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We prove the existence of an arbitrarily large number of periodic solutions for a class of
nonlinear differential equations generalising the dynamics of a forced pendulum with
small length.

1. Introduction

Consider a simple pendulum with unitary mass and length I, and assume that there
is a periodic time-dependent external force e(t) acting on it. The angular displacement
then follows the well-known differential equation

X"+ %’sinx = e(t), (L.1)
g being the acceleration of gravity. Let us vary the length / and see what happens
when [ becomes smaller and smaller.
A simple change of variable transforms (1.1) into the equation

l
x”+sinx=-e(t \/E> (1.2)
g 4

At first sight, | being small, (1.2) can be considered to be a perturbation of the
autonomous equation x” + sin x =0, which has infinitely many periodic solutions.
On the other hand, a closer look at equation (1.2) shows that the period of the right-
hand side becomes larger and larger as / becomes small: if 7> 0 is the period of
e(t), the period of the right-hand side of (1.2) is T; = T/g/l.

Two questions then naturally arise: Can we say that the number of periodic
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solutions of (1.1) becomes larger and larger as ! becomes small? Are there sub-
harmonic solutions, i.e. solutions whose minimal period is a multiple of T?

We have found a partial answer to our first question in two papers published by
Hammerstein [5] and Iglish [7] in the 1930s. There, a shooting method was used
to prove that there are many solutions for equation (1.1), with Dirichlet boundary
conditions, when [ is small. As an easy consequence, one has many T-periodic
solutions for (1.1) if e(t) is assumed to be odd.

Since then, a large number of contributions to the study of equation (1.1) have
appeared in the literature. However, to our knowledge, a complete answer to our
first question, for a general forcing, seems not yet to be available. In this regard, we
refer to the interesting survey by Mawhin [11] on the pendulum equation, considered
as an inexhaustible source of dynamical situations and as a testing model for different
techniques in nonlinear analysis.

Concerning our second question, the existence of subharmonic solutions has been
proved as a by-product of some theorems on ‘chaos’, but again at the expense of
additional assumptions on e(t) (see [1, 13]). Otherwise, one can apply some results
from [4, 10], but only for a ‘generic’ forcing term e(t) with mean value zero.

In this paper, we answer in the affirmative both the above questions, for a more
general equation of the type

x"+ Af(x) = e(t), (1.3)

where e(t) is an arbitrary continuous and T-periodic forcing term. The assumptions
we choose on the restoring force f(x) naturally cover the case of equation (1.1). For
instance, we can prove the following theorem:

THEOREM 1.1. Assume f:R —R to be continuous, globally bounded, differentiable at a
point xo with f(x,) =0 and f’(x,) > 0. Then, given any two positive integers, M, N,
there exists a constant A >0 such that, for any A= A, equation (1.3) has, for each
k=1,2,..., M, at least N periodic solutions with minimal period kT. Concerning the
T-periodic solutions, they can be chosen to have exactly 2j simple crossings with x, in
the interval [0, T[, with j=1,2,..., N.

With the aim of obtaining a similar result by assuming only local conditions on
the restoring force f(x), we also consider a situation in which the related autonomous
equation has a heteroclinic (or homoclinic) orbit. Unfortunately, we are not able to
prove in this case that all the above periodic solutions survive to the perturbation.
Roughly speaking, we lose control on those having a low number of zeros, maybe
because they come too near to the heteroclinic orbit. Nevertheless, we can prove
that the number of harmonic and subharmonic periodic solutions still increases to
infinity as 4 grows.

THEOREM 1.2. Assume f :[a, b] >R to be differentiable and let x, € Ja, b[ be such that
S(x0) =0 and f'(x,) > 0. Assume moreover f(a) = f(b) =0 and

S(x)<0 ifxela, xo[, f(x)>0 if xe]x,, b[.

Then, given any two positive integers M, N, there exists a constant A> 0 such that,
Jor any A = A, equation (1.3) has, for eachk = 1,2, ..., M, at least N periodic solutions
with minimal period kT.
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Theorem 1.2 should be compared with the result in [1], where Battelli and Palmer
prove, for large A, the existence of a transversal heteroclinic point of the Poincaré
map associated to equation (1.3), with the accompanying chaotic behaviour.
However, they need the functions f(x) and e(t) to be at least eight times continuously
differentiable and, moreover, the existence of a simple zero for e(t).

