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Abstract 

We look for time-periodic solutions of the suspension bridge equation. Lazer and McKenna showed that for a 
certain configuration of the parameters, one may expect the existence of large-amplitude periodic solutions having 
the same period as the forcing term. We prove the existence of large-scale subharmonic solutions. 

Keywords: Periodic solutions; Poincare-Birkhoff; Suspension bridges 

1. Introduction 

Right from its opening, in July 1940, the Tacoma Narrows Bridge at Puget Sound in the state 
of Washington showed a clear tendency to strongly oscillate in the wind. The oscillations were 
of vertical type, and appeared under very different wind conditions. Even if, in some cases, they 
were seen to reach an amplitude of 1.5 meters, these vertical oscillations were at first 
considered as “benign”, since they always damped down without provoking damages to the 
bridge itself. 

On the 7th of November of the same year, the vertical oscillations appeared from the early 
morning and continued until about 10 am. The stresses on the structure then forced a sudden 
slipping of the cable band at the center of one of the two main cables, and, at once, the type of 
oscillation changed, becoming of torsional type (cf. [2]). The torsional oscillations grew more 
and more violent, reaching angle amplitudes of 45”, until, at 11:lO am, the bridge collapsed. 

The main feature of the Tacoma Bridge was its extreme flexibility, which largely depassed 
those of any other suspension bridge built since then. After the disaster, the engineers turned 
their attention towards other slender bridges which presented vertical oscillations (cf. [30]). The 
Bronx-Whitestone Bridge, constructed in 1939, even if not as flexible as the Tacoma Bridge, 
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had showed large-amplitude vertical oscillations, and was finally strengthened in 1946. The 
Golden Gate Bridge, constructed in 1937, which also showed a tendency to oscillate (in 1951, 
during a strong gale, it had been shaken by vertical oscillations with an amplitude of 3.3 
meters), was finally strengthened as well. 

An easy explanation of the Tacoma Bridge disaster has been given by the resonance 
phenomenon (cf. [lo]). The wind stream, passing through the bridge structure, produced 
vortices at regular intervals, alternating positive and negative pressures on the road belt. It was 
claimed that the frequency of the vortices was near the resonance frequency of the structure, 
and large-amplitude oscillations appeared like those observable for a linear harmonic oscillator. 

Recently, Lazer and McKenna [39,40,41] claimed that the vertical oscillations observed in 
this kind of bridges could be of a nonlinear nature, due to the asymmetry of the forces involved. 
They proposed a nonlinear model, where the central span of a suspension bridge is considered 
as a one-dimensional beam suspended by linear springs, subjected to the gravitational force and 
to a periodic forcing due to the wind. The main feature of this model is that the springs are 
settled only above the beam, reacting to downward displacements but not at all to upward ones. 
They proved that, in some cases, one could expect large-amplitude periodic solutions. 

The model we want to study is analogous to Lazer and McKenna’s. Let u(t, x) be the 
downward displacement of the bridge at the point x and time t, and denote, for any real 
number CX, by (Y + its positive part (i.e., cy + is equal to (Y when (Y is positive, and to 0 when (Y is 
negative). We consider the partial differential equation 

2 4 

~~+d~+E~~+K[‘:+h]i=mgfF(f,x), 

with the boundary condition 

2 2 

~~t,O)=L.(t,L)=~(t,O)=~(t,L)=O, tE[W. 

Here, m is the mass per unit length, d the friction coefficient, E Young’s modulus, Z the 
moment of inertia of the cross section, K the elastic coefficient of the cables, h the height at 
which the cables get loose, g the acceleration of gravity at earth’s surface, F the time-periodic 
forcing term due to the wind and L the length of the bridge. 

The bridge is supposed to be straight horizontal when no forcing is applied except the 
gravitational field; in other words, if F = 0, we want the equilibrium solution to be u = 0. 
Consequently, 

mg 
K=-. 

h 

Unfortunately, we are not able to deal with the partial differential equation introduced 
above. In order to simplify the problem, following Lazer and McKenna, we introduce a new 
model, where it is possible to find a no-node solution of the type u(t, x) = U(t)sin(rX/L), with 
the hope that some of the properties of the solutions of the new model will reflect in those of 
the original one. We replace, in the above, g by g sin(rx/L), h by h sin(Tx/L), and assume 
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the forcing to be of the form F(t, x) = me(t>sin(rx/L), for some periodic function e(t). 
Setting 

EIr4 
A=- 

mL4 ’ 
62 

m’ 

one has that u(t) solves the following ordinary differential equation: 

u”(t) +au’(t) +hu(t) +g[(h-‘cc(t) + l)+- l] =e(t). (1.1) 

We will look for time-periodic solutions of (1.1). Lazer and McKenna already showed that 
for a certain configuration of the parameters one may expect the existence of large-amplitude 
periodic solutions having the same period of the forcing term e(t). Our attention will instead be 
directed in proving the existence of large-amplitude subharmonic solutions, i.e., periodic 
solutions having as period an integer multiple of the forcing’s period. 

We will prove that, if e(t) is a periodic function with mean value zero, S = 0 and h is small 
enough, the above equation has large-amplitude subharmonic solutions. The appearance of this 
type of solutions is not related to the period nor to the amplitude of the forcing e(t), and in this 
regard they seem to well simulate the behaviour of oscillating bridges. By a numerical 
simulation we will show that, for a long and flexible bridge, the coefficient A is in fact 
sufficiently small, and subharmonic solutions can be seen. Notice that subharmonic solutions 
for an equation like (1.1) had already been observed numerically in [31] by a different 
approach, and a theoretical explanation was asked for this phenomenon. 

There is a large literature on the existence of periodic solutions to ordinary differential 
equations, and we can only quote a few papers or books which we think are more related to 
ours; cf. [4,9,12,13,15-17,19-28,31,33,34,37,39-46,48,49,51,53,55,56]. Various methods of proof 
have been developed. Topological degree theory may be applied when considering an equiva- 
lent fixed-point problem in a suitable space of functions, cf. [43]. Variational methods may be 
used for finding critical points of the associated action functional, cf. [45,52]. However, a more 
classical approach, going back to Poincare, consists in searching fixed points of the map which 
to the points in the phase-plane makes correspond their translation along the trajectories of the 
differential equation (the so-called Poincare map), cf. [37]. It is the latter method that we will 
exploit here, in connection with the Poincare-Birkhoff fixed-point theorem. 

