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1. Introduction

The aim of this paper is to illustrate the use of some topological
and variational techniques which provide the existence of periodic
solutions to the equation

u’ + glu) = e(), (L.

where g: (0,+o) > R is a continuous function, 0 being a
singularity, and e : R — R is a locally integrable periodic function
with period T > 0. As a model for equation (1.1), we have in mind
an equation like

” 1
u’ - E = e(f),

where a>1 and u is positive.

Lazer and Solimini [LS] gave the start to a series of papers on
the existence of periodic solutions to (1.1). Defining

X
G(x)= J g(&) d¢, a primitive of g(x), and é= fe(s) ds, the mean

1 0
value of e(#), they proved the following.

=

Theorem 1.1. — ([LS]) Assume that g <0 and

® lim g(x)=0;
Xt oo
(i) lim g(x)=—o;
x—0
(iii) lim  G(x)=+oo;
x—0
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Then equation (1.1) has a T-periodic solution if and only if
e<aq.

Integrating the differential equation, it is easy to see that a
necessary condition for the existence of periodic solutions to (1.1)
is that & belongs to the image of g(x). This explains why, under
Lazer-Solimini’s assumptions, € has to be negative. Concerning the
sufficient conditions, we will show that they can be considerably
weakened.

Due to the structure of equation (1.1), which can be considered
as a pertubation of an autonomous equation by a periodic forcing,
it is natural to investigate whether conditions relying on the poten-
tial G(x) rather than on the field g(x) itself still guarantee the exist-
ence of periodic solutions. Moreover, it is useful knowing whether
in the above setting one can find subharmonic solutions, i.e. peri-
odic solutions whose period is a multiple of T.

We will answer in the positive to the above questions. In sec-
tion 2 we provide an almost complete generalization of Theorem
1.1, assuming conditions relying only on the potential function
G(x), without requiring explicit conditions on the field g(x). The
price we have to pay for this is a boundedness assumption on e(r).
The proof of this result is a combination of different theoretical
approaches. We use the theory of upper and lower solutions,
topological degree arguments, and a variational method. This result
can be considered as an extension of the one in [Fo], where the
author considered an analogous situation for second order differen-
tial equations without singularities. See also [MW], [FZ], and
[FoZ] for results along these lines.

In section 3 we will prove the existence of infinitely many sub-
harmonic solutions under conditions generalizing the ones in
Theorem 1.1. This problem has been treated in a joint paper with

- Manasevich and Zanolin [FMZ]. The proof is variational, and

requires careful estimates for the critical levels of the associated
functional. The main idea of the proof was introduced in [FL] and
developed in [FR], for equations without singularities. For related
results, see also [FW], [FRW] and the references therein.
Section 4 is an appendix, where we briefly explain the methods
used in the proofs of our existence theorems. In subsection 4.1 we
recall the definition of upper and lower solution, and we state the
existence theorem used in the proof of Theorem 2.1. In subsection
4.2 we explain how Mawhin’s coincidence degree is defined,
generalizing the Leray-Schauder theory (see [Ma,]), and we recall
its main properties and a result of Capietto, Mawhin and Zanolin
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[CMZ] which will be needed in the proof of Theorem 2.1. In sub-
section 4.3 we state the Mountain Pass Theorem of Ambrosetti and
Rabinowitz [AR] and the Saddle Point Theorem of Rabinowitz
(ctf. [Ra]).

There are many directions towards which one can extend the
study of an equation like (1.1). Equations with a friction term have
been considered by Habets and Sanchez [HS], and Mawhin [Ma,],
providing conditions for the existence of periodic solutions with the
same period of the forcing term.

A different behaviour at +eo can also be considered. The
asymptotically linear case has been studied by del Pino,
Manasevich and Montero in [DMM]. Here again, the existence of
T-periodic solutions was proved, while the existence of subhar-
monic solutions seems to be an open problem.

On the other hand, the superlinear case has been treated in
[FMZ], where the existence of infinitely many subharmonic solu-
tions of any order was proved by the use of the Poincaré-Birkhoff
fixed point theorem. In the same paper, the qualitatively similar
case where the nonlinearity has two singularities was considered,
as well.




2. Periodic solutions
having the same period
as the forcing term

Consider the periodic problem

{u” + g(u) = e(t)

u(0) = u(T) =’ (0) -~ u'(T) = 0,

where g: (0,+) >R is a continuous function, and e:
[0, T} - R is an integrable function.

(P)

Theorem 2.1. — Assume e(t) to be a bounded measurable func-
tion, and the following conditions to hold.

. .. 2G(x)  (myz
0 lim inf =22 <(3)';
) lim [G(x) —éx] =+
i) lim G@) =+ e

Then problem (P) has at least one solution.

Remark. — Comparing our result with Theorem 1.1, notice that
g is neither assumed to be negative nor to have a limit at the origin
(see condition (ii)). Moreover, the assumptions (i) and € <0 have
been weakened in (j) and (jj). The rather weak hypothesis () con-
cerning the inferior limit of 2 G(x)/x’ was first introduced by Fer-
nandes and Zanolin [FZ], while a condition like (jj) was intro-
duced by Ahmad, Lazer and Paul in [ALP]. Hypotheses (jjj) is
necessary for the conclusion, as was shown in [LS].

