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ABSTRACT. Assuming only asymptotic conditions on the potential function, we 
prove the existence of periodic solutions for equations whose nonlinearity stays 
below the first curve of Fucik's spectrum. 

1. INTRODUCTION AND STATEMENT OF THE RESULTS 

In this note we consider the periodic problem 

(P) fx" + g(x) = e(t), 
lx(O)- x(T) = x'(O) - x'(T) = 0, 

where g: R -- R is a continuous function and e: [0, T] --+ R is measurable 
and bounded. We define G(x) = fx g(s)ds, a primitive of g(x) , and e = 
I fT e(t)d t, the mean value of e(t) . 

In our first result we assume the nonlinearity to lie, roughly speaking, between 
the first eigenvalue and the first curve of Fucik's spectrum. 

Theorem 1. Assume that 
f2G(x)2Gx ,u= liminf 2 v:= lim G(x) 

X- ++ x X--M x 

exist and are finite and positive. If 

then polm a > T 
then problem (P) has a solution. 
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As a consequence of Theorem 1, we have that, if the limit 

/ := lim 2G(x) 
lxlj-oo X2 

exists and 0 < / < ( 2T )2, there exists a solution to (P). It is not known whether 
such a result still holds when / lies between any two eigenvalues of the associ- 
ated linear operator. 

Our second result deals with a one-sided assumption on the potential G. A 
further condition then has to be added in order to avoid resonance. 
Theorem 2. Assume that 

(i) 1 . f2G(x) n 2 

(ii) lim (G(x) - e-x) = +oo. 
lxl F+ 

Then problem (P) has a solution. 
Notice that the above statements make use of assumptions relying only on 

the potential function G, and we do not require explicit conditions on the 
nonlinearity g, like monotonicity, sign conditions or growth restrictions (see 
[3-5, 8-10] and references therein). 

The proof of Theorem 1 combines Leray-Schauder topological degree argu- 
ments with the upper and lower solutions method. To prove Theorem 2 we also 
need a variational setting. We will develop some ideas from Gossez and Omari 
[8, 9], Fernandes and Zanolin [5], and De Figueireido and Ruf [2]. 

In ?3, we will also state a necessary and sufficient nonresonance condition 
for problem (P), when assumption (i) of Theorem 2 holds. Needless to say, the 
symmetrical versions of our results hold as well, the assumptions at +oo being 
interchangeable. 

Without loss of generality, we will consider from now on the case - = 0. 

2. PROOF OF THEOREM 1 

We first remark that, since ,u and v are positive, the function g is un- 
bounded from below and from above on R. Since e is bounded, there exist A 
and B in R such that, for a.e. t E [0, T], 

(1) g(A) < e(t) < g(B). 
We will use some arguments from [8]. If A > B, the result is a consequence 
of the lower and upper solutions method (cf. [1, 8]). Assume then A < B. 
Replacing x by x - A+, it is of no loss of generality to suppose 

(2) A<0<B. 

Moreover, we can assume the existence of a constant cl > 0 such that, for 
every s E R, 

(3) sgn(s)g(s) > -c1. 
In fact, otherwise one could find A' > B with the same property as A, and the 
lower and upper solutions method would apply again. 
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Now we fix a 0 E ]O, (r)2[ and we consider, for A E ]O, 1[, the problem 

(PA) fX + 0Ox + (1 - A)g(x) = (1 - A)e(t), 
lx(O)- x(T) = x'(O) - x'(T) = 0. 

The existence of a solution to (P) will be assured by the Leray-Schauder theory if 
we are able to find an open bounded subset v of the space C(0, T) , containing 
0, whose boundary does not contain any of the solutions of (PA, ), E ]O, 1[ 
(cf. [10]). We claim that there exist two constants R and S such that R < 
A < B < 5, and the set 

v = {x E C(0, T)I min(x) E ]R, B[, max(x) E ]A, S[} 

is the one we are looking for. The boundary of set v is 

@X = {x E C(O, T)I min(x) E [R, B], max(x) E [A, S] and 
either min(x) E {R, B} or max(x) E {A, S}}. 

If x is a solution of (PA), it cannot be that min(x) = B or max(x) = A. This 
can easily be seen by writing the equation in (PA) at the points where x attains 
its minimum and maximum and taking into account (1) and (2). 

Notice that, if x E @ , 

(4) 3tx E [O, T]: x(tx) E [A, B]. 

We will find S > B such that max(x) :# S for every solution x of (PA) having 
the property (4). Take ,u' > ,u in such a way that (7r/+V/I) + (r/fi) > T, 
and define e(t) = e(t) + cl, g(x) = g(x) + cl, and correspondingly G(x) = 
G(x) + clx. Then it is easy to see that 

lim sup ?U/ - G(x)l +00, x I+00 X2 2 

and we can find a sequence (Sn) such that Sn +00 as n -- oo and 

(5) VS5 E [? Sn[, ,u 2 - -G(s) < S n - G(Sn). 

We will show that we can take S = S, for n large enough. In fact, suppose by 
contradiction that there exist two sequences (xn), (in) such that An E ]O, 1[, 
Xn is a solution of (PA,), max(xn) = Sn, and 3tn E [0, T]: Xn(tn) E [A, B] . 