The Poincare-Birkhoff theorem, named also the “twist theorem” or the “Poincare’s last 
geometric theorem”, in its original formulation, due to Poincare [50], asserts the existence of at 
least two fixed points for an area-preserving homeomorphism 4 of a planar annulus ,,Q? = 
B[O, S]\B(O, R) onto itself, such that the points of the inner boundary C, are advanced along 
C, in the clockwise sense and the points of the outer boundary C, are advanced along C, in 
the counterclockwise sense. This result, conjectured by Poincare, who checked its validity in 
various special cases, was proved by Birkhoff [5], with respect to the existence of at least one 
fixed point and of two fixed points for a “generic” situation. The proof of the existence of the 
second fixed point in any case was obtained by Birkhoff [7], who also replaced the condition 
about the preservation of the areas with a more general assumption of topological nature. Due 
to the skepticism of some mathematicians on the validity of Birkhoff’s argument in the proof of 
the existence of a second fixed point, Brown and Neumann [ll] were led to a very careful and 
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detailed checking of Birkhoff’s proof, showing in a very reasonable manner its correctness. 
Applications of the twist theorem to dynamical systems problems coming from nonlinear 
mechanics and geometry were already suggested by PoincarC [SO] and studied by Birkhoff [6,8]. 

In the case of planar nonautonomous ordinary differential equations, when one looks for the 
existence of periodic solutions or subharmonic solutions via the search of the fixed points of the 
Poincare map or of its iterates, respectively, a major difficulty in the application of the 
Poincare-Birkhoff theorem in the version stated above is the construction of annular regions 
which are invariant under these transformations. Hence, variants of this fixed point theorem in 
which the invariance conditions for the annulus and its inner and outer boundaries are not 
assumed became necessary for the applications. Birkhoff himself, motivated by different 
dynamical applications, was interested in proving some extensions of his theorem along these 
directions. In particular, in [6,7], he showed that his proof worked also when the annulus is not 
necessarily invariant under 4 but its inner boundary is still rotated onto itself by the 
area-preserving homeomorphism. 

Further variants of the twist theorem were proposed by other authors in more recent years. 
In [34], Jacobowitz, dealing with a second-order superlinear equation, used a version of the 
Poincare-Birkhoff fixed-point theorem in which the inner boundary of the annulus degenerates 
to a fixed point of 4 (the origin), so that now the annulus is a punctured disc and 4 : B[O, S] \ 
{0} + R2\{O} rotates in different angular directions the points near 0 and those of C,. 
Moreover, C, is not asked to be invariant under the action of 4. The proof of this variant of 
the twist theorem follows very closely Birkhoff’s one [5]. It seems interesting to remark that 
Poincare himself [50] already suggested a variant of his geometric theorem in which the inner 
circle would be shrinked to a point. Finally, in [17], Ding stated and proved a further 
generalization of the twist theorem that we state here for the reader’s convenience (in a slightly 
less general form). 

Let $I : B[O, S] + [w2 be an area-preserving homeomorphism such that, for _@’ = B[O, S]\ 
B(0, R), the following conditions hold: 

$0 = R2\ IO], 4-‘(O) E B(0, R). 

On the universal covering space Y= {(0, p): 8 E R, R G p G S}, with the standard covering 
projection 17 : (0, p) - (p cos 8, p sin 01, consider a lifting of 4 of the form 

h(e, P) = (0 + r(e, P), 77(e, P)), 

with -y(. , p) and q( -, p) 2~periodic. Assume that the twist condition 

Y(e, R)y(e, s) < 0, ve E R, 

holds. Then 4 has a fixed point z in & (indeed at least two fixed points) such that 

y(n-i(Z)) = 0. 

The proof of Ding’s theorem reduces to Jacobowitz’s one after some modification of 4. A 
more general statement can be found in [18]. See also [28] for a similar result obtained more 
directly from the original version of the Poincare-Birkhoff theorem. 

This paper is organized as follows. In Section 2 we present our main theoretical results, 
which improve some analogous theorems obtained in [16,241. 
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In Section 3 we develop some numerical results. Looking at fixed points of the Poincare 
map, by an iterative method we detect the subharmonic solutions predicted by the theorems of 
Section 2. We show that these solutions are not much affected by the period or the amplitude 
of the forcing term e(t). Our computations are done with realistic parameters for a suspension 
bridge like the Tacoma Narrows Bridge. 

In Sections 4 and 5 we give the proof of the theorems stated in Section 2. The method of 
proof consists, like in the numerical illustration, in finding fixed points of the Poincare map. To 
this aim, we use the generalized version of the Poincare-Birkhoff theorem due to Ding stated 
above. 

In Section 6 we provide some related results whose proofs differ little from those given 
before. We then conclude with some final remarks on the nature of the results obtained, and 
suggestions for further investigation. 

2. Statement of the main results 

In this section, we will state our main existence results, which will be proved in Sections 4 
and 5. In order to understand the type of results we want to prove, it is useful to first give a 
look at the unforced equation 

u”(t) +/h(t) +g[(h-b(t) + l)+- l] =o. (2.1) 

Let us fix A > 0 and consider a solution u(t) of (2.1) such that 

(u(O), u’(O)) = (A 0). 

The solution u(t) is necessarily periodic, symmetric with respect to the U’ = 0 axis and A 
maximum value. By a phase-plane analysis, it is possible to give an explicit expression for 
In this way, denoting by Q-(A) the minimal period of u(t), we have that, for A E (0, h], 

is its 
u(t). 

(the linear case), while, for A > h, 

The other point at which u(t) crosses the axis U’ = 0 is found to be 

(+(A)), +(A))) = (-A, O), 

when A E (0, h], and 



118 A. Fonda et al. /Journal of Computational and Applied Mathematics 52 (1994) 113-140 

1 
25 

m- 

15 - 

10 

S- 

O- 

-5 

-10 

-15 

-20 

-25 
-35 -30 -25 -20 -15 -10 -5 0 5 

Fig. 1 

when A > h. It is easily seen that the minimal period function Q-(A) is strictly increasing for 
A > h. The limit as A + CC of 7(A) can be finite or infinite, according to whether A > 0 or 
A = 0, respectively. In Fig. 1 we have plotted the solutions of (2.1) of periods 3, 4, 5 and 6 when 
A = 0, g = 9.8 and h = 1 (the choice of the parameters will be explained in Section 3). In this 
case, the least minimal periods of the solutions are (slightly) greater than 2. 