PROOF. — Without loss of generality, we may assume that &= 0.
This can be seen by substracting & to both sides of the equation,
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Periodic solution having the same period as the forcing term

and noticing that the assumptions ( j)-(jjj) remain unchanged when
G(x) is replaced by (G(x) - éx), and é by 0.

We will be led to distinguish qualitatively different situations.
Accordingly, we will use the theory of upper and lower solutions,
topological degree arguments, and a variational approach.

We need to consider two different cases.

Case 1 : g is unbounded from above.

In this case, since e(f) is bounded, it is possible to find two
positive constants A, B such that

g(A) <e(r) <g(B), 2.1)

for a.e. t€[0, T]. In particular, the constant function A is an upper

solution and B is a lower solution of (P). If B<A, the result

follows from the classical theory of upper and lower solutions.
Assume now that A <B. Choose M such that

A<M<B. 2.2)

If g is unbounded from below in (M, + o), it is possible to find a
constant upper solution A” > B, and the conclusion follows again.
Analogously one can conclude if g is unbounded from above on
(0, M). Hence we can from now on assume that, for a constant
c; >0,

sgn(x — M)g(x) > —c,. (2.3)
Consider, for A€ (0, 1), the problems

U’ + g;(w)= (1 - De(t)
(P.) [u(O) ~u(T)=u'(0) - u/(T) = 0,
where
-M
£ =4 == +(1 - gx).

We will find two positive constants R, S satisfying R<A<B<S,
and such that no solution of (P,) belongs to the boundary of the
open bounded set :

A = {u e C([0,T],R) : min(u) € (R,B), max(u) € (A,S)},

ie. to
954 = {u € C([0,T],R) : min(x) € [R,B], max(u) € [A,S] and
either min(u) € {R,B} or max(u) e {A,S}}.
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Periodic solution having the same period as the forcing term

It is easy to see that if u is a solution of (P,), then min(u) # B
and max(u) # A. Just argue by contradiction, write the differential
equation at the point where u attains its minimum (resp. maxi-
mum), and use (2.1) and (2.2). Remark also that, for any u €94,

3, €[0,T] : u(t,) € [A,B]. (2.4)

We define now g(x) = g(x) + ¢, + 1, G(x) = G(x) + (¢, + 1)x. If
M is taken so that, by (),

2G
lim inf 259 _, (3)2,
X

X +oo 2

one has

lim sup [ux? — 2G(x)] = +oo ;

s0, there is a sequence (S,) such that S, — +oo as 1 — oo, and

Vs e (M,S,), us” — 2G(s) < uS? ~ 26(S,). (2.5)

Using an argument like in [FZ], we will show that, if n is large
enough, any solution u of (P)) satisfying (2.4) is such that
max(u) # S,

Let E(¢) be a primitive of e(¢). Having supposed ¢ = 0, E(¢) is
a periodic function, and problem (P)) is equivalent to the system

' =v+(1-NDE@)

(P') Vo= —g/l(u)
’ u(0) = u(T)
w0) =w(T)

Assume by contradiction that there is a subsequence, still denoted
(S,), such that max(u,) = S,, where (u,, v,) 1s a solution of (P}), for
some A = 4, € (0, 1), such that {u,(¢) : t€[0,T]} N [A,B] # 0. For n
large enough, S, > B, and, extending u, by T-periodicity, there are
a << B <a such that a? — g < T and

u,(a;” ) =B = u,(a?),
u, (B’ ) =S, = u,(fY),
and
B<u,)<S8, forte(al’, f) U (B2, a?).
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Periodic solution having the same period as the forcing term

Let us concentrate on the interval (a!”, £V). By the second equation
in (P)) and (2.3), the function (v(¢) — ¢ ) is decreasing. Integrating
the first equation, we get

A

S,-B= J (i(s) + (1 = 4,)E(s)) ds
e
B
= j(v,,(s) —cs tes+ (1 —4)E(s)) ds

o

<Tv, (@) +2¢,T*+T| E| ...

So, for n large enough, one has v,(a{") > || E || .. On the other hand,
it is easy to see, from the first equation in (P;) that
v(B")| <||E|l.. Hence, for n large enough, there is a
P e (@, BV such that v,(3") = | E|| ... Integrating the first equa-
tion in (P;) over [, ], we get

S, = u,(y{") =
A

J V) —es+es+(1—4)E(s)ds<2T||E||.+2¢,T?: =L.

A1)
om

On the other hand, for 7 [al", Y],

£ 1600 0) + 3 40 - 1 E N1 =
- 800 * (1= L)EQ) - £, ()0 ~ | E L)
> (G0 ~ £, ()00~ | E L) 20.

So, the function (G(u,(- )) + % (v,(- ) = | E |..)>) is nondecreasing on

[al’, y], and we have

\ 1 . R
G, () +5 (0 ~ | E L)* < G, (") < G(S,)-
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Periodic solution having the same period as the forcing term

Consequently, by (2.5),
v = 1 E |l < 2[G(S,) - G(u, (1)) Su(S; — u)'?,
and, using the first equation in (P9,
() <

2N Bt V(S - uke))

for every ¢ €[al”, 3\"]. Integrating, we have

n

u!l(;’;ll ))

H0 g > 1 f ds
Vu ) 2Bl /5oy
B
S,-L
S 1 ds

— c=
Ju f 2||E a2+ /2 - ¢
B

The above integration can be performed explicitly. Setting
7 =2|E|l. x'?, for n large enough we have S, > 7, and a primitive

of /in+ /g2 _ s?) in [0,S,] is given by

(S

arcsin (S—,) -
. N /S, —ntan (% arcsin (Si))
Bows=n | a /o (w2

It is then not hard to see that

lim o =

= T
n —oo 2\/; 2.

