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1. INTRODUCTION 

IN A 1967 PAPER, Loud [25] obtained sharp nonresonance conditions for the second order 
differential equation 

-xn = g(x) + h(t). (1) 

More precisely, assuming g to be an odd function of class C’ and h to be a continuous 
T-periodic function, h being even and odd-harmonic, he proved the existence (and uniqueness) 
of a T-periodic solution to (l), whenever the range of the derivative of g does not interact with 
the set of eigenvalues ((21~i/T)~, i = 0, 1 , . . .) of the differential operator, i.e. for some n E N, 

2nn 2 (3 T 
<orgyx)rb<(Z.(y)2), (XER). 

That theorem was generalized by Leach [24], who obtained the same existence condition, 
without assuming g to be odd and without hypothesis on h other than the continuity and the 
T-periodicity. Similar sharp existence results for equations whose nonlinear part has linear 
growth had already been given by Dolph [13] for elliptic equations. 

In recent years, much effort has been devoted to generalize the above existence result. We 
would like to distinguish between two different branches along which the theory developed. 

First of all, it was shown by Mawhin [26] that condition (2) can be weakened to 

(3) 

still ensuring the existence of a solution to equation (1). 
On their part, Lazer and Leach (231 considered the resonance situation when equality can 

replace one of the strict inequalities in (3). In this case, besides a restriction on the growth 
of g, they introduced some conditions at resonance which are nowadays known as Landesman- 
Lazer conditions, after the generalization operated in [21]. More precisely, assuming 
(g(x) - (27~r)/T)~x to be bounded, it was proved in [23] that a sufficient condition for the 
existence of a solution to (1) is the following: 
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It can also be shown that in some cases, the above condition is also necessary for the existence 
of a solution to equation (1). 

These one-sided resonance situations have been extensively studied in the sequel (cf. [12, 16, 
19, 27]), and abstract versions were provided in [5, 8, 11, 301. 

In a recent paper [14], the authors considered even the situation where double resonance can 
arise, i.e. when both strict inequalities in (3) can be replaced by equalities. They proved the 
existence of T-periodic solutions under Landesman-Lazer type conditions at both sides. Other 
types of conditions at resonance have been considered, e.g. in [l, 31, 321. 

The other direction followed to generalize the result of Loud was introduced by Lazer [22] 
and Ahmad [2]. They considered an M-dimensional system of the form 

-x” = grad G(x) + h(t), (4) 

and replaced condition (2) by a corresponding one involving the Hessian matrix N(X) of G(x). 
They introduced two symmetric matrices A and B with respective eigenvalues CY~ I ... 5 CY, 
and /3i < ... I /3,, such that 

i iE ,p.,., [ai9Pi1 ” K > qc=o,l ,... ] =0. 
(5) 

Under the above conditions, they were able to prove the existence (and uniqueness) of a 
T-periodic solution to (4). This kind of approach has been generalized in various ways (cf. 
[3, 7, 9, 17, 29, 33]), and abstract versions were given in [4, 6, lo]. 

In this paper we try to combine the two different approaches mentioned above. We provide 
abstract results and give applications to systems of ordinary and partial differential equations 
with nonlinearities which satisfy weaker versions of condition (5), where resonance can occur 
at one or both sides of the intervals [ai, pi]. In other words, some of the ai and/or pi can belong 
to the spectrum of the differential operator. In particular, we provide an abstract formulation 
for the result in [ 141. 

In Section 2, we introduce our abstract setting and show the relation between different types 
of assumptions. In particular, we deal with a generalized eigenvalue problem Lx = ASx, where 
L and S are self-adjoini operators, and introduce a change of variable which permits this problem 
to be treated as a usual eigenvalue problem for an associated operator 1. The use of generalized 
eigenvalue problems has been introduced into the study of nonresonance problems in [15] and 
the reduction of the generalized eigenvalue problem to a usual one can be found in Kato [20]. 

Section 3 is devoted to the study of the “simple resonance” situation from an abstract point 
of view, while in Section 4 we deal with “double resonance”. 

In Sections 5 and 6, we give some applications of the abstract results of Sections 3 and 4, 
respectively. In Section 5, we introduce generalized Landesman-Lazer conditions for systems 
of elliptic equations, improving some previous results by Brezis and Nirenberg [8]. We also 
prove an existence result for a periodic problem for which the Landesman-Lazer condition 
cannot be written. In Section 6, we prove the existence of solutions in a double resonance 
situation for a Dirichlet problem. 

