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We provide sufficient conditions for the existence of subharmonic solutions
for equations whose nonlinearity may have a different qualitative behaviour to
the right and to the left of the origin. The proofs are based on variational methods.
© 1994 Academic Press, Inc.

1. INTRODUCTION

Consider the second-order differential equation
u(t) + g(t, u(t)) =0, - (L1)

where g e €(R% R) is T-periodic in its first variable (7> 0). Our purpose
is to study the existence of subharmonic solutions of Eq.(l.1), ie,
kT-periodic solutions (k>1 is an integer) which are not T-periodic.

There is a vast literature on this problem, even for more general
Hamiltonian systems; we refer the reader to [Ek, MW ] for a bibliography
and recent results. In most of these some convexity conditions on the
potential are assumed. Some “generic” type results were proved in [CZ,
FW1] and, for the one-dimensional case, phase-plane methods were used in
[Ja, DZ,, Ya]. Here we study Eq. (1.1) by means of some careful estimates
on the critical levels of mountain pass and saddle point type of the
associated functional. , : ‘

In Section 2 we study the case of a subquadratic potential. Namely,
denoting G(t, x) := [§ g(¢, 5) ds, we assume’that

im 28X ' (12)

|x| = o0 X

holds, uniformly in ¢, together with a Landesman-Lazer condition. By
developing some ideas in [Gi,-FL] we prove the existence of kT-periodic
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solutions of (1.1) whose amplitudes and minimal periods tend to infinity.
In particular, when g(7, x) = g(x)+ (1) and e(-) has minimal period T. cne
has subharmonic solutions with minimal period kT for every sufficiently
large prime integer k (see [MT] for a more general condition). We point
out that no convexity hypotheses are made upon the potential G(r, x)
and that we deal with situations where a priori bounds for the periodic
solutions cannot be proved. On the other hand, provided g(r, x) depends
in a suitable manner on the variables (1, x), we are able to weaken (1.2) to
a one-sided growth condition. In this way we extend some results in [FL,
FRW].
In Section 3 we show that the equation

U+ put —vu~ + g(t,u)=0, (1.3)

where 4 and v are positive constants and g(t, x) is sublinear, still has
subharmonic solutions, provided the couple (y, v) lies below the first Fugik
curve. For this purpose we obtain a new variational characterization of the
first Fugik curve associated to Eq. (1.3). This variational result is much in
the spirit of the one in O. Kavian [Ka]; a similar characterization has been
found independently by M. Cuesta and J.-P. Gossez [CG].

In contrast with some results in [HRS, ,] where uniqueness theorems
for T-periodic solutions were proved, this gives in particular a multiplicity
result for kT-periodic solutions of ( 1.3). We are also able to apply our
methods to a suspension bridge model considered by A. C. Lazer and P. L.
McKenna [LM,]. We prove the existence of large amplitude subharmonic
oscillations for such a model.

We have learnt that T. Ding and F. Zanolin [DZ,] have obtained
results related to those of Section 2, by means of the Poincaré-Birkhoff
theorem.

2. ONE-SIDED SUBLINEAR NONLINEARITIES

We consider the scalar equation
i+ g(t,u)=e(r), . (2.1)

where the following periodic and Carathéodory type assumptions upon the
functions g(¢, x) and e(7) are assumed throughout the paper:
» for every xeR, g(-, x) is measurable and periodic with period 7> 0;
s for ae. reR, g(1, -) is continuous;

o for every R>0 there exists 4 &(1)eL'(0, T) such that, for a.e.
te€ [0, T] and all |x| < R, one has [g(¢, x)| < hg(t);

* e(-) is a T-periodic, locally integrable function.
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We denote by G(t, -) a primitive of g(t, -) and by ¢ the mean value of e(-)
along a period

- 17
e—?fo e(t)d

For any keN we denote by H}, the Sobolev space of kT-periodic
absolutely continuous functions whose derivatives are square integrable
over a period, equipped with the usual norm |u|.r:= (J57(u?(s) +
@*(1)) dr)'. We also denote by |-| »» 1< p< +00, the usual LP-norm.
Recall that, after identification of the set of constant functions with R, we
can write H; =R@® H},, where H., is the set of functions with mean
value zero over [0, kT]. Accordingly, every ue H +r can be written as
u(ty=i+i(t), i€ R, iie H},. We consider the functional ¢, ¢'(H.,; R),

outu) 1= TH2(0) = Glt, u(t) + e(e) to)] di

whose critical points correspond to the kT-periodic solutions of (2.1).
We begin by considering a symmetric situation at + oo.