Consequently,

T
lim inf (B — a) > >

n —oo

In an analogous way we can prove that
T
lim inf (a - p®) > >

N —oo

and we reach a contradiction with the fact that a? - aV < T.
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Periodic solution having the same period as the forcing term

So, there is a sufficiently large 7 such that, for any solution u«
of (P,) satisfying (2.4), one has max(u) # S;. We set S=S§_.

Now we will prove that there is R € (0,A) such that, for any
solution u of (P,) satisfying max(u)<S and (2.4) one has
min(u) > R. Assume by contradiction that there is a sequence (u,)
of solutions of (P,) for some A= 4, €(0,1) such that min(x,) < 1/n,
max(u,)<S and {u, t):te[0,T}}n[AB]# . Since

T

Jg;,,, (u,(t)) dt =0, we have by (2.3),

0

Jlg;.,,(u,,(t))ldt = J (| &, (D) — ¢/ | + ) dt

[up<M] [un<M]

If

J (2c, — g, (u(0)) dt

[un<M]

IN

2e,T+ J 81, (u,(0) dt

[M<u,<S)
<TQRc, +max {| g(x)| :M<x<S,0<4A<1}

In conclusion, (|l g;, (-, u,(-)) ;) is bounded, and then (|« |l.) is
bounded, as well. Take £V, 2 such that

1
u(t) = =< A=u,t?).
n

Multiplying the equation in (P,) by u, and integrating over
[tfll)’ t512)]’ we get
£
Lo vcony = Loy _ h_ - ’
S @) =3 G + G (A) =G, ()= (1= 2) [ e,
49

where
G, x)= Jgi,, (&) dé=2,(x—1-logx)+ (1~ 4, G(x).
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Periodic solution having the same period as the forcing term

1
n
this clearly is impossible, by ( JiD-

We thus proved that no solution of (P,) can belong to 94, for
any A € (0,1). Further, we notice that there exists a constant O > 0
such that, for any wedd, if (,v) is a solution of (P)), then
[ v|l.< Q. This follows from the fact that the derivatives of the
solutions of (P,) belonging to s have to be bounded. Define the
following open, bounded set :

Since ([ u/]l.) is bounded, (G)."( )) has to be bounded, too. But

B={z=wv)eC(OTLR): ued,|v|.< [0}

By the above, no solution of (P}) can be in 9%.

Denoting by deg, the Brouwer topological degree, the field

y (u,v) = (v, £ M),

corresponding to A =1, is such that

degg(y, B N R?, 0) = degy(y, (A,B) x (=0.0),0) = detJ (1,0) = —1.

Let X =L"(0,T; R?), and define

D(L) = {ze C'([0,T]; R : (0) = (T) },
L:D)cX->X, Lz=z7;
N:B—X, Nz=N@uv)=(()+E(), —8(u(-))).

By Lemma 1 in [CMZ] and the homotopy invariance of the coin-
cidence degree, we have that
Di(L — N,%) = degy(y, B N R2,0).

So, DL —N,%B) % 0, and the result is now a consequence of
degree theory (cf. [Ma, ;] ; see also the Appendix).

Case 2: g is bounded from above.
Define, for y €(0,1), the truncated functions g ' R-oR,

glx) ifx>y

&(x) = { g(y) ifx<y.
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Periodic solution having the same period as the forcing term

P

Set G,(x) = fgy(f) d¢ and consider the functionals ¢,:Hy - R,

1
T

1
) = f |3 @O = G,uw) + et a,

o

whose critical points correspond to solutions of

u” + g (u) = e(t)

(P [u(O) — w(T) =/ (0) - ’(T) = 0.

Define the set
F={ueHr:u(t)>1 for every te[0,T].
Clearly, its boundary is given by

0F ={ueHi:u(t)21 for every te[0,T], and
3, € [0,T] : uz) = 1).

2G
Since g is bounded from above, we have lim —’;(i) =0, uniformly

X—+oo X
in y€(0,1). Extending e(r) and the functions in H; by T-peri-
odicity, taking u €¥, we can use Poincaré’s inequality for u(-) — 1,
and find a constant m >0 such that

inf ¢, > —m, (2.6)
g

for every y € (0,1). We want to prove the following.

Claim. There exists y, € (0,1) such that, for every y €(0,y,), any
solution u of (P,) verifying ¢,(u) 2 —m is such that min(u) > y,, and
hence is a solution of (P).

Assume by contradiction that there are sequences (»») (u,) such
that y, < 1/n, u, is a solution of (P,), ¢,(u,) > —m and min(u,) < 1/n.