Theorems 1.1 and 1.2 are actually obtained as consequences of our main results
which will be stated for an equation of the type

x"+ f(x) = ee(t, x, ), (1.4)

with a continuous restoring term f(x) and a continuous forcing term e(t, x, &) which
is periodic in its first variable, with a period which depends on e. (The case of
constant period has been already studied by many authors, cf. [8,9,15].)

In Section 2 we start with a setting of general assumptions and we prove some
auxiliary lemmas which will be used in the proofs of our main theorems. These
generalise Theorems 1.1 and 1.2 above and are stated and proved in Section 3.
The proofs use a variant of the Poincaré-Birkhoff Fixed-Point Theorem due to
W. Ding [3].

Without loss of generality, we assume, from now on, that Xo=0.

2. Some preliminary results
We consider equation (1.4), which we write in the form
x'=y, y=—f(x)+ee(t, x, ¢). (2.1)
Here, f:R >R is a continuous function such that there are a <0 < b, for which
(Hy) xf(x)>0 forall xeJa, 0[]0, b[,

and e:R x R x J0, 1] - R is continuous, periodic in its first variable, with a period
T; which depends on ¢ in such a way that

(Hy) lim T,=+0c and lim ¢T,=0.

t-»0t e~»0"t
We also assume there is a constant K > 0 such that
(H3) |e(t, X, 8)' é K’

for every te R, xeR and ¢€]0, 1]. We set F(x)= _f; f(s)ds, and, to fix the ideas,
we assume that F(b) < F(a), i.e.

b
f f(s)ds=0.
Denote, for any r € ]0, b], by I, the curve obtained as the connected component
of the set
{(x, y) eR?:3y* + F(x) = F(r)}

such that I, n(R x {0}) <[4, b]. By assumption (H;), T, is a closed simple curve

which delimits an open set Q,, contained in [a, b] x [ —+/2F (b), V2F(b)] and star-
shaped with respect to the origin. Moreover, I, nI,, = for r; #r, and, for any
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re]0, b[, lim,_,dg(T;, I,) =0, where dy denotes the Hausdorff distance. (If, instead
of the above, we had F(a) < F(b), then we could repeat the same construction, with
obvious modifications, taking r € {a, 0[.)

We introduce the set

X(e, ) = {(x(2), y(t)) e R2:(x, y) is a solution of (2.1)
with (x(0), y(0) €I, and |¢| £ T},

made up of all those points of the plane which are reached at some time ¢ with
[t] £ T;, by the solutions starting at the time ¢ =0 from a point of I,. In particular,
X(0,r)=T,. (We point out that at this stage of our discussion, we assume neither
the uniqueness of the solutions for the initial value problems associated to (2.1), nor
their continuability on [—-T;, T;].)

As a consequence of the following lemma, we have that the set X(g, r) approaches
I, as ¢ goes to zero, i.c.

lim ( max min ||x—y||>=0.

e-0t \ xe X(e,r) yelL,

LeEMMA 2.1. Assume (H, ;) and choose re]O,b[. Then, given any
0 €]0, min {r, b —r}[, we have that, for sufficiently small ¢, any solution starting at
the time t =0 from a point of T, is defined and remains in Q, . ;\Q,_; for all |t| = T..

Proof. By contradiction, suppose that, for some r and ¢ as above, there is a sequence
(¢,), which tends to zero and, corresponding to each n, there is a solution (x,, y,),
starting at time ¢ =0 from a point of I, which stays in Q,,;\Q,_; until a certain
time T,, with | T,| < T, , at which time it reaches I _; or I, , ;. Writing

E,(2) =3(a(t))? + F(x,(2)),

for every |t} < T, we have

= &,|e(t, xp(2).£al |y(1)] = &, KN/ 2F (D),

d
2 B

so that, setting v =min {F(r) — F(r — ), F(r + 6) — F(r)}, we have
0<v=|E(T,) — EN(0)| = &, KV2F(D)T, < KV 2F(b)e, T.,..
For n large, this contradicts assumption (H,). U

We say that a solution (x, y) of (2.1) makes at least N rotations around the origin
in the time 7 if (x(t), y(¢)) # (0, 0), for all ¢ € [0, 7], and, considering polar coordinates

x(t) = p(t) cos O(z), y(t)= p() sin 6(2),

we have that 6(0)—6(zr)=2N=n. We say it makes more than N rotations if
0(0) — 6(z) > 2N=. In the same spirit, we speak of solutions making at most, less than,
or exactly N rotations around the origin.