In what follows we will show that when a periodic forcing term is added, there is a family of 
subharmonic solutions which in some sense look like the solutions of the unforced equation. 
For example, with the above choice of the parameters and a forcing term of period 1, we may 
expect the existence of subharmonic solutions with periods 2 3. This is exactly what will be 
seen numerically in Section 3. Accordingly, the theoretical results we are going to state and 
prove will tell us that subharmonic solutions with a sufficiently large period can be found. 
When h > 0, there will be a limitation from above on the periods of the subharmonic solutions, 

as is to be expected from the fact that, in this case, the function Q-(A) itself is bounded from 
above. 

We will consider the more general differential equation 

u”(t) + Au(t) +g(t, u(t)) = e(t), (2.4* 

which depends upon a nonnegative real parameter A. Here, e : R + R is a locally integrable 
T-periodic function, T > 0, and g : R! X R + IR is a Caratheodory function, T-periodic in its first 

variable, i.e., 
0 for any u E R, g(*, U) is measurable and T-periodic; 
0 for almost every t E R, g( t, . ) is continuous; 
l for every Y > 0 there is a 7, E L’(0, T) such that 

for almost every t E [O, T] and every I u I < Y. 
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Without loss of generality, we will assume the mean value of e(t) over a period to be equal 
to zero: 

(i,) i/,f(t) dt = 0. 

This can be achieved by subtracting the mean value of e(t) from both sides of the equation, and 
redefining e and g. We will prove the following theorem. 

Theorem 2.1. Assume (i,) and the following conditions: 

01) 
lim dt, 4 ~ =o, 

u+-cc u 

uniformly for almost every t E [O, T]; 

(iZ) lT lim supg(t, u)dt < 0 < /,‘lii$g(t, u) dt. 
0 u+-cc 

Then, there is an integer k* 2 1 such that, for every k 2 k” and A > 0 satisfying 

i 1 

2 

A< g , (2.3) 

(2.2), has a periodic solution uA k with minimal period kT having exactly two zeros in [0, kT). For 
any sequence (u,> of such soluiions (u,, = u~,,~,>, if k, -+ w (and hence A, + 0) as n + 00, then 

lim min[ Iu,(t)I+lu’,(t)l] = +a. 
n-m tER 

Remark 2.2 Condition (i,) together with (2.3) means, roughly speaking, that the nonlinearity 
has to stay below the asymptote of the first curve of the FuEik spectrum (see [29]). Notice that 
no growth restriction is required on g( t, u) when u > 0. In other words, the nonlinearity is even 
allowed to be superlinear from one side. Condition (i,) is the well-known Landesman-Lazer 
condition (cf. [38]). In order for (i,) to make sense, we have implicitly assumed that there is a 
L’-function y( t > for which 

sgn(u)g(t, u) > y(t), 

for almost every t E [O, T] and every u E R. 

When the function g(t, u> is independent of t, the equation 

u”(t) +Au(t) +g(u(t)) =e(t) P-4 A 

can be considered as a perturbation of an autonomous equation, and one may expect to obtain 
existence results under assumptions on the potential G(u) = jtg([) d[, instead of the nonlin- 
earity itself. In fact, Theorem 2.1 can in this case be generalized, and we have the following 
result, where the Landesman-Lazer condition is replaced by a condition first introduced in [l]. 
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Theorem 2.3. Assume (i,) and the following conditions: 

lim G(u) 04 - = 0 
u+-cc u2 ’ 

(h2) 3d>O, IuI >,d+.g(u)u>O, 

(h3) lim G(u) = +m. 
Iul+m 

Then, the same conclusion of Theorem 2.1 holds for equation (2.4),. 

The existence of T-periodic solutions for (2.2), and (2.41, under the assumptions of 
Theorems 2.1 and 2.3, is well known. In fact, the following proposition can be proved (cf. 
[27,441). 

Proposition 2.4. Under the assumptions of Theorem 2.1, for every A E [0, (nr/Tj2) Eq. (2.2), has 
a T-periodic solution uh. Moreover, for any A* E [0, (T/T>~) there is a constant K* > 0 such that 
every T-periodic solution u of (2.2), with A E [O, A*] verifies 

SUP (Iu(t)I+b’(t)I}<K*. 
tE[O, r1 

The same is true for (2.41, under the assumptions of Theorem 2.3. 

3. Numerical evidence 

In this section we show that the theoretical results stated in Section 2 are confirmed by a 
numerical approach. In this way, we are also able to evaluate the range of application of our 
theory. In fact, we investigate (1.0, with parameters corresponding to a realistic suspension 
bridge, and show that subharmonic solutions of the type predicted by Theorem 2.1 naturally 
appear. 

We have used for our computations an Apple personal computer of the type Macintosh II fx. 
The method of investigation is the following. We fix an integer k > 2, and suggest to the 
computer a starting point in the phase-plane at time 0. By an adaptive Runge-Kutta method, 
the computer finds the end point of the solution at time kT. At this point, a modified 
Newton-type iterative procedure starts (cf. [14]), in order to find a zero for the distance 
between the end point and the starting point. If a zero is found, it is a fixed point of the 
Poincare map, and we have only to check if it really corresponds to a periodic solution with 
minimal period kT, or to an iteration of a periodic solution with a smaller period. 

We consider (1.1) with e(t) being of sinusoidal type. The equation to be studied is the 
following: 

u”(t) +8u’(t) +Au(t) +g[(h-‘u(t) + l)+- l] =a sin(27rvt). (3.1) 

The evaluation of the above parameters in practical situations seems to be a difficult task. This 
is why we will guess a basic configuration of the parameters, and then see what happens while 
changing them one at a time. 
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m 
Z 
L 

A 

Tacoma Narrows Golden Gate 

8..5.103 kg m-l 3.1.104 kg mpl 
0.2 m4 5.3 m4 
855 m 1280 m 
7.10-4 s-2 1.10p3 s-2 

Bronx-Whitestone 

1.6.104 kg m-l 
0.4 m4 
700 m 
2.10-3 s-2 

All the quantities are measured in the mks-system. The acceleration of gravity at earth’s 
surface and the steel’s modulus of Young are taken to be 

g = 9.8 m sm2 7 E = 2.10” kg m-l s-*. 