T
Since J 8, (u,()) dt = 0 and g is bounded from above by a constant
0

¢, >0, we have
f g, (u,0)| dt = J g, (u, (1) dt < c,T.
[23,<0) [0<gy,<c2]
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Periodic solution having the same period as the forcing term

So, || g, (u.() |, £2¢,T, and hence also | uy fl. <2¢,T. Since (¢,
(u,)) is bounded below and (I« ]l) is bounded, there must exist
two positive constants R,, R, such that

max (u,) € [R,, R,].

Otherwise, u,(¢) would go uniformly to 0 or to +oo, and then ¢, (u,)
would go to —ee. Let 70, t@ be such that, for sufficiently large,

1
un(Tstl)) =-< Rl = un(TSIZ))'
n
Multiplying the equation in (P,,) by u;, and integrating on [, @],
being y,< 1/n, we get
@
@O - L ety omy - 6 ()= | e
2 n\‘n 2 n\*n 1 n n

&b

Since ([l u,|l..) is bounded, we find a contradiction with (jjj). This
proves the Claim.

We now fix ye(0,5,] such that g()<0 and, by (jj),
G,(0) > m/T. Using (jj), we can find a sufficiently large R > 1 for
which G(R) > m/T. Hence, we are in the situation of the Mountain
Pass Theorem, since & is a neighborhood of R and

max {¢,(0),¢,(R),} <inf ¢,
as

(see the Appendix).

We now show that ¢, satisfies the Palais-Smale condition. Let
() be a sequence in HL such that (¢,(w,)) is bounded and
¢, () = 0 as k — oo, Then there is a constant € >0 such that, for
every v e Hi,

T

| f [V ~guv+evldt | <efv] g 2.7)

0

Taking v=1, we get
T
l f g dr | <e /T,
0
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Periodic solution having the same period as the forcing term

hence

J | g,u0) | dr <&/ T+ f g,(u(0)) d.

[gy<0] (g,20]
Since g, is bounded from above, we conclude that (|lg,(u,(-))ll,) is
T

1
bounded. Taking v=14, : = (4, — T J u f) dt) in (2.7), by the use of

0
Wirtinger and Sobolev inequalities we have that (i) has to be
bounded. Assume by contradiction that, for a subsequence,
||y = o0, as k — oo. Then, I u,(t) | — oo, uniformly in ¢ This
leads to a contradiction, since (%) and (¢,(%,)) are bounded, and,
by (/) and g(y) <0,

lim G,(x) =+ co.

[xt= oo

The Palais-Smale condition then holds (cf. [Ra]), and we can con-
clude that ¢, has a critical point u, such that

_. o
,(u,) 1Vrg max 9,(n(s)) 2 inf 9,

where I' = {# €€ ([0,1], H}) : #(0) = 0,7(1) =R}. By (2.6) and the
Claim above, u, will be a solution of (P), and the theorem is
proved.
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3. Subharmonics :
a variational approach

We consider the equation

'+ g(u) = e(s), 3.1

where g : (0, + ) — R is a continuous function, and e : R —» R is
a locally integrable periodic function with period T > 0.

Theorem 3.1. — Assume the Jollowing conditions -
. . Gx)
(Z) X EIEDO x2 B 0 ’

(@) 3d21:[xe0d™) U @ + ) = (gx) - &)x - 1)> 0] ;

(@#i) lim G(x)= lim [G(x)~- éx] =+ oo,
x=0 X = +oo

Then equation (3.1) has a sequence (xp)i> of kT-periodic solutions
whose minimal periods tend to infinity. In particular, if T is the
minimal period of e(t), (3.1) has solutions with minimal period kT,
Jor every sufficiently large prime integer k.

PROOF. — Without loss of generality, we can assume that é = ().
Define, for >0, the truncated functions & R—>R as follows :
[ 8x) ifx=>r
&%) { gl ifx<r.

We will prove the following,
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Subharmonics : a variational approach

1
Claim. For every positive integer k there exist r, R, 0 < r, < y <

d < R,, such that, for any s € (0,r,] and any kT-periodic solution

u of
u” + gu) = e(t), (3.2),
one has r,<u(f) <R,, for all t€R. In particular, any kT-periodic
solution of (3.2),, is a solution of (3.1).
In order to prove the above claim, we argue by contradiction. Let

us fix a positive integer & and assume that, for every integer n > d,

1
there exists a s, € (O, —] and a kT-periodic function u, verifying
n

U, + g, (u,) = e(t), (3.3)

1
and such that { (1) : teR } & [—, n]. Notice that, integrating (3.3),
n

one has
kT
ngn(un(t)) dt=0, 3.4)
0

so that, by (ii) and the fact that n > d, there must exist a £ € [0,kT]
1
such that u,(1") € [2 d]. After this remark, we prove that there

must exist R > 0 such that max(u,) <R for every n. For, otherwise,
there would exist a subsequence, still denoted (u,), for which
max(u,) — + oo as n — . We can then find an interval [a,,f,], con-
taining a point £ at which u,(t?)= max(x,), such that
B, — a,) <kT, and

u,(a,) = d = u,p,),
d<u,(t) <u,(i?), for all te[a,p,].

