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ABSTRACT. We consider the system of second order differential equations 

Ulf + VG(u) = e(t) =_ e(t + T), 

where the potential G: R"n -+ R is not necessarily convex. Using critical point 
theory, we give conditions under which the system has infinitely many subhar- 
monic solutions. 

INTRODUCTION 

In this note, we consider the following system of second order differential 
equations: 

(1) u" + VG(u) = e(t). 

Here, G: R n -* R is a continuously differentiable function with gradient VG 
and e: R -* JR' is a continuous periodic function having a minimal period 
T > 0. We are interested in the existence of subharmonic solutions of (1), i.e., 
of periodic solutions of (1) having minimal period in the set {k T: k E N, k > 
2}. The existence of this type of solutions is not always guaranteed, as the case 
G 0_ shows. Indeed, in this case, every periodic solution of (1) has minimal 
period T (see [8]). 

There have been various types of results concerning the existence of subhar- 
monic solutions to systems like (1) or to more general first order Hamiltonian 
systems. These have been obtained either by perturbation techniques [1, 2] or, 
starting with [12], by some global approach. Most of the results proving the 
existence of subharmonic solutions in the above sense, however, have made use 
of a convexity assumption on the potential [3, 6, 7, 10, 11, 14-16], or else some 
"generic" type results were proved [4, 8]. For n = 1, the case of superlinear 
nonlinearities has been studied in [5, 9] by phase-plane methods. 

Here we prove the existence of subharmonic solutions without assuming the 
convexity of G by simply making some careful estimates on the critical levels 
of the functionals associated to the problem. 
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2. THE MAIN RESULT 

Our main result concerning the system (1) is the following one, where we 
denote the mean value of e(t) by e, i.e., 

I 
jT Z 1j T e(t)dt. 

Theorem 1. Assume that the range of VG is bounded, 
(i) 3M > 0: Vu E Rll . IIVG(u)ll < M. 

If moreover 
(ii) limjjujj,o,(VG(u) - e, u) = +xo, 

then system ( 1), besides having at least one T-periodic solution, also has periodic 
solutions with minimal period k T, for any sufficiently large prime number k . 

In the proof of Theorem 1 we will consider, for every positive integer k, the 
continuously differentiable functional 

(Pk(U) = /;{ |u'||'-G(u) +(e,u)} dt, 

defined on the space HkT of kT-periodic absolutely continuous vector func- 
tions whose derivatives have square-integrable norm. We will denote the usual 
norm in HkT by I| * ||kT One has 

kT 

=(V f{(u' v') - (VG(u), v) + (e, v >)}dt, 

and it is well known that the critical points of the functional P9k correspond to 
the kT-periodic solutions of the system (1) (cf. [10, 13]. 

In the first step, we will show that the set ST of T-periodic solutions of (1) 
is bounded in HT . As a consequence, (01 (ST) is bounded, and, since for any 
U E ST one has ok(u) = kil(u), we have 

3c>0:VuEST, Vk>1, TI9k(u)? < c 

Next, we will show that, for every positive integer k, one can find a kT- 
periodic solution uk of (1) in such a way that the sequence (Uk) has the prop- 
erty 
(2) lim 

k-lm7jok(Uk) =-00. 

This will be done by the use of some estimates on the critical levels of (Pk given 
by the Saddle Point Theorem of Rabinowitz. Consequently, for k large enough, 
Uk 0 ST, and if k is chosen to be a prime number, the minimal period of uk 
has to be k T. 

The following lemma will be needed for the study of the geometry of the 
functionals (Pk . It also shows that Theorem 1 improves a result in [7] obtained 
for systems like (1) with a convex potential G by the use of Morse theory. 

Lemma 1. If the assumptions of Theorem 1 hold, then 
(ii') lim11a11..+o0(G(u) - (e, u)) = +oo. 
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Moreover, condition (ii) happens to be equivalent to (ii') whenever G is assumed 
to be convex. 
Proof. Assume (i) and (ii) in Theorem 1. Let R > 0 be such that 
(3) Ilull > R =a (VG(u) - e, u) > 1. 
Then, for Ilull > R, we have 

R/lllull rl 

G(u) - (e, u) = G(0) + ] (VG(su) - e, u)ds + (VG(su) - e, u)ds 
f1 1~~~~~111 

> G(O) - (M + JIIII)R + | -ds 
R/lull S 

- G(O) - (M + jIIII)R + log( RI1l) 
and (ii') follows. 