THEOREM 2.1.  Assume that the following conditions hold,

(i) lim, _ (G(t, x)/x*) =0 uniformly for a.e. te [0, T];
(ii) there exists h(t)e L*(0, T) such that

sgn(x) g(t, x) 2 k()

Jor ae. te[0,T] and all xeR;
(iii) 1T §limsup,_, _ g(t, x)dt<é<1/T [T liminf, _ ., gz, x)dt.

Then Eq.(2.1) has a sequence (u\)y»; of kT-periodic solutions whose
amplitudes and minimal periods tend to infinity.

Remark 2.2. The assumptions (ii) and (iii) are the. well-known
Landesman-Lazer conditions. In particular they imply

(i)’ lim,  (1/T [ G(t, x) dt — xé) = +c0.

(See [Ma, RS] for a proof.) Whenever g(t, -) happens to be increasing for
a.e. 1€ [0, T], condition (i)’ is proved to be equivalent to (ii) and (iii); cf.
[Ma]. Theorem 2.1 generalizes Theorem 4 in [FRW1], where the existence
of subharmonics which are not T-periodic was proved assuming g(¢, -) to
be increasing and a supplementary growth condition -on g(t, x)/x was
considered.
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Remark 2.3. It follows from the proof that condition (i) can be
weakened to the following

(i)’ for every £>0 there exist functions a (), B(r)e L'(0, T) such
that, for a.e. 1€ [0, 7] and every xe R,

G(t, x)<ex® +a,(1) |x| + B.(1).

Proof of Theorem 2.1. Without loss of generality we assume ¢=0 and
{5 G(t,x)dt >0 for every xeR. Let keN be fixed. We apply the saddle
point theorem (see [Ra]) to the functional ¢, defined above. It follows
easily from assumptions (i)’ and (iit)’ that (—¢,) is coercive on R and that
@y is coercive on A} .

We check the Palais-Smale condition for ©r, namely, that every
sequence (u,),,, in H,, such that (¢«(u,)) is bounded and Vo,(u,) -0 as
n— oo admits a convergent subsequence. By standard arguments (cf. [Ra])
it is sufficient to prove that (u,) is bounded. Assume by contradiction that,
for a subsequence, sl kr = oc. From (i)’ and the fact that (@r(u,)) is
bounded from above we get that

la,) —» o and —“u'_’””» 0
la,)

as n—-> oo (cf. [FL, RS]). From the identity u,(1)=,(1 +4a,(t)/a,) we
conclude that mingg 7 |u,| = 00. Assume that m, :=Mingy 47y 4, ~ +00,
the other case being symmetrical. From (ii) we have, for a.e. e [0, T] and
every n large, g(¢, u,(t)) > h(1). On the other hand, by the assumption,
there exists a positive constant C such that 1Vor(u,), v)llir < C [loll 7 for
every n>1 and every ve H},. Choosing v=1 and v=17, yields

kT
J, st wmya| <car,

0

k .
| E30 ~ 60 ) = 1) ) + e = Moy 0y ] < i 1
so that
kT | ‘ ) '
J, 83000 dt < C Whr + Vit (CT+2 441, + fel

and we can conclude that '(ﬁ,,) is bounded. Since (@x(u,)) is bounded, this
implies that ({X7 G(z, u,(1)) dt) is also bounded. But
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kT kT un(t)
j G(t, u,(1)) dt = f [G(z,m,,)+j g(t,s)ds]dt
(4] 0 my
kT
> [ 160 m,) + (1)~ m,) h(1)] di
(4]
kT
>[" Glt,m,)di—C
0

for a certain constant C’, and this contradicts (iii)". Thus the Palais—Smale
condition holds.