Let us consider the interval [a,f,]. Equation (3.3) can be written
as

4

u=v,+ Je(s) ds (3.5)

an

v, = —g(u,). (3.6)
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Subharmonics : a variational approach

Since v, is decreasing, one has, using (3.5),
max(u,) = d SkT(v,(a,) + | e||,), (3.7)

so that, for n large enough, v,(a,) > e],. On the other hand, by
(3.5) one has v,(#?) <[l e||,. So, there exists a 1 e(a,1?] such that
V(1) =l e |l,. We will restrict our attention to the interval [q,, /V].
One has :

G166 + 16,0~ ety -

= 8, (v (r) + f e(s) ds]+ (v, (1) — || e [l )(=g(u,()))

an

t

g ([ [ e(s)ds +| e

A

0.

v

Being (G(u,(-)) +%(vn(-) —llell,)*) increasing on [a,,£7], one has :
1
G(d) + E(VH(an) ~lell)? < Glu, ().

Using assumption (9), for any &> 0 there is C.>0 such that
Gx)<ex’+C, for every x>d.

Hence,
G+ 30,(0) ~ Il e () + C,

Chosing ¢ small enough, the above, together with (3.7), leads to
a contradiction with the fact that max(u,) — + oo as 5 —» oo, So,
we proved that there exists R>0 such that max(u,) <R for
every n.

22




Subharmonics : a variational approach

Using assumption (if) and (3.4), one has

f | g, e | ar = - f g, (u(0)) dt

[up<1/d] {up<i/d)

J g, (u,(0) dt

(up21/d]

IN

f | g, () | dt
[un21/d]
< kT max{ | g(x)] :d'<x<R}:=C.
Consequently, || g, (u,) |, £2C, and we have
lusllesllulll, <2C+] el

Now, for n >R, one that u,(f) <n for every ¢. There must then be
a 1) > £V such that (£” — £") < kT and 0 < u,(£%) < 1/n. Multiplying
(3.3) by u, and integrating over [£",£], we get

&9

1 1

E(MZ(tS’)))2 - E(Mf,(t‘""))2 + G, (")) = G, (")) = J eu, ,
&9

X

where G, (x) = f 8,(8) d&. So,

1
1
G, () < G, (u, (") + S B + el < €.

On the other hand,

1/n un (£
G, (u1s)) = ngn(é) a¢ + j &,(&) d& = G(1/n).

Since, by assumption (iii), G(1/n) — +oo as n —> oo, we get a con-
tradiction, and the Claim is proved.
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Subharmonics : a variational approach

We will now deal with equation (3.2),,. Denoting by G, a
primitive of g,, we have :

@y lir? inf 6. =0;

Ix| 5w
@@y x€(0,d™") U (d + ) =2gM®x-1)>0;
(i) lim inf G, (x) = +oo.

[x] 5
Let us consider the functional g, : H;; — R defined as

kT

1
Puu) = f 567 - G+ ]

0

whose critical points correspond to kT-periodic solutions of (3.2),. 1t
is straightforward to see that, writing H.r, = R & Hir, () and (iiiy
give us the geometry of the Saddle Point Theorem (see the Appendix).
Accordingly, each u € H; will be written as u = 5 + i, where 7 e R
and & € H};. We will denote the norm in H;; simply by || - |.

We now prove that the Palais-Smale condition holds for the
functionals ¢, Fix k and let (u,) be a sequence in H,; such that
(¢i(u,)) is bounded and @j(1,) — 0 as n — 0. Assume by contradic-
tion that, for a subsequence, || u, || — o as n — oo

First of all we prove that, in this case, | i, | o and

limw=
noe |, |

0. 3.8)
By (i)', for any &> 0 there is a ¢, 20 such that
G, (x)<ew’ +c,

for every xeR. Choosing & small enough, using Wirtinger’s
inequality we get

kT kT kT kT

1
o) 2 3 f @) ¢ J i, ~ KTei, = kT, - ( f e)( f )"

0 0 0 0
kT

1

>~ f (&) — kTei ~ ¢,

4

0
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for some ¢, > 0. This implies that | 7,| — o as n — . In fact, if
this were not true, a subsequence of (#,) would be bounded. Since
(pdu,)) is bounded, (&,) would be bounded, too, contradicting the
assumption that (|| u,| ) is unbounded. From the above, we have

kT

1 U4
= J (@) < 4kTe + =%,

0

for some ¢, > 0. Using Wirtinger’s inequality, (3.8) easily follows.
As a consequence of (3.8), we have that

min |u,(t)] — oo, (3.9)
t €[0,kT]

as n — oo, Since ¢(u,) — 0, there exist a constant C >0 such that
| @(u)v| < C | v||, for every v € H;;. In particular, taking v= 1, we
get

kT
| J g, (u,(0) dt | < CKT. (3.10)
0
On the other hand, taking v = #,, we have
kT
1
| f 5@ - g (), + en|de | sl G
0

By (3.9) and (ii)’, for n large enough we have

kT kT
| f g, (0) dr| = flg,xu,,(:))l d,
0 0

and from (3.10) and (3.11) we can conclude that (i7,) is bounded.
kT

Since (¢(u,)) is bounded, we have that (JG,&(u,,(t)) a’t) has to be

0
bounded, as well. But this is in contradiction with (3.9) an (iii)’.
Hence, (u,) has to be bounded, and the Palais-Smale condition
holds.
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We can conclude that there is a sufficiently large p, >0 and a
critical point u, of ¢, such that