Now assume G to be convex. Then, for every x, y E Rn , we have 

(4) G(y) > G(x) + (VG(x), y - x) 
(cf. [10]). Choosing y = 0 shows that (ii') implies (ii). On the other hand, if 
(ii) holds, we can choose R > 0 for which (3) is satisfied. Using (4) again, we 
get: 

G(u) - (e, u) > G u) - (e, 1u 

R IIvIR=R +(1 
1 

l)VGg lu - e, ~11 l 

> Ilull _1 + min { G(v) - (e~, v)}, 
and (ii') follows immediately. 
Proof of Theorem 1. First of all, we notice that it is of no loss of generality to 
suppose that e = 0 and, in view of Lemma 1, that G(u) > 0 for every u. 
Hence we will assume this throughout the proof. As we explained above, we 
begin the proof by showing that the set ST of T-periodic solutions of (1) is 
bounded in HT. Assume by contradiction that there exists a sequence (un) in 
ST such that IlunlIT -x oc. Let us write un(t) = -i,n + iin(t), where -n is the 
mean value of un . Multiplying both sides of the identity 
(5) u"(t) + VG(un(t)) = e(t) 
by iin(t) and integrating, we obtain 

T T {T -T IIiIInll2 + j(VG(un), in) = j (e, in). 

Using assumption (i), we easily deduce that (iin) is bounded in HT. Hence, 
(6) mmn llun(t)11 - 00. 

0<t<T 

Multiplying (5) by un and integrating, we get 
t t +t 

(7) - ii,n, l +/ ,,(u ) un 
. 

,e\ , iin 
\ 
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Now, since (ii) is bounded in HT, we deduce from (7) that 

( (V G (un ), Un )) 

is bounded, but this is in contradiction with (6) and assumption (ii). 
Now we need to show that, for every positive integer k, one can find a critical 

point Uk of the functional 0k in such a way that (2) holds. To this aim, we 
will apply the Saddle Point Theorem (cf. [13, Theorem 4.6]) to each of the 
(Ok 's. Let us fix k and write HkT = n HkT, where Rn is identified with the 
set of constant functions and HkT consists of functions ii in HIT such that 
fkT U(S)ds = 0. First, we prove the Palais-Smale condition. Let (un) be a 
consequence in HIT such that lPk(un) is bounded and (o'(un) -O 0 as n ox . 
In particular, for a positive constant cl, we will have 

kT 

(of(un)in = j {11i4112 -_(VG(un) iin) + (e, iin)}dt < Cl1iinIIkT. 

Then it follows from (i) that (in) is bounded in HkT. Since 

(Pk(Un) = Jo {Iii 112-G(u) + (e in)}dt 

is bounded, it then follows from the uniform boundedness of (iin) and from 
(ii') in Lemma 1 that (0h) has to be bounded too. So (un) is bounded in 
HkT, and it is now a standard argument to show that (un) has a convergent 
subsequence (see [13, Appendix B]). Hence, the Palais-Smale condition holds. 

It is easy to show that (i) yields the coercivity of (Pk on HkT, while (ii), 
through (ii') of Lemma 1, yields the coercivity of (-(Ok) on Rn. For r > 0, 
let us denote by Dr the closed disc in n centered in 0 with radius r, and by 
aDr its boundary. It follows from the above that, for a sufficiently large rk, 
one has 

inf (Pk > max (Pk 
HkT Drk 

so the assumptions of the Saddle Point Theorem are all satisfied, and we can 
find a critical point xk Of (Pk such that 

(Pk(Xk) = inf max 
yEFk ~ED rk 

where fk = {Y E C(Drk, HkT): y = id on aDrk}. In particular, (PI has a 
critical point, i.e., (1) has a T-periodic solution. 

In order to prove that the sequence (Xk) satisfies (2), we will show that for 
every m > 0 there exists a positive integer k such that, for each k > k, we 
can construct Yk E C(Drk, HIT) with the property that 

max (Pk (OYk)) < 
- m. 

t rk ae c 

First of all, we notice that rk above can be taken such that 
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Let us fix m > 0. using (ii') of Lemma 1, take k such that 

(9) llxii k T= G(x) > (3mT + 24n7r2)/T2. 
For k > k, we construct Yk E C(Drk, HkT) as follows 

Yk(=)(t) = + (1 - IIII/rk)wk(t), 

where Wk (t) is the vector function Wk (t) = (wI (t), ... , wn (t)) with wk (t) = 
2k sin(27rt/kT), i =1, ..., n.Then we have 
(10) 

1 1 fkT[{ 1 [( lII) 27r 2r\] 2 - max(okkQ'k(c) = max - ,2v- Cos(=tJ 
k ~ED rk k ~E k 

2 kk kT(1/ 

- G(yk(0)(t)) + (e(t), Yk(c)(t))} dt 

8n7r2 T 27r/14 ~ k 
< T~ - min 2 0 G (+(-r)Wk ( 7 ) ds , 

since, by a Fourier series argument 
kT 

J (e(t), yk(@)(t))dt = 0. 