We can thus conclude by the saddle point theorem that @ admits a
critical point u,, for every k> 1. The corresponding critical level is given,
for r, large enough, by

@i(u,) = inf max ]¢Pk(3’(f)),

velk {el—r,r
where
Iy:= {Ve(g([—rk, rels Hllcr) oy Er)= i"k}-

We show that
o1
lim — @, (u,)= —o0. (2.2)
k — o k

Indeed, choose r, >k, consider the path y, eI, given by

Ve(E)t) =&+ 2k (1 - %) sin (i—?),

and let £, e [—r,, r,] be such that

Pi(vilSe)) = (max _@e(rel))

By the assumption, the function E(t)=j{) e(s)ds is continuous and
T-periodic. Thus, by a Fourier Series’ argument,

kT kT d
J, e di= [ B0 ZnE 0 dr=0
Y 0 ¢
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for any k > 2. Then we have

{ 1
A o) < X @(74(Sk))

4> 1 kT

< T "% . G(t, 7i(Ex)(2)) dr
4 1K) T

=—— G(t, wi (1)) dt,
T & E:O jo (1, wie i (1)

where we define, for 1€ [0, T,

. 1€\ . [2m(t+iT)
we  (1)=E8,+2k (l ——r—:—> sin (T)

It is not difficult to see that, defining

min w, ; if w,,(r)=0foralls
m=<maxw,, if w.;(1)<0forall¢
0 otherwise,

one has, for every re [0, T],

Iwi (1) —my | <4n. (2.3)
Denote o/ = {ieN: k/8<i<k/4—1} or o :={ieN:1-k/d<i< ~k/8}
according to whether ¢, >0 or &, <0, respectively. It is easily seen that

lim infll( (#,)>0 (2.4)
k= oc

and that, for every ie <,
Imy | 2 k. (2.5)
Using (2.3) we obtain

1 4n® 1K (T |
F O ST = T [ L6 )~ w0 =i 1K1 T e

4n? 1 T
<—+4 S G(t, m, ;) dt.

7 +4n Al kiez.dk'[o ( m:f,) |
By (2.4), (2.5), and (iii)’ the right-hand side tends to — oo as k — o0 and
(2.2) is proved.

It is clear that |u||, — 00 as k — co. Let us prove that the amplitudes
of u, tend to infinity, ie., (maxgo k7 U — MiNg 7y %) = +00. For this
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purpose, we show that |&i.| , — oo as k — oo. If not, for a subsequence, we
would have, say, ming,,,; 4, = +00 as k— co. Then, from (2.1) and
Fatou’s lemma,

1 p#T T k=1 ’
0=EJ0 g(t, uk(t))dt=fo [E .Z:o g(t, uk(t+tT)):| dr

1

T k—
>| lim inf[—lle Y gt uk(t+iT))]dt

0 k- 0

T
> j lim inf g(z, x) dt,

0 x> 4+

a contradiction with (iii). An "analogous contradiction is obtained if
maxpg xry U — —00 as kK = 0.

We now show that the minimal periods of the subharmonic solutions u,
tend to infinity. If not, we could find a subsequence of such solutions whose
minimal periods are bounded and for which we would be able to find a
common period, say kT. The sequence (u,z),», of critical points of ¢y is
such that, by (2.2),

1
Qiluni)= " @ i) = —00

as n—» 00. In particular (@z(u,;)) is bounded from above and as we saw in
the proof of the Palais-Smale condition, this implies that minp, z7;
|t,4(1)] = c0. Assume min, z7q Une(f) = +00, the other case being treated
similarly. From (2.1) and Fatou’s lemma we get

kT
0=[ " glt, une() d
0
kT
> J lim inf g(¢, u,z(¢)) dt
0 n— oo

kT
> j lim inf g(t, x) d,
0

X — +0o

a contradiction with (iii). This concludes the proof. ||

Remark 2.4. 1If (iii)’ is assumed instead of (iii), it follows from the
above proof that Eq. (2.4) has a sequence (u,) of subharmonic solutions
which is unbounded in the L*-norm. Under stronger conditions, a similar
result has been proved for systems in [Gi]. We do not know if the
conclusion of Theorem 2.1 still holds in this case.
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In our next result, condition (i) of Theorem 2.1 will be replaced by a
one-sided growth restriction.

THEOREM 2.5. Assume that there exists a differentiable function
G,:]—0,0]—> R such that

8(1, x) 2 G'(x) (2.6)
Jor ae. te[0, T] and all x<0, and
lim g@:& 2.7)

If moreover conditions (ii) and (iii) hold, then Eq. (2.1) has a sequence
(4 )i » 1 of kT-periodic solutions whose amplitudes and minimal periods tend
to infinity.

