29], where λ is an

eigenvalue of the differential operator, or with the more general asymmetric oscillator ü + μu+ −
νu− = g(t, u), where the couple (μ, ν) belongs to the Dancer-Fučik spectrum. Indeed, concerning

the homogeneous equation, if φ satisfies φ̈ + μφ+ − νφ− = 0, then every other solution is given by

ϕ(t) = αφ(t + θ), with α ≥ 0 and θ ∈ [0,T ].

Other examples are given by the Dirichlet (or Neumann) problem on a bounded domain asso-

ciated with an elliptic equation like Δu + λu = g(x, u), where λ is an eigenvalue of the differential

operator, or with a more general equation involving the p-Laplacian. However, some care could

be recommended in this case, since the spectral properties of the p-Laplacian are not completely

established yet (see, e.g., [4, 11, 12], and the references therein). On the other hand, if λ is the first

eigenvalue, our assumptions are known to be fulfilled, since Σ ∩ S 1 is a finite set.

In principle, boundary value problems associated with hyperbolic equations fit in our frame-

work, as well. However, in this case we do not know about existence results under these general

assumptions (see, however, [3, 36]).

It is worth underlining that, in the above statement, we do not need growth assumptions on g -

which, however, are usually required to prove existence results - other than (2.1). And, moreover, in

the applications, Ω does not necessarily have to be bounded in Rn. Problems on unbounded domains

have been studied by several authors in the recent years, mainly with variational methods, yielding

existence results by means of both Landesman-Lazer (see for instance [2, 31]) and Ahmad-Lazer-

Paul conditions (see, e.g., [25, 30]). Our theorem could be useful in these cases, since it seems easier

to check if (LL) holds, rather than (ALP).

Clearly, the analogous of Theorem 2.1 can be stated if we take into account the following two

conditions:

(LL′) for every v ∈ Σ \ {0},∫
{v>0}

lim sup
s→+∞

g(x, s)v(x) dμ +
∫
{v<0}

lim inf
s→−∞

g(x, s)v(x) dμ < 0;

(ALP′) as long as v ∈ Σ,

lim
‖v‖p→+∞

∫
Ω

G(x, v(x)) dμ = −∞.

3 Proof of the main result
First of all, notice that condition (2.1) guarantees that the integrals appearing in (LL) are both well

defined, with values in R∪{+∞}. Along the proof of Theorem 2.1, we will show that, in this setting,

the same is true for the integral appearing in (ALP).

Let us start the proof of Theorem 2.1. SinceΩ isσ-finite, there is a family {Km}m∈N of measurable

subsets of Ω such that

• μ(Km) < +∞, for every m ∈ N;
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• Km ⊂ Km+1 , for every m ∈ N;

• ∪m∈N Km = Ω.

Define, for every m ∈ N, the truncation function ζm : Ω→ R by

ζm(x) =

{
m if x ∈ Km

0 if x ∈ Ω \ Km;

it is worth noticing that, for every m ∈ N, ζm belongs to Lq(Ω), for every q ≥ 1.

The following lemma says that, if the Landesman-Lazer condition is satisfied by g, then it is satisfied

also by some suitable truncation of g.

Lemma 3.1 Let g : Ω × R→ R satisfy condition (LL). Then, setting

gm(x, s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min{g(x, s), ζm(x)} if s > 0

0 if s = 0

max{g(x, s),−ζm(x)} if s < 0,

there exists m̄ ∈ N such that, for every m ≥ m̄ and every v ∈ Σ \ {0},∫
{v>0}

lim inf
s→+∞

gm(x, s) v(x) dμ +
∫
{v<0}

lim sup
s→−∞

gm(x, s)v(x) dμ > 0. (3.1)

Proof. It suffices to prove the statement for every v ∈ Σ ∩ S 1, since the left-hand side in (3.1) is

positively homogeneous of degree 1 with respect to v. Consequently, we will assume ‖v‖p = 1.