Periodic oscillations of forced pendulums 71

LEMMA 2.2. Assume (H,_;) and

(Hy) lim inf& >0.
s—0 S
Then we can construct three sequences (r,,),, (€,), and (t,), with the following properties:
(a) For every n,r,€]0,b[, 6,>0and 0<1,<T, .
(b) 4s n— oo, we have r,—0, &,—0 and (z,), remains bounded.
(c) Any solution starting at the time t=0 from a point of I, is defined for
[t| £ T;, and makes more than one rotation around the origin in the time 1,,.

Proof. By Lemma 2.1, we can choose two sequences (r,), and (g,),, tending to zero,
in such a way that

X(8,,, rn) < QZr,,\ﬁz_lr,,
and, denoting by d, the distance of I';-1, from the origin,

. &y
fim 55 =0.

Let (x,, y) be a solution of (2.1) starting from I, at time ¢=0. By the above
inequality and the definition of Xg,,r,), this solution is defined at least on
[T, T.,] and, moreover, (x,(t), ya(t)) # (0, 0) for every t with |¢| < T, . Therefore,
passing to polar coordinates, we can write

Xn(t) = pa(t) cos 0,(1),  ya(2) = p,(2) sin 6,(2).

Standard computations lead to

yrzl(t) + [f(xn(t)) — ene(t’ X,,(t), sn)]xn(t)
ya(e) + x3(1) '
By assumption (H,), there is an « >0 and a é >0 such that, for |s| £ 6, f(s)s = as®.
Since r,— 0, for n large enough we have
Ya(t) +axi(t) - &K(b—a)
ya(e) +x3(2) dz
Then, there is a y > 0 such that, for sufficiently large n, one has 6,(t) >y, for every
|t| = T;,. For n large, since T, — + o0, the solution is defined on [0, 2n/y], and makes

more than one rotation around the origin in a certain time 7, < 2n/y. Hence, the
result easily follows (taking subsequences, if needed). [

—0;(1)=

—6,(1) 2

REMARK 2.3. Notice that assumption (H,) itself guarantees the existence of a <0 < b
for which (H,) holds. This fact will permit us to state Theorem 3.1 below without
the need to assume (H,) explicitly.

LEMMA 2.4. Assume (H,_;) and
(Hy) lim sup& < + 0.
s—b" b — 8

Then we can construct three sequences (s,),, (¢,), and (c,), with the following properties;
(a) For every n, s,€10,b[, ¢,>0and 0<0,<T, .
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(b) As n— o0, we have s,— b, ¢,—0 and 6,— + co.
(¢) Any solution starting at the time t=0 from a point of T, is defined for
|t| £ T;, and makes less than one rotation around the origin in the time o,.

Proof. By Lemma 2.1, we can choose two sequences (s,), and (g,), in such a way
that

X(Sm sn) < Qb\(zZs"—b'

Let (x,, y») be a solution of (2.1) starting from I at time t=0. This solution is
defined at least on [— T, , T; ] and, for n large, (x,(t), y.(?)) # (0, 0) for every ¢ with
|t| < T;,. For simplicity of notation, we omit the subscript n in what concerns the
solution (x,, y,), when no confusion can arise.

Assume that the solution makes at least one rotation around the origin in the
time T; . Then one of the following two possibilities occurs. Either there are ¢, <t,
such that

x(t;)=0, x(t,)=0 and x'(t)>0 foreveryt,<t<t,;
or there are t, <t, such that
x'(t;)=0, x(t;)=0 and x(t)<0 foreveryt,<t<t,.