The value of 6 is rather small for a suspension bridge, and we will at first take 6 = 0, 
We evaluate the value of A = EIr4/mL4 for the Tacoma Narrows Bridge and the Golden 

Gate and Bronx-Whitestone Bridges as they were in 1940 (cf. [2]), see Table 1. So, the value of 
h for the above bridges is about 10p3, and we will at first take A = 0. 

We do not have a precise idea of the value of h, but from some practical considerations we 
believe that it could be about 1 meter. So, we will at first take h = 1. 

For the forcing term, we begin by considering an amplitude (Y = 10 and a frequency of 1 
second, i.e. v = 1. 

Our basic configuration is then the following: 

6 =o, A =o, h = 1, (Y = 10, Y= 1. 

With this configuration of the parameters, we are able to find subharmonic solutions of periods 
2 3. In Fig. 2 we have visualized those of periods from 3 to 6. The solutions are symmetric with 
respect to the x-axis, because of the symmetry properties of the forcing term we have chosen. 

We begin varying CL Plotting the subharmonic solutions of periods from 3 to 6 for (Y = 1, we 
get a picture which almost exactly corresponds to Fig. 1, obtained for (Y = 0. Figs. 3 and 4 show 
the subharmonic solutions of periods from 3 to 6 when (Y = 20 and 50, respectively. 

252 
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Fig. 2 
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Fig. 3 

We now change h. In Figs. 5 and 6 we show what happens when h = 0.5 and h = 5, 
respectively. One can see that for h = 0.5 a subharmonic solution of period 2 appears, while for 
h = 5 only subharmonics with periods > 5 exist. In Fig. 5 we have plotted the subharmonics of 
periods from 2 to 6 when h = 0.5, and in Fig. 6 the subharmonics of periods 5 and 6 when 
h =5. 

We now vary A. In Fig. 7 we see the subharmonic solutions of period 3 when A = 0, 1 and 2. 
It is possible to see that if h increases to about 2.25 (where approximately we touch the first 
FuEik curve), the amplitudes tend to infinity. 

We now modify 6. The subharmonics seem to survive when 6 is taken positive and small. In 
Fig. 8 we consider the subharmonics of period 3, when S = 0, 0.03, 0.06. Notice that the 
solutions are no more symmetric in this case. While increasing 6, we did not succeed in making 
our iteration converge any more. 
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We now change Y. Let, for instance v = 3. In this case, we only see subharmonic solutions of 
orders 2 7, i.e., of periods 2 5. In Fig. 9 we show the subharmonic solutions of order 7, 8 and 
9 when v = 3. Notice that the amplitude of the subharmonic solutions of order 9 is about the 
same as the one of order 3 when Y = 1. An analogous statement can be seen to be true for the 
subharmonic solution of order 6 when Y = 2. 

In conclusion, the subharmonic solutions computed numerically all have exactly two zeros, 
and the minimal periods as well as the amplitudes are seen to behave as predicted by the 
theorems stated in Section 2. 

4. Proof of Theorem 2.1 

In order to prove Theorem 2.1, we will look for fixed points of the Poincare map, which 
assigns to each point in the phase-plane its translation along a solution of the differential 

4 

-41 I 
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Fig. 9 
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equation (see [37]). Notice that the same procedure has been followed numerically in Section 3. 
Here, instead of an iterative method, we will make use of the generalized version of the 
Poincare-Birkhoff theorem due to Ding, stated in Section 1. 

We will first write (2.21, as an equivalent equation (see (4.11, below), which is more suitable 
for our analysis. Then, for each point of the phase-plane z0 E R2, we denote by x(t; zO) the 
solution which is such that 

(x(0; zl)), x’(O; &_J) =zo. 

The Poincare map +k relative to the time kT is then defined as 

&(z,) = (x(kT; to), x’(kR ~0)). 

Notice that 4k is the kth iterate of 41. In order for the PoincarC map to be well-defined, we 
want the solutions to Cauchy problems to be unique and globally defined. 

Concerning uniqueness, we observe that it is possible to use a standard approximation of the 
nonlinearity by smooth functions, and to work on the approximated equations, for which 
uniqueness holds. This procedure has been explained in [37] and developed with full details in 
[16] for equations like the one we are considering. Hence, for simplicity, we prefer avoiding this 
technical point, and, without loss of generality, from now on we assume the uniqueness for the 
Cauchy problems associated to (2.21,. 

Under the uniqueness condition, the Poincare map is continuous on its domain of definition. 
If it is globally defined, the Poincare map is a homeomorphism on R2. 

The global existence will be proved in Lemma 4.5 below. We will show that, because of (i,> 
and (i,), the solutions of the Cauchy problems cannot blow up in finite time without performing 
an infinite number of rotations in the phase-plane (see [16,21,33] for a similar approach). On 
the other hand, (i,) and (2.3) give a uniform lower estimate of the time needed for a solution to 
perform a rotation while being far away from the origin. In other words, the time-map has a 
positive inferior limit at infinity. These two considerations are in contradiction with a possible 
blow-up in finite time of the solutions. 

As a direct consequence of Liouville’s theorem, we have that the Poincare map is area-pre- 
serving (cf. [54]). In order to apply the generalized Poincare-Birkhoff theorem stated in Section 
1, as a final step we will have to prove that the twist condition is satisfied on a suitable annulus. 

We start by making a change of variable, which transforms (2.2), in an equivalent one for 
which 0 is a trivial solution. Moreover, we fix a certain h* E [0, (,rr/Tj2), so that we can make 
use of the uniform estimates of Proposition 2.4. 

Let x = u - uh, where uh is a T-periodic solution of (2.21, given by Proposition 2.4, and set 

f(t, x, A) =h(x+u,(t)) +g(t, x+u*(t)), h(t, A) =e(t) -u:(t). 