Since g(x, s) = limm→+∞ gm(x, s) for almost every x ∈ Ω and every s ∈ R \ {0}, this limit being

monotone (increasing for s > 0, decreasing for s < 0), we can rewrite condition (LL) as∫
{v>0}

(
lim inf

s→+∞
lim

m→+∞
gm(x, s)

)
v(x) dμ +

∫
{v<0}

(
lim sup

s→−∞
lim

m→+∞
gm(x, s)

)
v(x) dμ > 0. (3.2)

We show that it is possible to exchange the inferior limit and the limit under the first integral. First

of all, since gm(x, s) ≤ g(x, s) for almost every x ∈ Ω and every s > 0, it follows easily that

lim
m→+∞

lim inf
s→+∞

gm(x, s) ≤ lim inf
s→+∞

lim
m→+∞

gm(x, s).

On the other hand, after having observed that lim inf s→+∞ g(x, s) > −∞ for almost every x ∈ Ω,

thanks to (2.1), we have to consider the two following cases.

Assume that x ∈ Ω is such that lim inf s→+∞ g(x, s) = +∞. Then, for fixed K > 0 there exists sK

such that, if s ≥ sK , then g(x, s) ≥ K. Moreover, there exists mx ∈ N such that x ∈ Km for every

m ≥ mx. For every m ≥ max{K,mx}, then, we have gm(x, s) ≥ K, for every s ≥ sK , from which

lim inf s→+∞ gm(x, s) ≥ K, so that

lim
m→+∞

lim inf
s→+∞

gm(x, s) = +∞.

Assume now that x ∈ Ω is such that lim inf s→+∞ g(x, s) = l ∈ R. Then, for fixed ε > 0, there

exists sε such that g(x, s) ≥ l − ε for s ≥ sε . Moreover, there exists mx ∈ N such that x ∈ Km for
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every m ≥ mx. For every m ≥ max{l,mx}, then, we have gm(x, s) ≥ l − ε, for every s ≥ sε , so that

lim inf s→+∞ gm(x, s) ≥ l − ε, from which we deduce that

lim
m→+∞

lim inf
s→+∞

gm(x, s) ≥ l.

With the same computations, it is possible to show that the superior limit and the limit under the

second integral can be exchanged.

According to (3.2), then,∫
{v>0}

(
lim

m→+∞
lim inf

s→+∞
gm(x, s)

)
v(x) dμ +

∫
{v<0}

(
lim

m→+∞
lim sup

s→−∞
gm(x, s)

)
v(x) dμ > 0.

The two sequences (lim inf s→+∞ gm(x, s)v(x))m and (lim sups→−∞ gm(x, s)v(x))m, considered on their

domains of integration {v > 0} and {v < 0}, respectively, are monotone increasing. Moreover, they

are bounded from below by the L1-functions −h(x)v(x) and h(x)v(x), respectively. By the monotone

convergence theorem, then,

lim
m→+∞

(∫
{v>0}

lim inf
s→+∞

gm(x, s)v(x) dμ +
∫
{v<0}

lim sup
s→−∞

gm(x, s)v(x) dμ
)
> 0.

Hence, there exists Mv ∈ N such that, for every m ≥ Mv,

Im(v) :=

∫
{v>0}

lim inf
s→+∞

gm(x, s)v(x) dμ +
∫
{v<0}

lim sup
s→−∞

gm(x, s)v(x) dμ > 0.

Choose M ≥ Mv and set

g+(x) = lim inf
s→+∞

gM(x, s), g−(x) = lim sup
s→−∞

gM(x, s).

Observe that g+ and g− belong to Lq(Ω): similarly as before, indeed, for almost every x ∈ Ω,

−h(x) ≤ g+(x) ≤ ζM(x), −ζM(x) ≤ g−(x) ≤ h(x).

We now claim that IM : Lp(Ω) → R is continuous at v. To show it, let v j → v in Lp(Ω), and fix the

following notations:

A+j = {v j ≥ 0}, A−j = {v j < 0},
A+ = {v ≥ 0}, A− = {v < 0}.