Assume the first possibility occurs. First of all, we observe that 2s, — b < x(t,) < b.
Moreover, for every t, <t <t,, we have

50+ e + ekt | = w0 + g0 40w 0 20

Hence,

SO S F(x(t2)) — F(x()) + &, K(x(t2) — X(2)).
By assumption (H;), there is a §>0 and a ne€]0, b[ such that, for b~y <s<bh,
f(s) £ B(b — s). Assuming n sufficiently large, let ¢, € Jt,, t,[ be such that x(¢,) =b —n.
Then, for every t € ]t,, t,[, we have

x(t2)
x () <2 f(s)ds + 2¢,Kn < B(b — x(1))* + 2¢,Kn.
x(t)

Then,
"tz 1, t
ty—t,2 X 2)
Ji, Bb — X(£))* + 26, Kn
*x(t3) dx
 Jxep VBB —x)+26,Kn
(f2s,—b dx
=
Jo-n /B —x)*+2¢,Kn

Thus the time needed to make at least one rotation around the origin is strictly
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greater than the above-defined o,. The same conclusion is reached if the second
possibility occurs. Therefore, in any case, the solution makes less than one rotation
around the origin in the time o,. The result easily follows (taking subsequences, if
needed), since o, goes to infinity with an order of growth like [—In(b~s,)]. O

In the proof of our main results, we will also need the following lemma concerning
the distribution of prime numbers on the real line.

LEMMA 2.5. Let (p,), and (q,), be two real sequences such that, for every n,1 <p,<gq,
and

lim I _ + 0.
n—co Dy
Then the number of primes between p, and g, becomes larger and larger as n goes
to infinity.
Proof. Denote, for any real x = 1, by II(x) the number of primes smaller than x, and
set Z(x) = x/In x. The Prime Number Theorem asserts that
lim H)
im —=
x— +00 E(X)
The function X(x) is positive, increasing and concave for x = e?. Without loss of

generality, we can assume that p, — 00 as n— o0, and p, = ¢* for every n. Then, setting
R(x) =TII(x) — Z(x), we have

Ing,— |R(4,)] = |R(p,)l
—<1nqn)2( Pa) = (z(qn) z(p,.)>z( )

_ _ L\, _ P\ _(IR@)I _ IR(p)
—E(q")[<l lnqn)<1 q,.) (E(q..)+>2(p..) ):|

which implies that I1(q,) — (p,) >0 as n—00. O

3. The main results

THEOREM 3.1. Assume (H,_,) and

. F(x)
Ho) \lim =5 =0
Then, given any two positive integers, M, N, there exists a constant &> 0, such that,
for any 0 <¢ex<¢, equation (1.3) has, for each k=1,2,..., M, at least N periodic
solutions having period kT,. If k = 2, these solutions can be chosen not to have a smaller
period in the set {T,, 2T, ..., (k — 1)T,}. Concerning the T,-periodic solutions, they can
be chosen to have exactly 2j simple zeros in the interval [0, T[, withj=1,2,...,N.

Proof. Assumptions (H;) and (H,) guarantee that the solutions to the Cauchy prob-
lems associated to equation (2.1) are globally defined (cf. [14]). Take two sequences
(ra)n and (g,), as in Lemma 2.2. For n large enough, the solutions starting from any
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point of I, will make, in the time 1;,, at least N + 1 rotations. On the other hand,
condition (Hg) implies that the solutions starting from a point of a sufficiently large
circle Sg = {(u, v) e R*:u” + v* = R?} will not be able to rotate around the origin
even once in time T, (cf. [12]). Let us fix ¢ and an annulus with inner boundary T,
and outer boundary Si with the above properties.

If we assume that the solutions to the Cauchy problems associated to equation (2.1)
are unique, so that the Poincaré map can be defined, then the generalised version of
the Poincaré-Birkhoff Fixed-Point Theorem due to W. Ding [3] yields the existence
of T, -periodic solutions which make exactly 1,2,..., N + 1 rotations around the
origin, respectively (cf. [2, 14]).