Then, (2.21, is equivalent to 

x”(t) +f(t, x(t), A) = h(t, A). (4.1) h 

Here, the functions f : R X R X [O, (T/T>~> + R and h : R X [0, (rr/Tj2> + II4 satisfy the follow- 
ing conditions: 
l for any x E R’ and A E [O, (rr/Tj2), the functions f(. , x, A) and h(. , A) are measurable and 
T-periodic; 
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l for almost every t E R, f(t, ., .> and h(t, *> are continuous; 
l for every r > 0 there is a vr E LYO, T) such that 

I qt, A) -f(t, x7 A) I G %(f>> 

for almost every t E [O, Tl, every I x I < r and every A E LO, A’“]. 
Moreover, we have 

Go> +$z(t, A) dt = 0, 

for every A E [0, (T/T>~>; 

(9 * lim ‘( 
t, x, A) = A, x+--co X 

uniformly with respect to t E R! and A E [0, A*], 

(j2) sup / rlim supf(t, x, A) dt < 0 < inf 
hE[O,A*] 0 x+--m / 

rlim inf f(t, x, A) dt, 
AE[O,A*l 0 n++m 

(j3) f(t, 0, A) =h(t, A), 

for almost every t E R and every A E [0, (T/T>~). 
Since (4.11, has the trivial solution 0, by the uniqueness assumption for the Cauchy problems, 

a nonzero solution will at no point hit the origin. We may then introduce polar coordinates in 
the phase-plane, being sure that for any nontrivial solution, they will be well-determined at any 
time. If x(t) is a nontrivial solution of (4.1),, we denote by (p(t), O(t)) the polar coordinates of 
(x(t), x’(t)). 

Lemma 4.1. For any nontrivial solution of (4.11, and any t, < t, in its domain, e(t,> - e(t,) < T. 

Proof. Let x(t) be a solution of (4.11,. It is easy to see that, if, for some t in the domain of x, 
O(t) = &r + mu, m E Z, then e’(t) < 0. Standard results of flow invariance then imply that the 
sets {(p, 0) E R2 I p > 0, 0 G $T + nzr}, m E Z, are positively invariant, i.e., if t, in the domain 
of x is such that O(t,> G $T + m,~ for some m, E Z, then e(t) G $r + mom, for all t a t,. The 
result readily follows from the above considerations. EI 

Assume (i2>. Then, there is a d, 2 R and a Caratheodory function l(t, A) with the following 
properties: 
l for every 1 x I a d, and almost every t E [O, T], 

w$x)f(t, x, A) 2 l(t, A); 

l there is a 6 > 0 such that, for every A E [O, A*], 
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l there is a M > 0 such that, for every A E [O, A* I, 

/T[ I Z(t, A) I +h(t, A) I] dt GM. 
0 

The following lemma is crucial for the proof of Theorem 2.1. 

Lemma 4.2. Assume (i,>, (i,> and (j3). Then, for every R > 0 there is a R, > R such that, for any 
A E [0, A*], any solution x(t) of (4.1), and any to in its domain, if &to) >, R, and - $T + rn-~ < 
e(t,) < & + mn, m E Z, there is a t, > to in the domain ofx(t) for which 0(t,) = - $T + rn~ 
and p(t) > R for every t E [to, tll. 

Proof. By the symmetry of the assumptions, it is sufficient to consider the case n(t,> > 0. We 
will analyse different starting point regions in the phase-plane. Accordingly, we consider the 
following five situations. 

Case 1. Choose d, > 0 such that 

d, > d, m={l, T-‘} + II vdl II ~1, 

and assume that 

@(to), y(to)) E (0, 41 x (-CT -41. 

Let tf) > to be maximal for the property that, for every t E [to, tf’), 

(.qt), y(t)> E (0, +m> x (-TO>. 

We will show that t#’ is in the domain of x, x(th’)) = 0 and 

(x(t), Y(t)> E (0, d,] x (-my -d,), 

for every t E [to, tf)). In this case, set t, = t&l’. 

For every t E [to, @,“I, since x’(t) = y(t) < 0, we have 

I Y(f) -Y@o) I G I:,,,s, ds, 

and so 
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for every t E [to, tf)). It follows from the above that, for every t E [to, tf)), it has to be 
t # t, + T. In other words, tf) < t, + T and, more precisely, 

4 
t0 (l) - to < 

--Y(t,) - II Vd, II L’ * 
(4.2) 

Then, for every t E [to, tf’), one has 

I y(t) -y(t,) I G II Vd, II I,‘, 

and, on the other hand, 

0 <x(t) <d,. 

Hence, there is no blow-up in [to, tf’>, and 

y(t) < -d, + II vdI II ~1-c -d,, 

for every t E [to, t$/)) so that x(tf’> = 0. 
Case 2. Assume that 

Let 

We 

(x&J, y(Q) E (4, +w) x (-00, -(4 +W] - 
t&‘) > to be maximal for the property that, for every t E [to, th2’>, 

(x(t), y(t)) E (4, +a9 x (-00, +w). 

will show that t8) is in the domain of x, x(th2)> = d, and 

(x(t), y(t)) E (4, +a9 x (-co, -d,), 

for every t E [to, th2)>. Going back to case 1, we determine t,. 

Let no > 1 be the least integer such that [to, th2)> c [to, to + noTI. For every t E ito, th2’), we 

have 

< l’[h(s, A) - l(s, A)] ds 

.~"+no~~~(s,A)-~(s,A)j ds+M 
to 

< -qt - to) +A4. 

Hence, for every t E [to, th2)>, y(t) < -d,, and 

d, <x(t) =x(t,) + /‘y(s) ds <x(to) -d,(t - to), 
to 
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so that 

x(*0) - 4 
*0 C2) - to < 

d2 . 

Since 

there is no blow-up in [to, th2)) and x(t$,‘)) = d,. 
Case 3. Let d, > 0 be such that 

d 
3 

>d 
1 

+ (d,+M)(dl+d2+2J4) 

6 
> 

and assume that 

(x(*0), Y(*o)) E P37 +m> x (-(d,+W, 41. 

Let th3) > to be maximal for the property that, for every t E [to, tK)), 

(x(t), y(t)) E (4, +m> x (-(d,+M),+ co). 