Proof.  Without loss of generality, we assume é=0 and Gi(x)<0 for
every x<0. We consider a modified problem; let, for r>0,

g(t, x) if x<r
gt r) if x>r

g.(1, .\')={

For any k>1, choose r,>0 sufficiently large so that, by (iii),
(& &(t,ri)dt>0, and in such a way that r, > +oc as k — oc. Define

rkT
Vi) = | [53(1) = Gt (1)) + e(t) u(e)]

where G, (¢, x) denotes any primitive of g, (¢, x). Then, assumptions i),
(ii), and (iii) of Theorem 2.1 are satisfied, and, like in the proof of that
theorem, we can construct, for each of the functionals ¥y, a critical point
U,. As shown in [RS], by Fatou’s Lemma and (iii),

T ol
lim infsgn(x)f j 8 (t, xs)ds dt >0,
0 Y0

x| = =
k — >

and since [J G, (1, x)dt=x [T [} g,(1, xs) ds dt, we have

T
lim | G, x)dt= +cc. (2.8)
0

lx] ~ %
k— o

Estimating the critical levels as we did in the proof of Theorem 2.1, we have

.1 .
kllun:o e Yilug)= —c0. " -
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In fact, because of the Landesman-Lazer assumption (iii), which forces
the nonlinearity to stay, on average, a positive distance apart from O,
the estimate can be seen to be uniform with respect to the truncated
functions g,, .

To conclude the proof, it is sufficient to prove that for every k > 1 there
exists a sufficiently large r, >0 with the property that every kT-periodic
solution u(t) of

i+ g,(t, u)=e(t), (2.9)

with r>r,, satisfies |lu||, <r,. We use an energy estimate through (2.6),
similarly to [OVZ].

Fix k> 1. Assume by contradiction that there exist sequences (r,), (#,)
with r,— +00, and |u,|l,— o0 as n— oo, where each u,(t) is a
kT-periodic function satisfying

i, + g, (8 u,)=e(t). (2.10)
We claim that, up to a subsequence, we have

min u, > —o0 and max u, — +o (2.11)
[0.4T] [0,kT]

as n— +oo. Indeed, if for instance there is an m>0 such that
ming 4, = —m for all n, then there exists #(z)e L'(0, kT, R) such
that g (¢, u,(1))=n(t) for ae te[0,kT]. Since (47 g, (, u,(1))dt=0,
multiplying (2.10) by #,(¢) and integrating yields

kT | kT
[ de=[ (g0t us0) = n(e)) (o) de
0 o

+[7 )+ e0) (0 dt
(W

S #all o [2 llmlly + llelly]

so that (i,) is bounded and mingg 7 u, — +0. A contradiction follows
then from (iii) as in the end of the proof of Theorem 2.1. Similarly one
proves that max g 47 4, = +00.

Extending the functions by kT-periodicity over R, it follows from the
claim that we can find an interval [a,, 8,] containing a point ¢, at which
u,(t,) =ming u, such that (B, —«,)<kT and

up(et,) =0=1u,(B,),
u(t,)<u,(t)<0 forall refa,, B,].
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For te[a,, f,] we can write Eq. (2.10) as

u,,(z)=u,,(z)+f' e(s) ds
“" (2.12)

l}n(t) = _g(t’ un(’))'
By (ii) we have that the function v,(-)— J, h(s)ds is increasing, so that

urft,)=[" [(v,,(t) - " h(s) ds> +f " (h(s) = e(s)) ds] di

n 2, %,

2 kTo,(0,) = (Il + lell,)- (2.13)

In particular, for n large enough, Ua(®,) < —llell;. On the other hand, by
(2.12), v,(t,)= —|ell,. So there exists a smallest value t,€12,,t,] such
that v,(1,)= —|le||,. We now restrict our analysis to the interval [z, 1/].
One has

diz [G1(u, (1)) + 3(v,(1) + llel],)?]

r

=it (0200 + [ e(5)5) = gt 0),0) + e

Xn

2 (0a(1) + llell NG (u,(1)) — 8(1, u, (1))
>0

and it follows from (2.7) that for every ¢ >0 there exists C,> 0 such that
G1(0) + 3(va(2,) + llell})* < Gy(uy(1)))
<elu,(t,)*+C,
<elu,(t,)* +C,. (2.14)

From (2.13) and (2.14) we conclude that (u,(t,)) is bounded and this
contradicts (2.11). The proof is thus complete. |

COROLLARY 2.6. Assume that g € €(R%; R), conditions (ii)-(iii) hold, and
moreover

()" lim,_, _, g(t, x)/x =0 uniformly SJor te [0, T.