We have

IM(v j) − IM(v) = Γ1, j + Γ2, j + Γ3, j + Γ4, j ,

where

Γ1, j =

∫
A+j ∩A+

g+(x)(v j(x) − v(x)) dμ,

Γ2, j =

∫
A−j ∩A−

g−(x)(v j(x) − v(x)) dμ,

Γ3, j =

∫
A−j ∩A+

(g−(x)v j(x) − g+(x)v(x)) dμ,

Γ4, j =

∫
A+j ∩A−

(g+(x)v j(x) − g−(x)v(x)) dμ.
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As j → +∞, Γ1, j and Γ2, j vanish thanks to the Hölder inequality, since v j → v in Lp(Ω). Concerning

Γ3, j , for every subsequence of (v j) j we can find a further subsequence, still denoted by (v j) j, such

that v j(x) → v(x) for almost every x ∈ Ω. Hence, by the Lebesgue dominated convergence Theorem,∫
A−j ∩A+

g+(x)v(x) dμ→ 0,

since μ((A−j ∩ A+)\{v = 0}) → 0. On the other hand, writing∫
A−j ∩A+

g−(x)v j(x) dμ =
∫

A−j ∩A+
g−(x)(v j(x) − v(x)) dμ +

∫
A−j ∩A+

g−(x)v(x) dμ,

arguing similarly we see that ∫
A−j ∩A+

g−(x)v j(x) dμ→ 0.

This shows that Γ3, j → 0 as j → +∞. With the same reasonings, we see that Γ4, j vanishes, as well.

The continuity of IM is thus proved.

It follows that there exists δv > 0 such that IM(w) > 0 for ‖w − v‖p < δv, namely∫
{w>0}

lim inf
s→+∞

gM(x, s)w(x) dμ +
∫
{w<0}

lim sup
s→−∞

gM(x, s)w(x) dμ > 0.

Since, thanks to our hypotheses, Σ ∩ S 1 is compact in Lp(Ω), it will be possible to find m̄ ∈ N such

that, for every v ∈ Σ ∩ S 1,

Im̄(v) =

∫
{v>0}

lim inf
s→+∞

gm̄(x, s)v(x) dμ +
∫
{v<0}

lim sup
s→−∞

gm̄(x, s)v(x) dμ > 0.

The fact that (3.1) holds for every m ≥ m̄ is a simple consequence of the monotonicity of the

integrands with respect to m.

We now give a characterization of the Landesman-Lazer condition.

Proposition 3.1 The following conditions are equivalent:

1) g satisfies (LL);

2) there exist η̄ > 0, R ≥ d and ψ+, ψ− ∈ Lq(Ω) such that

- g(x, s) ≥ ψ+(x) for a.e. x ∈ Ω, and every s ≥ R;

- g(x, s) ≤ ψ−(x) for a.e. x ∈ Ω, and every s ≤ −R;

- for every v ∈ Σ, ∫
{v>0}
ψ+(x)v(x) dμ +

∫
{v<0}
ψ−(x)v(x) dμ ≥ η̄‖v‖p . (3.3)

Moreover, there exists M > 0 such that

−h(x) ≤ ψ+(x) ≤ M, −M ≤ ψ−(x) ≤ h(x),

for almost every x ∈ Ω, and, if x ∈ Ω \ KM, then ψ+(x) ≤ 0 and ψ−(x) ≥ 0.
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Proof. In view of the positive homogeneity of both sides of (3.3) with respect to v, it is not restrictive

to assume ‖v‖p = 1. We will only prove that 1) implies 2), since the other implication is straightfor-

ward. Suppose that (LL) holds: by Lemma 3.1, using the same notations, there exists m̄ ∈ N such

that, for every m ≥ m̄ and every v ∈ Σ \ {0},∫
{v>0}

lim inf
s→+∞

gm(x, s)v(x) dμ +
∫
{v<0}

lim sup
s→−∞

gm(x, s)v(x) dμ > 0,

i.e., ∫
{v>0}

(
lim

n→+∞
inf
s≥n

gm(x, s)
)
v(x) dμ +

∫
{v<0}

(
lim

n→+∞
sup
s≤−n

gm(x, s)
)
v(x) dμ > 0.

Fix M ≥ m̄ and set

γ+n (x) = inf
s≥n

gM(x, s), γ−n (x) = sup
s≤−n

gM(x, s).