We will show that tA3) is in the domain of x, y( th3’> = -cd2 + M) and 

(x(*),y(*))+& +a+-(d,+M),d,+M], 

for every t E [to, tK)>. Going back to case 2, we determine t 1. 

As in case 2, for every t E [to, th3)>, we have 

-(d2+M)<y(t)<y(*o)-6(*-to)+M, 

so that 

tp - to < 
d, + d, + 2M 

6 * 

Then, we have 

I x(t) -x(*,) I < (d, +M)(t - to) < 
(d, + M)(d, + d, + 2M) 

6 
7 

for every t E [to, t8)). Hence, there is no blow-up in [to, th3)), 

x(t) ad3 - 
(d2 + W(4 + d2 + 2M) > d 

6 1, 

and it follows from the above that y( tf)) = -d, - M. 
Case 4. Assume that 

(x(*0), y(*,)) E [d3, +a) x (d,, +a+ 

Let tg) > to be maximal for the property that, for every t E [to, tg)), 

(x(t), y(t)> E (4, +m> x (4, +w). 

(4.3) 

(4.4) 
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We will show that th4) is in the domain of X, y(th4)) = d, and 

(.q>, y(t)> E [d3, +m) x (d,, +q, 

for every t E [t,, th4)>. Going back to case 3, we determine t,. 
For every t E [to, th4)) 3 we have 

d, <y(t) GY(to) - qt -to) +M, 

so that 

tC4) - t, < 
y(t,) -d, +M 

0 
6 - 

Moreover, 

d, <x(t) <x(t,) + /‘y(s) ds <x(t,) + (I +M) 
(YGO) - 4 +q 

f0 
6 * 

So, there is no blow-up in [to, th4)), and we have y(th4)) = d,. 
Case 5. Set 

and assume that 

@(to), YPO)) E P, d3) x Cd47 +9 

Let th5) > t, be maximal for the property that, for every t E [to, ti5’>, 

(x(t), y(t)> E (-co, d3) x (--a> ++ 

We will show that t$) is in the domain of X, x(@) = d, and 

(x(t), y(t)) E [O, d3) x (6 +cc’), 

for every t E [to, th5)>. Going back to case 4, we determine t,. 

This case is analogous to case 1. For every t E [to, tK)) since x’(t) =y(t) > 0 , , we have 

I y(t) -y(t,) I G j--&, ds> 

and so 

d, >-x(t) --x(t,) >y(t,J(t -to> -/‘/“v,@) d5 ds 
fo to 

so that, for every t E [to, ti5)), it has to be t # to + T, and, more precisely, 

t&5’ - to < 
4 

Y (to) - II Vd, II L’ - 
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So, for every t E [t,, Q5)>, x(t) > 0, 

1 y(t) -Y(t,) 1 < 11 vd, 11 L’, 

there is no blow-up in [t,, th5’>, and x(tf’) = d,. 
The proof of the lemma is now easily completed, by taking 

R, 2 di + max((d, + M)2,dz] . 0 

Lemma 4.3. Assume (i,), (j2) and CjJ, and f!x R > 0. Then there are R,, R, and R, such that 
R<R,<R,<R, and, for any A E [0, A*] and any solution x(t) of (4.1), such that, for some t, 
in its domain, p(tJ = R,, one has the following alternative. 

(a) For some t, > t, in the domain of x, p(t,) G (R,, R3). In this case, for every t 2 t, in the 
domain of x, 0(t) - 0(t,> < -2~. 

(b) For every t 2 t,, one has p(t) E (R,, R,). Then, there is an integer k” 2 1 such that, for 
every t 2 t, + k*T, e(t) - 0(t,) < -27~. 

Proof. Let R, 2 R be like in Lemma 4.2. By an iterative use of Lemma 4.2, we are able to find 
an R, > R, such that, if, for A E [0, A*], a solution x(t) of (4.1), is such that, for some t, < t, in 
its domain, p(t,) = R, and p(tl) G R,, then f%t,) - &t,) G -3~. Analogously, starting from R, 
and using Lemma 4.2 repeatedly for the negative flow, we find an R, > R, such that, if 
p(td0) = R, and p(t,) 2 R,, then O(t,) - Ott,,) G -37~. By Lemma 4.1, the first part of the 
lemma is proved. 

For the second part, assume that, for every t a t,, one has p(t) E(R~, RJ. Then the time 
estimates (4.2)-(4.6) and their symmetries for the negative values of x(t) give us a uniform 
lower estimate for the time needed for a solution to rotate around the origin of the 
phase-plane. Hence, there is an integer k” > 1 such that O(t, + k*T) - e(t,) < -37r. The 
second part of the lemma then follows using Lemma 4.1, again. 0 

As a corollary of Lemma 4.3, we have that, if a solution of (4.1), blows up in a finite time, it 
has to perform an infinite number of rotations. 

Lemma 4.4. For every R > 0, for euery A E [O, A*] and k > 1 satisfying (2.3), there is an S, > R 
with the following property: for any solution x(t) of (4.1)* and any t, < t, in its domain such that 
t, -t, G kT, if p(t) 2 S, for every t E [t,, tl], then e(t,) - e(t,) > -2~. 

Proof. Assume the contrary. Let t, <t, in the domain of x such that, for some m E .Z, 
e(t,) = - $r + 2mT, e(t,) = - $T + 2mT, and - $r + 2mT < e(t) < - $r + 2mT, for every 
t E (t,, tJ. For any p > 0, it is possible to see that 

1 P _=- t&)( f (t, x(t), A) - h(t, A)) + (~‘(t))~ dt 

2 / 2T t2 CL*(w)* + WH2 

(cf. [20]). Fix E > 0 such that A + E < (r/kT)2. There is a K, > 0 such that, for every x G 0, 

xf(t, x, A) < (A + E)X* + K,. 
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Fix p = \/h+E. Then, 

Taking [(A + e)(x(t))* + (x’(t)j2] large enough, we get 

& <kT* 

Since the above holds for any E > 0, we have (rr/ \/J;> < kT, in contradiction with the 
hypothesis. q 

Lemma 4.5. Assume (joI-(jJ. Then the solutions of the Cauchy problems associated to (4.1), are 
globally defined in [w. 