Then one can conclude as in Theorem 2.5.
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Proof. Letting g,(x):=ming 1y g(+, x), we have that g,e%(R;R)
and lim, . __ g,(x)/x=0. Thus Theorem 2.5 applies with G(x):=
s &i(s)as. 1

Remark 2.7. Corollary 2.6 is a generalization of Theorem 6 in [FRW],
where the existence of subharmonic solutions which are not T-periodic was
proved under the additional assumptions that g(z, x) be bounded from
below and increasing in x. We do not know whether condition (i)” can be
replaced by the weaker one-sided assumption lim, _, _,, G(¢t, x)/x*=0. It is
easy to find examples where this condition is satisfied while the hypotheses
of Theorem 2.5 are not.

As noted in Remark 2.4, assumption (iii) was used in the above results
in order to prove some kind of a priori bound of solutions of certain
equations and to have (2.8). It is easy to see, however, that one can replace
(ii)-(iii) by (iii)’ and a sign condition which is more convenient when
g(t, x) is independent of t. As a conclusion, we have that conditions (ii)
and (iii) can be systematically replaced in the above results by the
corresponding following ones

(ii)) there exists d>0 such that sgn(x)[g(¢, x)—e]>0, for ae.
te{0, T] and all |x| > 4;

(i) lim_ o[1/T {7 G(t, x) dt — xE]1= +c0.

As a consequence of this remark and Theorem 2.5, we have

COROLLARY 2.8. Assume e(t)e 4(R; R), g(t, x)= g(x) and let T>0 be
the minimal period of e(t). If
o —0 G(X)/x*=0;
(b) there exists d>0 such that for all |x| >d, sgn(x)[g(x)—é&]>0;
(c) lim . [G(x)—xé]= +c0;

(a) lim

then Eq. (2.1), besides having T-periodic solutions, also has periodic solutions
with minimal period kT, for any sufficiently large prime integer k, and the
corresponding amplitudes tend to infinity.

Remark 2.9. The above theorem generalizes Theorem2 in [FL],
where a two-sided condition was assumed instead of (a), and a further
growth condition was considered on g(x)/x. We also extend the results
in [Ya] where existence theorems for T-periodic solutions were proved for
nonlinearities such as g(t, x) = (x + hA(2))/(x* + 1).
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3. ASYMMETRIC NONLINEARITIES

In this section, we consider
d+pu™ —vu~ + g(t, u)=e(t), (3.1)

where u, v are positive constants and u* :=max(u, 0), v~ :=max(—u, 0).
We assume the same regularity conditions on the functions g(¢, x) and e(¢)
as in Section 2. We also assume

()" lim . g(t x)/x =0 uniformly for a.e. re [0, T.

It is known by degree theory that Eq. (3.1) admits a T- -periodic solution
for ae. (1,v)€]0, +0[x 10, + oo [, precisely, provided that the couple
(1, v) lies between two consecutive Fuéik curves (see, e.g., [Fu, LM,]).
Those curves are given by the formulas

1 1 ) 1
w<—_+— ==, n=12 .., (3.2)
2 \/,/: 2 \/; n

where w :=2n/T, and correspond to the couples (u, v) for which the
problem
F+puvt —w~ =0

v(t+T)=0(1) (33)

admits a nontrivial solution. Here we are concerned with the first Fuéik
curve. We prove the following

THEOREM 3.1.  Assume that conditions ()" and (ii)—(iii) of Theorem 2.1
hold. Then there exists an integer ko> 2 having the following property: for
any k> ky and any >0, v>0 such that

| + 1 >kT

2/ 2 2

Equation (3.1), besides having a T-periodic solution, also has a kT-periodic
solution which is not T-periodic.

(3.4)

The proof of the theorem is based on the following result. Recall that
whenever = v, the first positive eigenvalue of the eigenvalue problem (3.3)
is w?, given by

T 2
- [§ #?(r) dt
C T wenhio JLR@)ar
Ioru =0

An analogous statement can be made for the general case (3.3).
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PROPOSITION 3.2. For any >0, v>0 we have

g u(e) dt ?