Observe that, for every n ≥ d, γ+n and γ−n belong to Lq(Ω), since, for almost every x ∈ Ω,

−h(x) ≤ γ+n (x) ≤ M, −M ≤ γ−n (x) ≤ h(x).

On their domains of integration {v > 0} and {v < 0}, respectively, the sequences of L1-functions

(γ+n v)n≥d and (γ−n v)n≥d are both monotone increasing, and bounded from below by the L1-functions

−hv and hv respectively. By the monotone convergence theorem, for every v ∈ Σ ∩ S 1,

lim
n→+∞

(∫
{v>0}
γ+n (x)v(x) dμ +

∫
{v<0}
γ−n (x)v(x) dμ

)
=

=

∫
{v>0}

lim
n→+∞

γ+n (x)v(x) dμ +
∫
{v<0}

lim
n→+∞

γ−n (x)v(x) dμ

=

∫
{v>0}

lim inf
s→+∞

gM(x, s)v(x) dμ +
∫
{v<0}

lim sup
s→−∞

gM(x, s)v(x) dμ > 0.

Then, there exist ηv > 0 and Nv ∈ N, with Nv ≥ d, such that, for every n ≥ Nv,

Jn(v) :=

∫
{v>0}
γ+n (x)v(x) dμ +

∫
{v<0}
γ−n (x)v(x) dμ ≥ ηv .

Choose N ≥ Nv: with the same reasonings as in the proof of Lemma 3.1, we can show that JN :

Lp(Ω) → R is continuous at v. Hence, there exists δv > 0 such that, if ‖w − v‖p ≤ δv,∫
{w>0}
γ+N(x)w(x) dμ +

∫
{w<0}
γ−N(x)w(x) dμ ≥ ηv

2
.

By the compactness of Σ ∩ S 1 it is possible to find n̄ ∈ N, with n̄ ≥ d, and η̄ > 0 such that, for every

v ∈ Σ ∩ S 1, ∫
{v>0}
γ+n̄ (x)v(x) dμ +

∫
{v<0}
γ−n̄ (x)v(x) dμ ≥ η̄.

Setting

ψ+(x) = γ+n̄ (x), ψ−(x) = γ−n̄ (x),

the proof is easily completed, taking R = n̄.
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Remark 3.1 In the study of an elliptic boundary value problem at resonance with the first eigen-

value, Gossez and Omari characterized the Landesman-Lazer condition, as well (see [21, Propo-

sition 4.1]). In their particular case, the eigenspace is 1-dimensional and generated by a positive

eigenfunction (see also, in a different context, [19, Lemma 1]).

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Let v ∈ Σ \ {0} and set

Ω+v = {x ∈ Ω | v(x) > R},

Ω−v = {x ∈ Ω | v(x) < −R},
Ω0

v = {x ∈ Ω | −R ≤ v(x) ≤ R},
where R > 0 is given by Proposition 3.1. Writing∫

Ω

G(x, v(x)) dμ =
∫
Ω+v

G(x, v(x)) dμ +
∫
Ω−v

G(x, v(x)) dμ +
∫
Ω0

v

G(x, v(x)) dμ,

we are led to consider each term separately. For what concerns the first one, notice that, using

the notations of Proposition 3.1, for almost every x ∈ Ω, we have g(x, s) ≥ ψ+(x) for s > R,

and |g(x, s)| ≤ ηR(x) for |s| ≤ R, thanks to the Carathéodory assumption. Moreover, recalling that

ψ+(x) ≤ M for almost every x ∈ Ω and ψ+(x) ≤ 0 for almost every x ∈ Ω \ KM ,

G(x, v(x)) =

∫ R

0

g(x, τ) dτ +
∫ v(x)

R
g(x, τ) dτ

≥ −RηR(x) + (v(x) − R)ψ+(x)

≥ −RηR(x) + v(x)ψ+(x) − Rψ+(x)χKM (x)

≥ −RηR(x) + v(x)ψ+(x) − RMχKM (x),

for almost every x ∈ Ω+v . Hence,∫
Ω+v

G(x, v(x)) dμ ≥ −R‖ηR‖1 +

∫
Ω+v

ψ+(x)v(x) dμ − RMμ(KM)