Finally, in Section 7 we compare two of our abstract theorems when applied to a two- 
dimensional periodic problem. 
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2. NOTATIONS AND MAIN ASSUMPTIONS 

Let H be a real Hilbert space with scalar product ( *, *> and corresponding norm (I-II. We are 
interested in finding solutions of the equation 

Lx = Nx, (6) 

where L : dam(L) c H -+ H is a linear self-adjoint operator having closed range and a compact 
resolvent, and N: H + H is continuous and maps bounded sets into bounded sets. 

It is well known that, with these assumptions, L is a Fredholm operator of index zero whose 
spectrum is made of eigenvalues with finite multiplicities, and that L has a compact right 
inverse. 

We are given a continuous linear self-adjoint operator S: H --t H which is positive and 
invertible. We will denote by S-’ the inverse of S, and by S”2 and S-1’2 the square root opera- 
tors of S and S-l, respectively. 

We consider the following assumption on the operator L. 

(Ll) There exists Q! > 1 such that 

Lx = ASX, A E IO, a[ * x = 0. 

Some equivalent formulations of assumption (Ll) are given below; we will use the notation 
a(T) for the spectrum of an operator T: dam(T) c H + H. 

LEMMA 1. Condition (Ll) is verified if and only if, for some CY > 1, one of the following 
propositions is true. 

(L2) a(S-“2LS-“2) r-l IO, a[ = 0. 
(L3) (L - (a/2)S) is invertible and Ij(S-1’2(L - (cY/~)S)S-“~)-‘II I (2/a). 
(L4) (S-‘Lx, Lx) 1 a(Lx, x), for every x E dam(L). 

Proof. By the change of variable x = S- 1’2~, the equation Lx = ASx can be transformed into 
S-1’2LS-1’2u = Au. It can be seen that S-“‘LS- l/2 has a compact resolvent, so that its 
spectrum is made of eigenvalues, and it is then easy to see that (Ll) is equivalent to (L2). On 
the other hand, (L2) is clearly equivalent to saying that (S-1’2LS-1’2 - (a/2)1) is invertible and 
that dist(a/2, o(S-“~LS-“~)) 2 a/2. The equivalence of (L2) and (L3) then follows from the 
fact that, for an invertible self-adjoint operator T, one has II T-‘ll = [dist(O, o(T))]-‘. We can 
write (L3) as follows: 

Replacing u by S1’2x and squaring both sides, one easily verifies that (L3) is equivalent 
to (L4). n 

Our main assumption on N is the following. 

(Nl) There exist /3 < (a! - 1)/01 and p: H + R+ such that p(x) = o(~~x~~~) as llxll + 00 and 

(Nx, x) 2 (S-‘Nx, Nx) - /3(S-‘Lx, Lx) - v(x), 
for every x E H. 
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In the next lemma we give a sufficient condition for (Nl) to be satisfied. For self-adjoint 
operators A, B: H + H, we will write A I B when B - A is positive semidefinite, i.e. when 
((B - A)u, u) 1 0, for every u E H. 

LEMMA 2. A sufficient condition for (Nl) to hold (with /? = 0) is the following. 
(N2) There exist I: H + S,(H) (the space of linear self-adjoint operators in H) and 

R:H+ Hsuch that 

and 
OITXIS(XEH), IlRxll = 4lM) as Ml + 00 

Nx = (Ix)x + Rx. 

Proof. Fix x E H and set T = 2Ix - S. Then, 

I(Tu, u>l I (SK U> 

By taking v = S 1’2~, one can conclude that 

(U E H). 

pp/2Ts-l/2~~ = sup k~-"2T~-1'2~~ 4 I 1, 

U#O ))vJJZ 

since S -1’2TS-1’2 is self-adjoint. Hence, we have 

(IS-“2TS-1’2u(( cc ((u(( (uEH) 
or , with u = S-“2u 9 

lls-“2(2rx - S)Ull I llP2U(l (U E H). 

In particular, the above relation holds for u = x. So we get 

IIs-“2(uvx - Sx)II I llP2x~~ + 2~~S-“2Rxll. 

Squaring both sides, we obtain 

(Nx, x> L (S’NX, Nx) - [lls-“2RX1)2 + IIS-“2Rxll lls”2x11]. 

Setting p(x) = llS-“2Rxl12 + IIS-“2Rxll llS1’2xll, one has that p(x) = o(11xl12) as llxll + 00, and 
the proof is complete. n 

Remarks. By making the change of variable u = S1’2x, equation (6) becomes of the form 

EL4 = fiu, (7) 

with L = S-i’2LS-“2, fl= S-“2NS-1’2. Condition (Ll) and the inequality in (Nl) are then 
equivalent, respectively, to: 

(L5) 

(N3) Ill%4 - *t# I &.4ll” + ~~(Lu~~2 + @(u), 

where q(u) = (P(S-“~U). One can see that such kind of assumptions generalize the setting in 
[8, Chapter 31. 
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3. EXISTENCE RESULTS 

In this section we prove two existence results for the general equation (6). For the first two 
results, we will assume that hypotheses (Ll) and (Nl) hold and we will give some extra 
conditions in order to avoid resonance. Notice that the conditions (Ll) and (Nl) alone are not 
sufficient to guarantee the existence of a solution to (6) if ker L # 0. This can be seen, for 
example, by taking Nx to be a constant vector which is not orthogonal to ker L. 