¢du) = inf max g,(n(¢)),

nely &el—prpy)

where TI',={ne C[=pwpil, Hi) : nEp)==tp). We will take
P2 k.
We want to prove that

1
lim — g, (u,) = —oo. (3.12)
k—y00 k

In order to do this, define M € C([=pwpid, HYy) as
[El . 27
(EXt)=¢+ — =} sin (—|.
OO =&+ 2k(1 =22 sin (71
Since, by a Fourier series’ argument,
kT kT
d
f e(On(&)() dt = - J E(f)a—,tm(f)(f) dr=0
0 0
(here E(®) = f e(s) ds), we have

0

1 47
—_ S —
§ omax P(m(&)) T

2n

T
min — fG,k (é+2k(1 —'—é—') sin.s ) ds.
Sel-proi) 2T Pi

0

It is not difficult to see that, for ¢ €[-p,p,], one has

|:+2k<1—'pﬂ)sins|zk

k

2
on a subset of [0,27] of measure at least (3") Since, by (iiiy, G,

can be chosen to be positive on R, we get

1 47’ T\/2 .
X () < = = ()57 min{G, (k.G (k)

The right hand side tends to —oo as k— oo, and (3.12) follows.
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Assume now by contradiction that the minimal periods of the
solutions (x,) do not tend towards infinity. Then, for a subsequence,
there would be a common period, say T. By the Claim proved
above, the set of kT-periodic solutions of the equation (3.2), is
bounded away from zero and from above, uniformly with respect
to k. This easily gives a contradiction with (3.12). If k is a prime
integer, the solutions u, which are not T-periodic must have mini-
mal period AT, and the proof is thus completed.
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4. Appendix

4.1 UPPER AND LOWER SOLUTIONS

Let T>0 be a given period, and a, B be two functions in the
Sobolev space W*!([0,T],R), such that

a(?) < f(0),

for every 1€[0,T]. Let Q = {tx) €[0,T] xR : a(f) <x < B}, and
let g: Q>R bea Caratheodory function.

Consider the periodic problem

[—u" =g(tu)

(Py) u(0) = u(T) = u’(0) — u’(T) = 0.

DEFINITION 4.1.1. We say that a is a lower solution Jfor problem
Py if
—a’ () < g(ta(t)) ae. in [0,T]
[a(O) =a(T), a’(0) 2 a’(T).

In an analogous way, B is an upper solution Jor (P) if

{ B 2gtp) ae. in [0,T]
BO)Y=A(T), f(0) < B/(T).

The following theorem was proved under more regularity
assumptions by Knobloch [Kn]. A modern treatment can be found
in [Ad], [HS] and [Ma,].
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THEOREM 4.1.1. Assume that problem (P,) has a lower solution a
and an upper solution B satisfying

a(r) < B0,
Jor every t €[0,T). Then problem (P,) has a solution u such that
a(t) < u(?) < (1),
Jor every t €[0,T].

4.2 THE COINCIDENCE DEGREE

Let X and Z be real normed vector spaces. A linear mapping
L:D(L)c X — Z is called Fredholm if the following conditions
hold :

(/) ker L=L""(0) has finite dimension ;
(7)) R(L) =L(D(L)) is closed and has finite codimension.

The index of L is the integer dim ker L — codim R(L). We will
assume L to be Fredholm of index zero.

There exists a continuous projector P: X — X, a projector
Q:Z — Z such that R(P) =ker L, ker Q=R(L), and a bijection
J:ker L = R(Q). It is then easy to verify that L + JP : D(L) > Z is
a bijection.

Let Ac X and N: A — Z a mapping. It is clear that the equa-
tion
Lx+Nx=0 4.2.1)
is equivalent to the equation
(L+JPx+(N-JP)x=0,
and hence to the fixed point problem
x+(L+JP)" (N-JP}x=0. (4.2.2)

It is not difficult to see that we have the equivalence between
(4.2.1) considered in D(L) N A and (4.2.2) considered in A. Notice
also that (L + JP)™ JP is a linear, continuous operator of finite rank
in X, and hence a compact operator.

Let E be a metric space and G:E — Z be a mapping.
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DEFINITION 4.2.1. We say that G:E — 7 is L-compact on E if
(L+JPY'G:E— X is compact on E.

ForEcX,X=ZandL= I, this concept reduces to the classical
one of compact mapping introduced by Schauder.
Using the projectors P and Q introduced above and letting

KPQ = (LID(L)nkerP)gl(I -Q),

(Kpq is the right inverse of L associated to P and Q), it is easy to
verify that G: E — Z is L-compact on E if and only if QG:E—»Z
1s continuous, QG(E) is bounded and KpoG : E = X is compact. Of
course, if L: D(L) — Z is invertible, the L-compactness of G on E
is equivalent to the compactness of L'G on E.

HG: X5 2Zis L-compact on each bounded set B X, we shall
say that G is L-completely continuous on X. The following useful
property of linear L-completely continuous mappings can be
proved using the definition of L-compactness.

PROPOSITION 4.2.1. If A : X — Z is linear, L-completely continuous
on X and if ker(L+ A)= {0}, then L+ A : D(L) = Z is bijective
and, for each L-compact mapping G:E—Z, the mapping
(L+A)'G:E X is L-compact on E.