= −R(‖ηR‖1 + Mμ(KM)) +

∫
{v>0}
ψ+(x)v(x) dμ −

∫
{0<v(x)≤R}

ψ+(x)v(x) dμ

≥ −R(‖ηR‖1 + Mμ(KM)) +

∫
{v>0}
ψ+(x)v(x) dμ −

∫
{0<v(x)≤R}∩KM

ψ+(x)v(x) dμ

≥ −R(‖ηR‖1 + Mμ(KM)) +

∫
{v>0}
ψ+(x)v(x) dμ −

∫
{0<v(x)≤R}∩KM

Mv(x) dμ

≥ −R(‖ηR‖1 + 2Mμ(KM)) +

∫
{v>0}
ψ+(x)v(x) dμ.

A similar computation yields∫
Ω−v

G(x, v(x)) dμ ≥ −R(‖ηR‖1 + 2Mμ(KM)) +

∫
{v<0}
ψ−(x)v(x) dμ,
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while we have ∫
Ω0

v

G(x, v(x)) dμ =
∫
Ω0

v

∫ v(x)

0

g(x, τ) dτ dμ ≥ −R‖ηR‖1 . (3.4)

Summing up, using (3.3), we have∫
Ω

G(x, v(x)) dμ ≥ η̄‖v‖p − R
[
3‖ηR‖1 + 4Mμ(KM)

]
, (3.5)

where η̄ > 0 is given by Proposition 3.1. This concludes the proof.

4 Some remarks and related conditions
In this section, we will make some remarks about Theorem 2.1 and take into account some variants

of (LL) and (ALP), which have been considered in literature.

Remark 4.1 In view of Theorem 2.1, the Ahmad-Lazer-Paul condition is more general than the

Landesman-Lazer one. However, in the setting of the theorem, adding some monotonicity assump-

tion on g (with respect to s) makes the two conditions equivalent, as shown in the following propo-

sition.

Proposition 4.1 Assume that g(x, s) is nondecreasing in s, for almost every x ∈ Ω. Then (LL) and
(ALP) are equivalent.

Proof. Assume that (LL) is not satisfied. Hence, there exists v ∈ Σ \ {0} such that∫
{v>0}

lim inf
s→+∞

g(x, s)v(x) dμ +
∫
{v<0}

lim sup
s→−∞

g(x, s)v(x) dμ ≤ 0;

setting g+(x) = lims→+∞ g(x, s), and g−(x) = lims→−∞ g(x, s), this reads∫
{v>0}

g+(x)v(x) dμ +
∫
{v<0}

g−(x)v(x) dμ ≤ 0.

Let us show that the function F : R→ R ∪ {+∞}, defined by

F(λ) =

∫
Ω

G(x, λv(x)) dμ =
∫
Ω

∫ λv(x)

0

g(x, τ) dτ,

is nonpositive for λ > 0. Indeed, since, for almost every x ∈ Ω, and every s ∈ R,

g−(x) ≤ g(x, s) ≤ g+(x),

we have

F(λ) =

∫
{v>0}

∫ λv(x)

0

g(x, τ) dτ dμ +
∫
{v<0}

∫ λv(x)

0

g(x, τ) dτ dμ

≤ λ
∫
{v>0}

g+(x)v(x) dμ + λ
∫
{v<0}

g−(x)v(x) dμ ≤ 0.

Consequently, lim supλ→+∞ F(λ) ≤ 0, so that (ALP) does not hold.
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Remark 4.2 As shown in (3.5), condition (LL) implies that, for every β ∈ [0, 1[ ,

lim
‖v‖p→+∞

1

‖v‖βp

∫
Ω

G(x, v(x)) dμ = +∞,

as long as v ∈ Σ. Conditions of this type were considered, e.g., in [7, 22, 37, 38].

Remark 4.3 As already pointed out in [5], it is possible to compare conditions (LL) and (ALP)

with another existence condition introduced by Tomiczek in [39] and [40], the so called potential
Landesman-Lazer condition. In our abstract framework, with the same notations as before, such a

condition can be written as follows:

(p-LL) for every v ∈ Σ \ {0},∫
{v>0}

lim inf
s→+∞

G(x, s)

s
v(x) dμ +

∫
{v<0}

lim sup
s→−∞

G(x, s)

s
v(x) dμ > 0.