If we do not have uniqueness for the Cauchy problems associated to (2.1), we
proceed as follows. First of all, we take R, > R such that any solution (x, y) of (2.1)
with x(0)? + y(0)* < R? is such that x(¢)* + y(t)* < R3, for every |t| < T.. Next, we
find sequences of functions f;, e;, which converge uniformly on compact sets to f, e,
respectively, and such that the Cauchy problems associated to the equations

x'=y, y'=—fix)+eeit, x,¢) (3.1);

with initial value as above, have a unique solution defined on [— T, T.] such that
X(t)* + y(t) < R} + 1, for every |t < T,. We want to prove that, for j large enough,
any solution from I, will make more than N rotations in time T, while any solution
starting from Sk will not be able to rotate even once. Assume by contradiction that,
for a subsequence, there are initial points, (xo.j> Yo,;) in T, from which a solution
(xj, y;) of (3.1); departs which makes at most N rotations around the origin in the
time T,. For a further subsequence, we can assume there is a (x, ) e I, such that
(xo,j» Yo,j) = (%, 7). By [6, Theorem 3.2, p. 14], there is a solution (x, y) of (2.1) with
(x(0), ¥(0)) = (X, y) such that a further subsequence (x;, y;) converges to it. This
contradicts the fact that (x, y) makes at least N + 1 rotations around the origin. A
similar argument works for the solutions starting from Sg.

Ding’s theorem can then be applied to get the desired periodic solutions of
equations (3.1);. A standard argument makes these solutions converge, as j goes to
infinity, to solutions of (2.1), which preserve the number of rotations.

It is clear that the analogues of Lemmas 2.1-2.4 hold, replacing 7, with a new
period IET},", for k> 2. The solutions starting from any point of I, will make more
than a certain number of g, of rotations around the origin in the time ET;'_, with
gn— 0 as n— co. We make n so large that it is possible to find N prime numbers
smaller than g,. On the other hand, condition (Hg) implies that the solutions starting
from a point of a sufficiently large circle Sy will not be able to rotate around the
origin even once in the time IE'I;".

Ding’s theorem then yields the existence of N periodic solutions having period
IET;" and making a prime number of rotations around the origin in the time ET;". It
is now easy to check that these solutions cannot have a smaller period in the set
{T,,2T,,...,(k—1)T.} (see [2,14]). The proof of the theorem can now be easily
completed. O

REMARK 3.2. Notice that Theorem 1.1 follows immediately from Theorem 3.1.

THEOREM 3.3. Assume (H,_s). Then, given any two positive integers M, N, there exists
a £>0 such that, for any 0 < ¢ <&, equation (1.3) has, for each k=1, 2,....,.M, at
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least N periodic solutions having period kT. If k = 2, these solutions can be chosen not
to have a smaller period in the set {T,, 2T,,...,(k—1)T,}.

Proof. It can be seen from the proofs that it is possible to choose sequences (r,),,
(Sa)s» and a sequence (g,), to satisfy both Lemmas 2.2 and 2.4. Moreover, the lemmas
in Section 2 can be stated for a general period ET;", for k> 1. By Lemma 2.1, the
solutions starting either from I, or from I, are defined at least on [——IETen, EE"].
Those starting from I' », make more than a certain number g, of rotations around
the origin in the time kT, , with

kT,

q,>—=—1,
(see Lemma 2.2). On the other hand, the solutions starting from I, rotate less than
P, times, with

En

<12T 1
pll:o_ b

(see Lemma 2.4). Since (t,,), is bounded and g,— o0 as n— oo, we have

lim 2 = 4 co.

n—o Dy
The arguments used in the proof of Theorem 3.1 together with Lemma 2.5 can now
be used to complete the proof. [

Final remarks

Notice that Theorem 3.3 is of a local nature, and we could have assumed f(°) and
e(t, -, €) to be defined only on [a, b]. In particular, Theorem 3.3 applies, under (H,_3),
when f:[a, b] - R is a differentiable function with f’(0) > 0, with the further assump-
tion that

(b

f(B)=0 and f(8)ds<0.

o

Symmetrically, as remarked in Section 2, the above can be substituted by

f(@=0 and be(s)dng.

LY

From these facts, Theorem 1.2 can be obtained as a corollary of Theorem 3.3.

We could consider, for equation (1.4), a wide choice of functions f(x) satisfying
the above assumptions. For instance, besides the sine function appearing in the
pendulum equation, we can deal with any polynomial function having at least two
zeros, with a positive derivative in at least one of them. Typical examples of such
fanctions are

fxy=a+Bx* or f(x)=oax+ px3
with aff < 0.
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