First we prove that mn := min(xn) -- -oo as n -- oo. Suppose by contra- 
diction that, for a subsequence, (mn) is bounded from below. Then, by (3), 
there is a constant c2 > 0 such that' 

An OXn(t) + ( - An)g(x9(t)) > -C2 

for every t E [0, T]. Since 

[An Xn + (1 - An)g(Xn) 0, 
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multiplying the equation in (PAn) by kx = x, - I fTx, (t) dt and integrating, 
we get 

T T T 

n= [AOX + (l -Ai)g(X,) + C2fl- j [C2 + (l -n)e]bn 

(6) <l|X?nlL?? {j[Anxn + (1 - An)g(Xn) + c2] + c2T + lle ILl } 

< jjXn1||L?[2c2T + IlelIL1]. 
Then, (xn) is bounded, and this contradicts the fact that max(xn) -- +oo and 
3tn E [O, T] :xn(tn) E [A, B]. This proves that mn --oo as n -oo. 

Extending our functions by T-periodicity, we can then find two intervals 
[a,n, fin] and [Yn, 4n] containing, respectively, a point of minimum and a point 
of maximum of xn, such that 

Xn(an) = xn(fin) = Xn(Yn) = Xn (n) = 0, 

(7) ~~~~Xn (t) < O for t E ]an S MSn S 

(~~~~~~~~X )x(t) > 0 for t E I]Yn S 5n [ S 

(fin-n) + (n-Yn) < T. 

We will now use some ideas from [5, 6, 11]. We first restrict our analysis to the 
interval [Yn, 6n]. Because of (3), we have that k(s) > 0 for all s > 0. We can 
define, for S > 0, the time-map 

,?(S) = d 

? /G(S) - G(4) 

It has been shown in [6] that the time-map T(Sn) is a good estimate, as n -+ oo, 
for the length of [3n, Ynb]. Since, by (5), i(Sn) > (7r/ Vyi) for every n, we 
obtain 

(8) liminf (5n-Yn) > 
n-+oo IU 

On the other hand, one can estimate the length of [a,n, fin] in the following 
way. One defines e(t) = e(t) - cl, g(x) = g(x) - cl, and correspondingly 
G(x) = G(x) - cIx . Then, for m < 0, the time-map is defined by 

'T(m) = v| dX 
m G(m) - G(4) 

Using the fact that v is the limit of the quotient 2G(x)/x2, one can prove that 

lim infTi(m) >? 
m-* -00 / 

(cf. [11, Corollary 8]). Since i(mn) is a good estimate, as n -o 00, for the 
length of [an,, fn], we have that 

71t liminf(fln -a,n) > -? n- oo W 
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We get a contradiction with (7) and the fact that (7r / /V-) + (7rl/f) > T. So 
we can choose S = S,, with n large enough. 

Finally, we prove that there is R < A such that, if x is a solution of (PA), A E 
]0, 1 [, satisfying max(x) < S and (4), then min(x) > R. In fact, if max(x) < 
S, there exists a constant C3 > 0 such that 

AOx(t) + (1 - A)g(x(t)) < C3. 

Multiplying the equation in (PA) by x and integrating, we obtain an estimate 
analogous to (6). Hence IIxIILO is bounded by a constant depending only on 
S, and since x satisfies (4), there is R < A such that min(x) > R. 

Thus we showed that no solution of (PA), A E ]0, 1[, can lie on &0, and 
the proof is complete. 

3. PROOF OF THEOREM 2 

If g is unbounded from above and below on R, one can proceed as in the 
proof of Theorem 1. The only difference lies in the contradiction with (7), 
which is already reached in (8), since ,u' < (r)2. In the spirit of [8], we then 
have the following. 

Corollary 1. Assuming that 

lim inf <Gx < 
X-4+00 X2 \T 

problem (P) has a solution for every e E L? (0, T) if and only if g is unbounded 
from above and below. 

Now assume g to be bounded either from below or above; let us treat the 
first case, the other being similar. So, assume there exists c4 > 0 such that, for 
all seR, 

(9) g(s) > -C4. 

We will prove the existence of a solution for (P) by finding a critical point of 
the associated functional 0: HT -- R defined as 

q5(x) = j X [ I x(t))2 - G(x(t)) + e(t)x(t)] dt. 

We will show that the functional 0 has a mountain-pass geometry and satisfies 
the Palais-Smale condition. 

Define the set 5" = {x E HT: x < 0 and 3tx E [0, T]: x(tx) = 0}. 
Extending our functions by periodicity, for every x E 5" we can write 0(x) 
as an integral over the interval [tx, tx + T]. Because of (9), we have that 
limx 0 2G(x) = 0, and it is easy to see, by Poincare's inequality, that X is 
bounded below on 5". On the other hand, (ii) implies that (-X) is coercive 
on the space of constant functions. We can then find r > 0 sufficiently large 
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for which 
max{q(-r), 0(r)} < infy 0. 

Since, by continuity, every path in F = E C([-r, r], HT): y(r) = +r} has 
to cross 56, we have 

infy q < inf supr q. 
We are then in a mountain-pass geometry. 

In order to conclude, we now prove the Palais-Smale condition. Let (xn) be 
a sequence in HT such that (q(xO)) is bounded and q5'(xn) -O 0, as n - oo. 
Then there is a constant c5 > 0 such that, for every u E HT' 

(1 0) XJ[xn U' - g(Xn) U+ eu] dt < C511UIIH1. 

Taking u 1, we get 

jg(Xn(t)) d t < c5 V, 

hence, by (9), 

jg?O] g(xn(t)) dt < c5V7- j g(xn(t)) dt < c5 Ii + c4T. 
[g>o] [g<O] 

Consequently, there is a constant c6 such that 
T f 9g(xn(t))I dt <C6 

Taking u = xn in (10) permits us to conclude that (Zn) has to be bounded. 
Assume by contradiction that, for a subsequence, IlxnlIH' -+ oo. Then lxn(t)) I-- 
oo uniformly in t. But this is in contradiction with the fact that (xn) and 
(q(xn)) are bounded, since G is coercive. So (xn) is bounded, and the Palais- 
Smale condition holds (see [12]). 
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