Let us first show that (LL) implies (p-LL). Using Proposition 3.1, with the notations therein, for

almost every x ∈ Ω we have

lim inf
s→+∞

G(x, s)

s
= lim inf

s→+∞

G(x, s) −G(x,R)

s

= lim inf
s→+∞

1

s

∫ s

R
g(x, τ) dτ

≥ lim inf
s→+∞

s − R
s
ψ+(x) = ψ+(x).

By analogous computations, we see that

lim sup
s→−∞

G(x, s)

s
≤ ψ−(x),

and the statement follows then from (3.3).

We now show that (p-LL) implies (ALP). To this aim, define the function

f (x, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

s
(G(x, s) −G(x, d)) if s ≥ d

0 if − d < s < d

1

s
(G(x, s) −G(x,−d)) if s ≤ −d

and notice that (p-LL) implies∫
{v>0}

lim inf
s→+∞

f (x, s)v(x) dμ +
∫
{v<0}

lim sup
s→−∞

f (x, s)v(x) dμ > 0,

i.e., f satisfies (LL). Moreover, it is easily seen that f satisfies the same L1-Carathéodory conditions

as g, and

|s| ≥ d ⇒ sgn(s) f (x, s) ≥ −h(x),
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as well. Consequently, assuming (p-LL), Lemma 3.1 and Proposition 3.1 apply, with g replaced by

f , yielding the existence of η̄ > 0, R ≥ d, and Ψ+, Ψ− belonging to Lq(Ω), such that f (x, s) ≥ Ψ+(x)

for s ≥ R, f (x, s) ≤ Ψ−(x) for s ≤ −R, and∫
{v>0}
Ψ+(x)v(x) dμ +

∫
{v<0}
Ψ−(x)v(x) dμ ≥ η̄‖v‖p , (4.1)

for every v ∈ Σ. Moreover, there exists M > 0 such that

−h(x) ≤ Ψ+(x) ≤ M, −M ≤ Ψ−(x) ≤ h(x),

for almost every x ∈ Ω, and, if x ∈ Ω \ KM , then Ψ+(x) ≤ 0 and Ψ−(x) ≥ 0. Letting v ∈ Σ \ {0} and

Ω+v = {x ∈ Ω | v(x) > R},

Ω−v = {x ∈ Ω | v(x) < −R},
Ω0

v = {x ∈ Ω | −R ≤ v(x) ≤ R},
we write ∫

Ω

G(x, v(x)) dμ =
∫
Ω+v

G(x, v(x)) dμ +
∫
Ω−v

G(x, v(x)) dμ +
∫
Ω0

v

G(x, v(x)) dμ,

and consider each term separately. For what concerns the first one, since, for almost every x ∈ Ω+v ,

G(x, v(x)) =

∫ d

0

g(x, τ) dτ +
∫ v(x)

d
g(x, τ) dτ

≥ −dηd(x) + f (x, v(x))v(x)

≥ −dηd(x) + Ψ+(x)v(x),

with similar computations as in the proof of Theorem 2.1 we obtain∫
Ω+v

G(x, v(x)) dμ ≥ −d‖ηd‖1 +

∫
Ω+v

Ψ+(x)v(x) dμ

≥ −d‖ηd‖1 − RMμ(KM) +

∫
{v>0}
Ψ+(x)v(x) dμ.

Similarly, ∫
Ω−v

G(x, v(x)) dμ ≥ −d‖ηd‖1 − RMμ(KM) +

∫
{v<0}
Ψ−(x)v(x) dμ,

while the integral on Ω0
v can be estimated as in (3.4). Hence, by (4.1),∫

Ω

G(x, v(x)) dμ ≥ η̄‖v‖p −
[
R‖ηR‖1 + 2d‖ηd‖1 + 2RMμ(KM)

]
.

It follows that the Ahmad-Lazer-Paul condition is fulfilled.

Clearly, as a consequence of Proposition 4.1, condition (p-LL) is equivalent to both (LL) and

(ALP) when g is nondecreasing with respect to its second variable.
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