We claim that, for every 4 E D rk one has 

(0 1) | + (1- r ) Wk (275)| > k 
on a subset of [0, 27r] having measure of at least (247r). Let i be such that 
I71 = max{JjII, i = 1, ., n} . If > 0, for every s E [17r,6 7r], we have 

1l ( ~rk ) (2 7 t rk ) 

= |I (ki .)( + "-)2k sin s > k 

since (rkX7/II1II) > k by (8) and 2k sin s > k for s E [ ir 7,7] With a 
similar computation, one can see that, whenever . < 0, (1 1) holds for every 
s e [7zr, 1 1 ]. In the case = 0, i.e., = , one has (1) for both s e 

'6 
6 

i~tr [ 6 i , ' 6 r] and s E [ 7 7Z ' II, proving the claim. 
Using (9) and the fact that G is supposed to be nonnegative, from (10) we 

get 
1 8nir2 T (2'\ 3mT +24nir2 
k EDrkQ'k)) ? - T 2 7t3 T2 = 

and the proof is complete. O 

3. THE CASE N = 1 

When dealing with the scalar equation 
(12) u" + g(u) = e(t) 
we are able to prove a result with less restrictive assumptions on the nonlinearity 
than those required in Theorem 1. 

We set G(u) = fou g(x)dx and, as before, e = T fj'e(t)dt. 
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Theorem 2. Assume the following conditions: 
(j) limIulo sup g(u)/u < (27r/T)2; 

(jj) 3d > 0: V Jul > d, (g(u) - e~)u > O; 
(jjj) limjuj,O 2G(u)lu 2 = 0; 
(jv) lim1uj,0(G(u) - eu) = +oo. 

Then equation (12), besides having at least one T-periodic solution, also has pe- 
riodic solutions with minimal period k T, for any sufficiently large prime integer 
k. 
Proof. We follow the same ideas of the proof of Theorem 1. Again we can 
assume without loss of generality that e = 0 and G(u) > 0 for every u E R. 
In order to prove the boundedness of the set of T-periodic solutions we argue 
by contradiction. Assume that there exists a sequence (un) in ST such that 
lunJlJlIT ox . By (j) and (jj), we can write 

g(u) = go(u)u + g1(u), 
where 0 < go(u) < (27r/T)2 - 3 for some 3 > 0 and every u E R and the 
range of g, is bounded. Setting vn = un / II unJJT, we have 

(13) v' + g0(un)vn + 1g(un) = e(t) 
(13) v+go(un)vn+IlunlIIT -IlunlIlT 

Hence, (vn) is bounded in C2, and a subsequence converges strongly in C' 
to a certain map v . The sequence (go(un)) converges weakly in L2 to some 
oa(t) that, by the weak closure of the convex set {f E L2: 0 < f(t) < (27r/T)2 - 
3, a.e., t}, satisfies 
(14) 0 < ca(t) < (27r/T)2 _ - 

for almost every t . Passing to the weak limit in ( 13) we get 
( 15) v"f + az(t)v = O 
Since IIVIIT = 1, it follows from (14) and (15) that ca - 0. Hence, v is a 
constant, and (un) is such that 
(16) min Iun(t) 00 

O<t<T 

but, integrating equation (12) gives 
T 

g(un(t))dt = 0, 

which is in contradiction with (jj) and (16). 
Let us prove the Palais-Smale condition for the functionals (Pk . Fix k, and 

write HT R= R F HkT. Let (un) be a sequence in HkT such that ok(uf) is 
bounded and (oP(un) -* 0 as n -x oo. Assume by contradiction that, for a 
subsequence, llunllkT -x o0. First we prove that, as n -x oc, l *nI X and 

(17) IIUnIIkT 0 

Fix e > 0 sufficiently small. Condition (jjj) implies that there is a ce > 0 such 
that 

G(u) < e 2 +ucc 
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for every u E R. Then, 

1O(n ? kT 
- k kT ii g-2 (Pk (Un) > 1*-l; (un)2 e Un Un 

- kTC - ( kT) 1/2 (kT) 1/2 - kTc, - ( oe2) ii 

1 ~kT (18) > I(u' )2 _ 2 _ Cc' 4 j0l 
8f 

for some constant c, > 0. We have used the Wirtinger inequality, assuming 
that e is small enough. Since (Pk(Un) is bounded, it follows that In I -, 00, 
since otherwise, for a subsequence, (Iun 1) would be bounded and, by (18), (iU) 
would be bounded too, contradicting the fact that IlunllkT ox. Moreover, 
multiplying (18) by (1 /uin2), one can find a constant c,' > 0 such that 

fia 2 2 2 

for n sufficiently large. Hence, we proved that 

lim jn) = 0. 
n-+oo Un2 

By the Wirtinger inequality, (17) easily follows. Using the Sobolev inequality, 
we can deduce from (17) that 
(1 9) min I Un(t) I -*+00, 