We will denote by PO: H + H the orthogonal projection onto ker L. 

THEOREM 1. Assume (Ll) and (Nl). If ker L # (0) suppose moreover that, for all x E dam(L) 
with sufficiently large norm which verify the inequality (S-‘Lx, Lx) I ((CY - l)/c~ - p)-‘p(x), 
one has, either 

(RI) (Nx, PI& > 0, 

or 

(R2) (Nx, x) - 01-l p+-ldx)>o. 
Then equation (6) has a solution. 

THEOREM 2. Assume (Ll) and (Nl). If ker L # [O), suppose that there exist positive constants 
C, , C, such that 

IIPONX - PONY11 5 GIIX - YII + G 

for every x, y E H. If moreover 

(R3) lim inf (NU7 ” > 0 
Ilull -tm llu112 ’ 
u E kerL 

then equation (6) has a solution. 

Proof of theorem 1 and theorem 2. We will apply a continuation theorem by Mawhin 
[28, theorem IV.131. To this aim, we are going to prove the existence of a constant R > 0 such 
that, for any solution x of the equation 

Lx = ANx (9)x 

with 1 E IO, l[, we have llxll < R; moreover, we need to prove that the Brouwer degree 

deg(P,N, B(0, R) n ker L, 0) 

is well defined and different from 0. 

(10) 

By contradiction, let us suppose that there exist sequences (x,), (A,) such that x, is a solution 
of (9)x,, An E IO, 1[ and Ilx,Jl + ~0. From (9)x,, using (L4) and (Nl), we deduce the inequalities 

(J%,x,J = +X,,XJ 5 -&‘L~,,L~,), (11) 
n n 

(Nx, 9 XJ 2 WLX,) Lx,) - p(x,). (12) 
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Combining (11) with (12), one gets 
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&lo ( 1 --,z,P-; (Nx,,x,)< 
A, > ( 

+- Alp - k PLX,, Lx,) 5 A,ql(x,) 
n ) 

from which results in particular that 

(e - +s-lLx,, Lx,) I v(x,). 

Moreover, x,,, being a solution of (9),, must satisfy the conditions 

P,Nx,, = 0, 

(Nxn,P& = 0, 

since Im L is orthogonal to ker L. On the other hand, from (13) we also have 

(13) 

(14) 

(15) 

(16) 

(17) 

Now, since x, verifies (14), the conditions (16) and (17) give a contradiction either with (Rl) or 
with (R2); so, we have an apriori bound for the solutions of (9)x when we are in the situation 
of theorem 1. 

In the situation of theorem 2, we first notice that (14) implies that jl(Z - P,,)x,II = o(llx,lj) for 
n + 43, as it results from the fact that L has a continuous right inverse. Using (15) and (S), we 
see that 

bJW,x,l~ < c IlV - P&II + C2 

llmnll - 1 IIpox,ll Ilpoxnll + O 
for n + 00. 

This contradicts (R3). Therefore, we also have an apriori bound for the solutions of (9)x in this 
case. 

It remains to prove that the degree (10) is well defined and different from 0. This is fairly 
straightforward, since our assumptions all imply that (P,Nu, u) > 0 for every u E ker L with 
sufficiently large norm. 

The conclusion then follows from Mawhin’s theorem. H 

Remarks. Theorem 1 can be seen to generalize some results by Brezis and Nirenberg 
[8, Chapter 31. They deal with the case where S is a multiple of the identity; it can be seen that 
their hypotheses, in theorem 111.2’, are a particular case of (R2). We have seen, however, in the 
remarks at the end of Section 2, that one can always reduce to the case where S is the identity 
by a suitable change of variable. On the other hand, condition (Rl) permits the recovery of the 
Landesman-Lazer conditions when dealing with applications to partial differential equations, 
without the need of further assumptions as in [8]. This will be made clear in the next section. 

Theorem 2 deals with an essentially nonresonant situation. By this we mean that under the 
same assumptions one can conclude that for any z E H the equation 

Lx=Nx+ z 

has a solution. On the contrary, theorem 1 would require further assumptions upon z in order 
to be applied. 
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As can be seen from the proof, one can generalize condition (R3) of theorem 2 by replacing 
it, for example, by: 

(R4) for every u E ker L, with sufficiently large norm, 

(PI@& 24) > -II&M Ilull 
and 

liminf llJw4l > () 
1141 -- 1141 * 

u E kerL 

We now state a corollary of the proof of theorem 1. 