Let us denote by C, the set of couples (F,$2) where the mapping
F:DIL)N 2 —Z is of the form F=L+N with N: Q-7 L-
compact and 2 is an open bounded subset of X, satisfying the con-
dition

0 F(D(L) M 392).

A mapping D; from C, into Z will be called a degree relatively
to L if it is not identically zero and satisfies the following axioms.

1. ADDITION-EXCISION PROPERTY. If (F,2)eC_ and Q, and @, are
disjoint open subsets in £ such that

0 F[D(L) N (2\ (2, " Qy))],
then (F,Q2)) and (F,2,) belong to C; and
D\ (F,©2) =D,(F,Q)) + D (F,2,).
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2. HOMOTOPY INVARIANCE PROPERTY. If I is open and bounded in
X % [0,1], % : (D(L) " I') x [0,1] = Z has the form

#H(x,A)=Lx + N(x,4),
where N:T'— Z is L-compact on I, and if
H(x,4) # 0
for each x e D(L) n (dI'), and each A €[0,1], where
@), ={xeX:(x4) eadl}

then the mapping 2 — D (%€(.,4),I'A) is constant on [0,1], where T,
denotes the set

{xeX: (x4 el'}

The following properties are simple consequences of the
axioms.

ExcisioN PROPERTY. If (F,.2)eC, and if Q, < Q is an open set
such that

0¢FDL) N (2\ 2),
then (F.Q,)eC, and D, (F,Q2)=D, (F,Q).

EXISTENCE PROPERTY. If (F,Q2) € C_ is such that D (F,Q) # 0, then
F has at least one zero in .

BOUNDARY VALUE DEPENDENCE. If (F,2) e C, and (G,2) e C, are
such that Fx=Gx for each xeD(L)ndQ, then
D, (F,©) = D.(G,9Q).

A degree D, will be said to be normalized if it satisfies the
following third axiom.

3. NORMALIZATION PROPERTY. If (F,Q) € C,, with F the restriction
to @ of a linear one-to-one mapping from D(L) into Z, then
DF-52) = 0 if beFDODL)N Q) and |[D(F-5R) =
1ifbe F(D(L) N Q).

A mapping degree D, was first constructed by Kronecker in
1869 when X =Z =R", F is of class C', Q2 has a regular boundary
and 0 ¢ F(02), and then by Brouwer in 1912 when X and Z are
finite dimensional oriented vector spaces, F is continuous and
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0 ¢ F(09) (it is called the Brouwer degree and usually denoted by
deg(F,2,0)). In 1934, Leray and Schauder constructed a mapping
degree D, when X=2Z is a Banach space, F=1+4+N with N:
@ —X compact and 0e(I+ N)(092) (it is called the Leray-
Schauder degree, and, as it reduces to the Brouwer degree when
X is finite-dimensional, it will also be denoted by deg(F,Q,0)).
Those degree mappings satisfy the three axioms above and further
properties that we will use freely in the sequel.

We will define now a generalization of the Leray-Schauder
degree which was introduced by Mawhin in 1972. A systematic
exposition will be found in [Ma, ;].

Let (F,©2) € C,, with F =L + N. Denote by 6(L) the set of linear
completely continuous mappings A:X —>Z such that
ker(L + A) = {0}. By Proposition 42.1, L+ A:D(L) > Z is bijec-
tive and (L + A)™'G compact over E c X whenever G : E—>ZisL-
compact.

One can prove that if A €%(L) and B €€(L), and if we set
Ag .= (L +B)"'(A - B),then Ag . is completely continuous on X
and

I+(@L+B)' (N=B)=(I+Ag )T+ (L +A)'(N - A)].

It is easy to check that ker(I+ Aga) =ker(L + A) = {0}, and
hence, by the product formula of Leray-Schauder degree, we obtain
D(I+(L +B)"'(N-B),Q)
= DI+ A 0, B(m). DI HL + A) /(N - A),),
where >0 is arbitrary and B(r) = {xeX:|x|<r}. We can now
define a relation in 6(L) by B~ A if and only if Di(I + Ag 5,B(r))
= +1. It is an equivalence relation over @(L). If we fix an orienta-
tion on ker L and on coker L = Z/R(L), we can for example define
€.(L) as the class containing the application A of the form ng AP,
where A :kerL —s>cokerL is an orientation preserving
isomorphism and Mg is the restriction to R(Q) of the canonical pro-

jection 7 : Z — coker L. Setting J=17y A : ker L — R(Q), it is easy
to compute that

(L+JIP)'=J'Q+ |
and hence
I+ (L +JP)'(N-JP)=1-P+J'QN + KpoN.
The following definition is therefore Justified.

32




Appendix

DEFINITION 4.2.2. If (F,Q) € C,, the degree of F in Q with respect
to L is defined by

D (F.Q)=D(I+(L+A)'(N-A)Q)
=deg(1+ (L + A)'(N — A),Q,0),
Sfor any A e (L).
It is easy to see, using the properties of the Leray-Schauder
degree, that D, satisfies the three axioms of the previous section
and reduces to D,=degif X=Z and L=1. The existence and

homotopy invariance properties of the degree easily lead to inter-
esting existence theorems.