min =
ue H\ {0} j.or(ﬂ“”(t) +vu~?(t)) dr

pigut =vigu

)
2 /u 2
Proof. Denote by m the left-hand side above. Assume first > v and set

b= Gt (0 w01

fo u?(r) dt
[olpu* (1) +vu=1)] dt

Then @e%'(H}\{0};R) and ¢ is convex. We denote by dy(u) the
subdifferential of  at the point u, ie.,

o(u)=

uredy(u) it Y)=yY)+ {u*, v—ud YveH!, (3.5)

where (-, -) stands for the scalar product in HI.
By taking a minimizing sequence of ¢ and using the compact imbedding
of H into L? we can find a point ue ¢ ~'(0)\{0} such that

T
0<m=j #3({)dt= min
0 ¥~10)\ {0} (3 6)

jT (uu*2(t) + vu= (1)) dr = 1.
0

By a Lagrange multiplier rule due to F.Clarke [Cl,,] there exist
u* € 0y (u) and two scalars 1;, 4, € R not both equal to zero such that
M<Vo(u), - > + A, u* ->=0  in H}.

Since
T T
(V<p(u),v>=2j0 u(t) v(t) dt —2m L (pu™ (t)—vu= (1)) v(t) dt

in H}, we have in particular that {(Vo(u), - >|,=0 and thus
A u*, Y| p=0. (3.7)

On the other hand it follows from (3.5) and (3.6) that for any
ve ]—o0,0],

Cur uy = Cu*, 0y —Y(v) = Cu*, 0>+ Tv o). (3.8)
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From (3.7), it follows that 4;=0 and thus Vo(u)=0; that is, u(t) is a
nontrivial solution of the periodic problem

d+muu™* —myu— =0
u(t+T)=u(z).

From (3.2) we deduce that

mz=o? (3.9)

i)
2\/;_1 2\/1_' '

In a similar way one can prove that (3.9) in case u<v holds: simply
replace by —y and use positive constants in (3.8). To prove the reversed

inequality, denote 6 := w(1/(2 \/;:) +1/(2 \/;))2 and let v(7) be the unique
solution of the problem

T+0ur* —Gvp— =0
v(t+T)=0v(r)

fr(;w”(t) +v0=2(1)) dr = 1.
(1]

Then we have y(v) =0 and m < ¢(v) =06, which concludes the proof. |
To prove Theorem 3.1 we also need the following elementary
LEMMA 3.3, Assume thar conditions (i)" and (ii)-(iii) of Theorem 2.1

hold. Then, for each ¢ > 0, there exists R = R, >0 such that any solution u(t)
of (3.1) with

1 1
—=t+—=)>1 3.10
w(2ﬁ+2ﬁ>> e (310)

satisfies |lull < R.

Proof. Suppose by contradiction that some sequence (4p)ns, of
solutions of (3.1) with (Hn> v,) satisfying (3.10) verifies ||u,| 77— 00 as
n— co. Following the arguments in the proof of Theorem 2.5 (see (2.11))
we see that (ii)-(iii) imply

max u, - +00 and min u, -+ —co. (3.11)
o, 7} ({0 ]
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We claim that for any 6 >0 we have
7'C 2
min(y,, v,) > <7,> -0 (3.12)

for every n large. Otherwise, say, u,<(n/T)*— & and from (3.11) we can
choose an interval [a,, f,]<[0, T] such that u,(e,)=0=u,p,) and
u,(t)20 on [a,, 8,]. Using (i)” and Poincaré’s inequality we deduce from
(3.1) that, for some constant C >0,

T 2 ﬂn ﬁn 6 ﬂn Bn
( ) f uﬁsj d,z,s(—+u)f uf,-i-f eu, + C,
Bn —a, 2, %y 2 oy ap

n

which shows that (||, ,) is bounded, contradicting (3.11).

Now, from (3.10) and (3.12) with & small enough, it follows that both
(m,) and (v,) are bounded. Letting v,(1) := u,(t)/ )+, it follows from
(3.1) and standard arguments that, up to subsequences, U, — U, v, = v, and
v, = v, where v is a nontrivial solution of problem (3.3). From (3.10), either
#=0 or v=0, which is impossible by (3.12). |

Proof of Theorem 3.1. Let yu, v, k satisfy (3.4). We apply the mountain
pass theorem (cf. [AR]) to the associated €' functional

outu) = [ TG0 — " 0) = =(0) = Gty u(e)) + (o) )] i,

Define

kT
Sy = {ue Hy,p: L (uu*(t)—vu=(2)) dr =O}.