Proof. If a solution were not globally defined, it would have to perform an infinite number of 
rotations in finite time, while going to infinity. But Lemma 4.4 tells us that this is impossible, 
since rotating once requires at least a length of time kT. q 

Proof of Theorem 2.1. Let K” be like in Proposition 2.4, and fix R > fiK* arbitrarily. 
Consider R,, R, and k” given by Lemma 4.3. Fix k > k” and A E [O, A*] satisfying (2.3). Let S, 
be like in Lemma 4.4. By the global existence for Cauchy problems, it is possible to find a 
S, > S, such that, if x(t) is a solution of (4.1), for which p(O) = S,, then p(t) a S, for every 
t E [O, kT]. 

For any z&x0, y0 ) in the phase-plane, let x(t; to) be the solution of (4.11, such that 

(x(0; zo), x’(O; 20)) =to. 

Let (0,, po) and (O(t; z,), p(t; z,)) be the polar coordinates of z. and (x(t; z,>, x’(t; z,)>, 

respectively. Setting 

Y(&, PO) = e(kT; z,,) - 8, + 25-r, do,, ~0) =&W zo), 

we have that 

is a lifting of the PoincarC map relative to the time kT, and, from Lemmas 4.3 and 4.4, that the 
twist condition is satisfied for the annulus B[O, S,] \ HO, R,). Applying the modified version 
of the Poincare-Birkhoff theorem stated in Section 1, a fixed point of the Poincare map 
relative to the time kT can be found in this annulus, and hence there is a kT-periodic solution 
x*,~ of (4.1),, which performs exactly one rotation in the phase plane, and whose trajectory 
starts from the annulus B[O, S,]\B(O, R2) at time t = 0. We may also affirm, by Lemma 4.3, 
that (x,,,(t>,xi,,(t)) @ B(0, R,), for every t E R. 
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Corresponding to x~,~, there is a solution u~,~ of (2.2),, given by u*,~ =x~,~ + uh. Let us 
prove that u*,~ has exactly two zeros in [O, k~]. It is possible to find t, < t, < t, < t, < t, + kT 
such that 

Q(t) > K”, v’t E [tr, t,] > 

X;,Jt) < -K*, VtE [tz, tj], 

q,Jt) < -K*, kf’t E [t3, td], 

4,&) > K*, Vt E [t,, t, + kT]. 

Because of the estimate in Proposition 2.1, one then has 

QJt) > 0, vt E [t*, t2], 

&,&) CO, V’tE [WJ, 

QJt) < 0, Vt E [t3, t4], 

z,&(t) > 0, Vt E [t,, t, + kT] . 

Accordingly, u~,~ has exactly two zeros in [t,, t, + kT], hence also in [O, kT). 
Concerning the last part of the statement, assume, by contradiction, that there is a sequence 

(% k > of solutions of the type found above and a sequence (t,), t, E 10, k,T), such that, for a 
cer&& constant i2 > R,, one has 

1 Uh,,k,(tn) 1 + 1 U>,,k,(tn) 1 G ‘2, 

for every IZ. By Lemma 4.3, since our solutions rotate only once, there is a ij > k2 such that, 
for every t E R, 

( (%,,kjt))2 + (“:“,k~t))z)l’z G&Z. 

Therefore, the solutions lie in a fixed annulus with radii R, and R3. Using the second part of 
Lemma 4.3, we see that this is impossible, as the periods k,T tend to infinity. Theorem 2.1 is 
therefore completely proved. 0 

5. Proof of Theorem 2.3 

The proof of Theorem 2.3 follows the lines of that of Theorem 2.1. This is why we will only 
point out the main modifications which are needed. 

The proof starts in the same way as that of Theorem 2.1. One makes a change of variable, 
reducing (2.41, to (4.11,. In order to prove the analogues of Lemmas 4.1-4.5, we define 

E(t) = fe(s) ds, 

and consider the following system associated to (2.41,: 

u’=u+E(t), u’ = -Au -g(u). (5% 
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Lemma 4.1 does not need any change at all. 
Concerning Lemma 4.2, we would like to have the same conclusion assuming conditions (h,) 

and (h,) instead of (i,) and fi,>. Going for the proof, we will make the needed estimates directly 
on system (5.11,. Let K* be like in Proposition 2.4. While working on system (5.1),, the 
estimates on (u(t), u(t)) may differ from those on (x(t), y(t)) by at most K”. Keeping this in 
mind, we take d; satisfying 

d; > K” + max{d, II E II,,R}. 

For any r > 0, we define 

v:=A*r+ ,$yy”)I. 

As previously, we examine five different cases. 
Case 1’. Choose 

d’, > d; max{l, 2T-l} + v&;T + II E II oo, 

and assume that 

(~(t,,), u(Q) E (-d;, d;] x (-03, --&I. 

Proceeding like in Lemma 4.2, one can see that there is a t, (l) > t, in the domain of u such that 
u(tj,“> = -d’ 1, 

tp - t, < 
2d; 

--u(t,) - v&;T- II E Ilm ’ 

and 3 for every t E [t,, tf)) 

(u(t), u(t)) E (-d;, Ii;, x (-cc), -d’,). 

Case 2’. Assume 

(+,,>, u(Q) E (d’l, +m) x (-00, -&I. 

It is easy to see in this case that there is a t, (*) > t, in the domain of u such that u(t$*)) = d’,, 

to C2) - t, < u(b) - 4 
d;- ll~llm’ 

and 7 for every t E [to, th*‘) 

(u(f), u(t)) E (4, +i) x (-03, d;]. 

Case 3’. Assume 

(+o>, u(Q) E [dj, +m) x (-d;, d’,], 

where dj > d; is sufficiently large, to be determined. This case has to be treated with some 
care. Let t8) > t, be maximal for the property that, for every t E [to, th3’), 

(u(t), u(t)) E (4, +m) x (-4, +a+ 
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We will show that t8’ is in the domain of u, u(ti3)> = -d; and, for every t E [t,, ta’), 

(u(t), u(t)) E (4, +m> x (-4, 41. 

135 

For every t E [to, t8)>, we have 

u(t) - II E IIm < u’(t) <u(t) + II E Ilm, -u’(t) =/h(t) +g(u(t)) >o. 