O<t<T 

as n -x 00. Since (P (un) -) 0, there exists a constant cl such that I (Pk (un) h ? < 
cl llhllkT for every h E HIkT. In particular, taking h 1, we get 

kT 
(20) 1 g(un(t))dt < cjkT, 

while, taking h = in, we have 

(21) iiT 2- g(un)iin + eiin}dt < Cil1U1n1kT 

Using (19) and (jj), for n large enough, one has 

jkog(Un(t))dt = j 1TIg(Un(t))Idt, 

and from (20) and (21) we have that (i4n) is bounded. (ok(un) being bounded, 
we conclude that (fJT G(un(t))dt) has to be bounded too, but this is in contra- 
diction to (19) and (jv). Hence, the sequence (un) has to be bounded, and the 
Palais-Smale condition holds. 

The geometry of the functionals (0k are easily handled through conditions 
(jjj) and (jv), showing that we are in the hypothesis of the Saddle Point Theorem. 
Finally, one can use, and indeed simplify, the argument ending the proof of the 
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Theorem 1 to prove that (2) holds for the sequence (Uk) of critical points found 
in this way. O 

Theorem 2 improves a result in [7] where the function g was supposed to 
be increasing. As an easy consequence, we have the following 
Corollary. Assume that 

(j') limIUI', g(u)/u = 0, 
(jj') limjuj,0 inf(g(u) - e)u> 0 

Then the conclusion of Theorem 2 holds. 

REFERENCES 

1. V. Benci and D. Fortunato, A Birkhoff-Lewis type result for a class of Hamiltonian systems 
Manuscripta Math. 59 (1987), 441-456. 

2. G. D. Birkhoff and D. C. Lewis, On the periodic motions near a given periodic motion of a 
dynamical system, Ann. Mat. Pura Appl. 12 (1933), 117-133. 

3. F. Clarke and I. Ekeland, Nonlinear oscillations and boundary value problems for Hamilto- 
nian systems, Arch. Rational Mech. Anal. 78 (1982), 315-333. 

4. C. Conley and E. Zehnder, Subharmonic solutions and Morse theory, Physica A 124 (1984), 
649-658. 

5. T. Ding and F. Zanolin, Periodic solutions of Duffing's equations with superquadratic poten- 
tial, preprint. 

6. I. Ekeland and H. Hofer, Subharmonics for convex nonautonomous Hamiltonian systems, 
Comm. Pure Appl. Math. 40 (1987), 1-36. 

7. A. Fonda, M. Ramos, and M. Willem, Subharmonic solutions for second order differential 
equations, preprint. 

8. A. Fonda and M. Willem, Subharmonic oscillations offorced pendulum-type equations, J. 
Differential Equations 81 (1989), 215-220. 

9. H. Jacobowitz, Periodic solutions of x" + f(x, t) = 0 via the Poincare-Birkhoff Theorem, 
J. Differential Equations 29 (1976), 37-52. 

10. J. Mawhin and M. Willem, Critical point theory and hamiltonian systems, Springer-Verlag, 
New York, 1988. 

11. R. Michalek and G. Tarantello, Subharmonic solutions with prescribed minimal period for 
nonautonomous Hamiltonian systems, J. Differential Equations 72 (1988), 28-55. 

12. P. H. Rabinowitz, On subharmonic solutions of Hamiltonian systems, Comm. Pure Appl. 
Math. 33 (1980), 609-633. 

13. , Minimax methods in critical point theory with applications to differential equations, 
CBMS Reg. Conf. Ser. in Math. no. 65, Amer. Math. Soc., Providence, RI, 1986. 

14. G. Tarantello, Subharmonic solutions for Hamiltonian systems via Zp-pseudo index theory, 
preprint. 

15. M. Willem, Subharmonic oscillations of convex Hamiltonian systems, Nonlin. Anal. 9 (1985), 
1303-1311. 

16. Z. Yang, The existence of subharmonic solutions for sublinear Duffing's equation, preprint. 

INSTITUT DE MATHEMATIQUE PURE ET APPLIQUEE, UNIVERSITE CATHOLIQUE DE LOUVAIN, 
CHEMIN DU CYCLOTRON 2, B- 1348 LOUVAIN-LE-NEUVE, BELGIUM 

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF MIAMI, CORAL 
GABLES, FLORIDA 33124 