It follows from (i)” and Proposition 3.2 that inf s, Pr is finite. From
(ii)(iii) it follows that — ¢, is coercive on R (see Remark 2.2) and we can
choose r, large enough so that

eoi(£r) <inf @,.
Sk

Define now
Ie:={ae¥([0,1]; Hyp): a(0)= —ry, (1) =r,},

¢ = inf sup @,(a(?)).

aelyte0,1}
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From the intermediate value theorem we see that every path in I', meets
Si. Thus we have ¢ =infg, @, > @, (£r,). Moreover, @, satisfies the
Palais-Smale condition over H 1> for if Vo, (u,)—0 along a sequence
(#n)n> 1 With Jju,|l7— 400, it follows from ()" that v,(¢) ;= u,(t)/|lupll r
converges (up to a subsequence) to some nonzero solution of problem
(3.3), which is impossible by (3.2) and (3.4).

We conclude by the mountain pass theorem that ¢, Is a critical value
for ¢,. Since moreover

k
o)< [ L~ G, ute)) + e(t) ule)] di

on H,,, the argument in the proof of Theorem 2.1 shows that Crlk = —o0
as k — oo, uniformly in (g, v). By Lemma (3.3) we may then conclude. §

We point out that how large the integer ko in the above theorem should
be is determined by the a priori bound in Lemma 3.3. In some situations
this bound can be estimated; in that case a different argument, based on
Morse theory, can be used, provided the function g satisfies some “twist”
assumptions. Suppose for instance that ge%(R;R), eec¥(R; R) and
consider

d+pu™ —vu~ + g(u)=e(t) (3.13)
with 4 >0, v>0. Assume

lim &)

2 =0,

x| - X

(a)

(b) lim sup g(x) <& <lim inf g(x)
- 4+

X—+ —0 x

and, according to Lemma 3.1, let R, be such that lull . <Ry for any

T-periodic solution of (3.13) with w(1/(2 \/;) +1/(2 \/;)) =2. Denote
h(x)=px* —vx~ + g(x). Then we have

THEOREM 3.4. Assume that conditions (a) and (b) hold, he €'(R; R), and
that there exists € >0 such that

h'(x)>e  forevery xe[—Rqy, R,]. (3.14)
Then the conclusion of Theorem 3.1 is true with any integer ky> 2 such that

2n

T./e

ko>
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Proof. 1t follows from our assumptions and the preceding arguments
that the % functional ¢, admits a critical value ¢, found by the mountain
pass theorem. Moreover, according to the results in [LS, So ], some critical
point v at level ¢, has Morse index less or equal to one. Recall that, for any
kT-periodic solution u of (3.13), we define the Morse index my(u) of u as
the number of negative eigenvalues A (counted with multiplicity) of the
linear problem

w4 (W (u(?))+2)w=0
w(t+kT)=w(z).
Now, for any T-periodic solution u(z) of (3.13) (extended by
T-periodicity as a kT-periodic solution), denote by (An)n>. the sequence of
corresponding eigenvalues. From (3.14) and our assumption on k, we have

A< —e+ (2n/kT)* <0 for k > k,, so that m,(u) > 2. Thus the kT-periodic
solution v found above cannot be T-periodic and this ends the proof. |

We conclude with the following example. In [LM,], the authors
considered a nonlinear model of a suspension bridge. When considering
no-node type oscillations, they were led to the equation

J+EKn/LY y+1ly* = Wy+ f(1).

Here 1 is the moment of the inertia; E is Young’s modulus; L is the length
of the bridge; / takes into account the rigidity of the cables of the bridge;
W, represents the weight; f(r) is a T-periodic forcing term.

Consider the more general equation

i+ Au+ g(u)y=e(t), (3.15)
where g€ €(R; R), ee L'(0, n) is T-periodic, and

lim ‘E(x—)-—-0<l= lim ggx_) (3.16)
x—+ -0 X x— +0 X

By using the preceding arguments, one can prove

THEOREM 3.5. Assume (3.16) holds and moreover

lim sup g(x) <eé.

X = —00

Then there exists A0>0 such that, for any ie]0, 4, [,> Eé. (3.15) has a
subharmonic solution u, with amplitude A, and minimal period T,, such that

hm Al= lim T,1=00.
A—0 A0
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The fact that A must be small, ie., EI/L* must be small, means that the
bridge is “long and flexible.” In this case, if the bridge is subjected to a
periodic forcing, one can expect to have large amplitude subharmonic

oscillations.
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