Multiplying, we get 

--LX+ + II E(I, U’ <Auu’+g(u)u’ =G -LX+- II E IIm u’. 

Integration gives 

- ;(d;)2 - 2d; II E II m< f((u(t,))2- (u(t))2) - II E Ilm(~(to) -u(t)) 

G 3+(t))2 - (“(t”))2) + G@(t)) - +&I)) 

< ;((@o))2 - (u(t))2) + II E Ilm(u(to) -u(t)) 

< ;(d’l)2 + 2d; II E II co. 

From the above and (h,), one can easily see that there is no blow-up of the solutions, and if d; 
is chosen sufficiently large, then u(t) > d;. More precisely, there is a L, > d;, depending on 
u(t,), such that 

d; < u(t) <Lo, 

for every t E [to, th3)). Then, 

-u’(t) =/h(t) +g(u(t)) > r&I11g:=6 
I) 0 

and so, 

d; + d; 
tp - t, < ~ 

6 ’ 

while u(t$3’> = -d’ 

Case 4’. Assum:’ 

(+o>, u(Q) E [dj, +a) x (d;, +~)a 

Then, there is a th4) > t, in the domain of u 

(u(t), u(t)) E [d;, +m) x (d;, +a). 

In fact, since u’(t) a 0, working as in case 4, 

dj <u(t) <co, 

for every t a t, in the domain of u. Then, 

such that u(th4)> = d; and, for every t E [to, th4’>, 

we are able to find a constant Et, > d\ such that 

-u’(t) =/L%(t) +g(u(t)) > $li&g:=r> 0. 
Iir 0 
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$4’ - t, < 
GJ - 4 

6’ ’ 
and u(ti4)) = d’ 

Case 5’. Weldefine 

+ v&T+ II E Ilm, 

and assume 

(+a), +a)) E (-d;, d;) x [d:, +a). 

Then, there is a th5) > t, such that u(th5)) = dj and, for every t E [t,, th5)), 

(u(t), u(t)) E (-4, 4) x (4, +a+ 

Moreover, 

tp - t, < 
2d; 

u(t,) - v&T- II E lloo ’ 

In this way, Lemma 4.2 is proved under the assumptions of Theorem 2.3. The proof of 
Lemma 4.3 is exactly the same as in Section 4. 

The proof of Lemma 4.4 follows from the fact that condition (h,) together with (2.3) permits 
to have a lower estimate for the time-map (see [27]). 

Lemma 4.5 is proved in the same way as in Section 4. Anyway, we remark that global 
existence for (2.4), can be proved under conditions (h,) and (h,) alone (cf. [23]). 

The proof of Theorem 2.3 is now concluded like that of Theorem 2.1. 

6. Related results and final remarks 

Small modifications of the proofs above can be made in order to deal with an equation of the 

type 

u”(t) + f_Lu+- vu-+g(t, u(t)) =e(t), (WV 

where p and I/ are positive parameters, and e(t) and g(t, u> satisfy the regularity assumptions 
of Section 2. The following results can then be proved. 

Theorem 6.1. Assume (i,> and the following conditions: 

l im  dt, 4 
---= 

o 

3 

Iu/+m Ll 

uniformly for almost every t E [0, T]; 

/‘lim supg(t, u) dt < 0 < /,rlirn$g(t, u) dt. 
0 u’Pm 



A. Fonda et al. /Journal of Computational and Applied Mathematics 52 (1994) 113-140 137 

Then, there is an integer k” 2 1 such that, for every k > k” and u > 0, v > 0 satisfying 

“+“>kT, 
G 6 

(6.1),,, has a periodic solution u,,,,~ with minimal period kT having exactly two zeros in [O, kT). 
For any sequence (u,> of such solutions (u,, = u~,,~,,~,>, if k, +m(andhenceu,+O and v,+O> 
as n + ~0, then 

,‘lm 2; [ I u,(t) I + I u’,(t) I] = +w* 

Theorem 6.2. Assume (i,) and that g does not depend on t, i.e., g(t, u) = g(u). Let the following 
conditions hold: 

lim G(u) - = 
2 0 9 

ILL+,= u 
3d>O, IuI >d=g(u)u>O, lim G(u)= +w. 

IUl+m 

Then, the same conclusion of Theorem 6.1 holds. 

Let us now consider an equation with a singularity. We may deal with 

u”(t) + Au +g(u(t)) = e(t), (6.2), 

where g : (0, + > w + R, 0 being a singularity point. It is possible to prove the following result. 

Theorem 6.3. Assume (i,) and that g does not depend on t, i.e., g(t, u) = g(u). Let the following 
conditions hold: 

lim G(u) - zz 0 
u2 ’ 

3d>l, u~(O,d~‘)u(d, +w)=,g(u)u>O, 
U’+m 

.h~y+G(u) = lim G(u) = +w. 
u++‘x 

Then, there is an integer k* > 1 such that, for every k 2 k* and A 2 0 satisfying 

(6.2), has a periodic solution u~,~ with minimal period kT such that (u*,~( a) - 1) has exactly two 
zeros in [0, kT). 

We have proved that the second-order differential equation (l.l), with 6 = 0, presents 
large-amplitude subharmonic solutions. We do not know whether these solutions survive or not 
when 6 > 0. Numerical simulation showed that they seem to survive for 6 small. Since now, 
only variational methods or the Poincare-Birkhoff theorem have been used to study subhar- 
monic solutions in these situations. These methods preclude the study of equations with a 
friction term (see, however, [3]). It would be interesting to develop a method of proof of 
subharmonic solutions for such equations. 

The equation considered is derived from a modification of our original model for a 
suspension bridge. The question naturally arises whether there exist subharmonic solutions to 
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the partial differential equation model, as well. Since now, we do not have any theoretical 
result along this direction, Numerical experiments are scheduled to be carried out. 

Even if we are not in the position to claim that the oscillations responsible for the Tacoma 
Narrows Bridge disaster were of subharmonic type, this paper should at least produce the 
suspicion that the oscillations could have been of a nonlinear nature. The project of a very long 
bridge should also take into account the possibility of facing oscillations entering into the 
dangerous nonlinear region. We think that this kind of phenomena should be further investi- 
gated. 
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