THEOREM 4.2.1. Let (H,2)eC, and F=L+N with N: Q > ZL-
compact and 2 open and bounded in X. Assume that the following
conditions are satisfied.

(i) AFx + (1 — )Hx # 0 for each (x,2) e (D(L) N 92) x ]0,1[.

(i) DL(H,Q) # 0.

Then the equation Lx + Nx=0 has at least one solution in
D(L) N Q.

In order to compute the degree in practical situations, we now
consider the case of an autonomous ordinary differential equation.

Let w>0 be fixed, €,={x e G(RR"): x(¢ + w) = x(t),t € R}
with the sup norm. Define the linear operator &£ in €, by D(¥) =
{xe€, xisof class C'} and (£x)(f) = x'(¢) (teR). If g : R" > R"
is continuous, we shall consider the w-periodic solutions of the
autonomous differential equation

X' () = q(x(2)). (4.2.3)
If 2:6,— %, is the continuous mapping defined by
(2x)(1) = q(x(2)),

then finding the w-periodic solutions of (4.2.3) is equivalent to
solving the abstract equation

Fx = dx
in D(¥). Now, x eker &£ if and only if x € D(¥) and
x(t)=ceR"

for all teR", so that ker & = R".
The following result is proved in [CMZ, Lemma 1].
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THEOREM 4.2.2. Assume that q:R"—>R" is continuous and that
there exists an open bounded set Q €€, such that (4.2.3) has no
solution on 9Q. Then

Dy(¥£ - 2,Q) = (~1)" deg(g, 2 N R",0)

where R" is identified with the subspace of constant Junctions of

@,

4.3 MOUNTAIN PASS AND SADDLE POINTS

Let E be a Banach space, and p:E—>Rbea continuously dif-
ferentiable functional.

DEFINITION 4.3.1. We say that ¢ satisfies the Palais-Smale condi-
tion if every sequence (u,) in E Jor which (p(u,)) is bounded and
¢’ (u,) >0 as n - o has a converging subsequence.

The following result is due to Ambrosetti and Rabinowitz [AR],
and is known as the Mountain Pass Theorem.

THEOREM 4.3.1. Assume that ¢ : E > R satisfies the Palais-Smale
condition. Let uy and u, be two points in E and let ¥ be g
neighborhood of u, which does not contain u, and is such that

max {g(u,),p(u,)} < ianyf 0.
Then ¢ has critical point ue E such that

¢(u) = inf max p(y(s)),

nel sef0,1)
where I' = {5 & C([0,1LE) : #(0) = uy, (1) = u,}.
We denote by By the open ball centered at 0 with radius R > 0,

The following result of Rabinowitz (cf. [Ra]) is known as the Sad-
dle Point Theorem.

THEOREM 4.32. Let E=V & W, where V is finite dimentional non-
trivial subspace of E. Assume that ¢ : E — R satisfies Palais-Smale
condition, and that there is a constant R >0 such that

max ¢ < inf ¢.
9BrNV 4 w ¢
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Then ¢ has a critical point u &E such that

¢(u) = inf max ¢(#()),

nel’ {eBrnV

where I' = { e C(By N V,E) : NoBg ~v = id}.

The above results, very often used in the applications, have their
origin in the work of Palais and Smale, who succeded in extending
to infinite dimensional spaces the theories of Morse and Lusternik-
Schnirelman. Actually, one could write a single minimax theorem
generalizing both the above results. However, we prefer to state
therm in this simple way, which makes them easy to apply.

When considering a periodic problem

—u” = g(tu)

(P {u(O) - u(T) =4/ (0) — u/(T) = 0.

where g - [0,T] x R — R is a Caratheodory function, we can define
a functional on a Hilbert space whose critical points correspond to
solutions of (P,). Let Hr = {u e H'([0,T,R) : «(0) = u(T)}, where
H'([0,T,R) is the Sobolev space of functions with a square

X

integrable derivative. Set G(z,x) = f g(t.&) dé, and define the func-

0
tional ¢ : H; — R as follows :

o(u) = f [%(u’(t))z - G(z,u(z))] dt.

It can be proved that functional ¢ is continuously differentiable and
that its critical points are the T-periodic solutions of (P,). One has

¢ (u,)v = J [ (V' (1) — gltu, (VD)) dt,

for every v e Hy. Concerning the Palais-Smale condition, for this
particular type of functional we have the following.

PROPOSITION 4.3.3. The functional ¢ defined above satisfies the
Palais-Smale condition if every sequence (u,) in E for which
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(p(u,)) is bounded and 9’ (1,) >0 as n— o has 4 bounded sub-
sequence.

Proof. 1t is sufficient to show that if (u,) is a bounded sequence
such that ¢'(u,) >0 as n —> oo, then (u,) has a convergent sub-
sequence. Being (u,) bounded, there is a y € Hi such that a sub-
sequence (u,) converges weakly in H' and uniformly to u. We
have

T

O W)t = 4) = ¢ (U, — u) = J W, (&) = u'(0) dt -

0
T

- f (e, (1)) ~ g(tu(@)) () — u(2))] at.

0

Since 9'(u,) — 0, the left hand side converges to zero. The same

i1s true for the second term of the right hand side, by the uniform
T

convergence. It follows that f ', —u'|* dt converges to zero, and

0
hence (u,,) converges strongly in H' to 4.
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