COROLLARY 1. Assume the following. 

(Ll’) Lx = ASX, A. E 10, l] * x = 0; 

(Nl’) there exist positive constants cr and c, such that 

(Nx, x> 2 (S’NX, Nx) - cr IIXII - c2, 
for every x E H. 

(Rl’) If ker L # (O), assume that for every sequence (x,) such that 

Ilxnll + 00 and IILxnll = mw2) asn + 43, 
one has 

lim inf (Nx,, P,x,) > 0. 
n+m 

Then, equation (6) has a solution. 
Notice that (Ll’) is equivalent to (Ll), since the spectrum of an operator is closed. On the 

other hand, if the sequence (x,) verifies (14) with p(x) = crllxll - c2, one clearly has IILx,ll = 
~(llx,ll”~) for n -+ 00. This allows hypothesis (Rl) to be replaced by (Rl’). 

4. DOUBLE RESONANCE: AN ABSTRACT APPROACH 

In this section we will weaken assumption (Ll) on L in order to permit both ker L and 
ker(S - L) to be nontrivial. We will use the following 

(Ll”) Lx = ASX, /I E]O, l[ =+x = 0. 

It is straightforward to obtain equivalent characterizations as in lemma 1: just set CY = 1. In 
particular, (Ll”) is equivalent to 

(L4”) (S’LX, Lx) 2 (Lx,x) for every x E dam(L). 

The assumption on N will be a stronger version of condition (N2) of lemma 2, as shown in 
the following. 

(N2’) There exist I: H -+ &Z,(H) (the space of linear self-adjoint operators in H) and 
R:H+ Hsuch that 

05rx5s (X E H), 
R has bounded image and 

Nx = (Tx)x + Rx. 

We will introduce PO, PI, projections on ker L and ker(S - L), respectively. Our main result 
is the following theorem. 
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THEOREM 3. Assume (Ll”) and (N2’). Suppose moreover 
(N2”) there exists E > 0 such that, for every x E H, either 

or 
((I-X)& U) 2 &(SU, U) (U E ker L 0 ker(S - L)), 

((I-X)U, 24) 5 (1 - &)(SU, U) (U E ker L @ ker(S - L)); 

(RI”) for every sequence (x,) such that ((x,(( -+ CO and IILx,J = o(((x,~(“~) for n + 00, one 
has 

lim inf (Nx,, P,x,) > 0; 
n-+m 

(R2”) for every sequence (yn) such that ((yn(( -+ ~0 and (((s - L)y,(( = O(((y,((‘“) for n -+ 00, 
one has 

lim inf (Sy, - NY,, Piy,) > 0. 
n+oo 

Then, equation (6) has a solution. 

In order to prove theorem 3, we need the following result. 

LEMMA 3. If (Ll”) holds, one can split the space Has H = [ker L @ ker(S - L)] @ I?, in such 
a way that, writing x E Has x = R + 2, with R E [ker L @ ker(S - L)] and 5Z E fi, one has, for 
all x E dam(L), 

for some 6 > 0. 
(s-‘Lx, Lx) - (Lx, x) 2 6((n((2, (18) 

Proof. It can be shown that, since L has a compact resolvent, the same is true for 
J? = S-“2LS-“2. Let (ui) be the eigenvectors of z with corresponding eigenvalues (Ai), i.e. 
LUi = ~iSUi. Then the (Ui) form a basis for H, and we can define fi as the subspace of H 
generated by the vectors Ui for which pi $ (0, 1). The result then follows from standard Fourier 
analysis. n 

Proof of theorem 3. By the Leray-Schauder degree theory, using a homotopy argument, it 
is sufficient to prove that, for h E IO, 1[, there is an a priori bound for the solutions of 

Lx = (1 - #Sx + UVX. (19)x 

Assume by contradiction that this is not true. Then there are sequences (A,), (x,) such that 

2, E IO, 11, IMl + 43 and x,, is a solution of (19)x,. From (19),,, one has 

1-A 
Wx,, x,,) 5 + (Lx,, , x,,> - + (Sx,,xJ 5 +(Lx,,x.). (20) 

On the other hand, (N2’) impies (Nl) with /3 LO and P(X) = ~(~~x~l) for JJxJJ -+ CO (see the 
proof of lemma 2). Since, by (L4”), 

(S-‘N-G, Nx,) = + WLX,, LX,,) + 

1-A 

n 
(Sx, 9 4z> - -+ (Lx,, X”) 

n 

2 t <s-‘Lx,, Lx,), 
n 

(21) 
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we have, from (Nl) and (21), 

Combining (20) with (22), one has 

G-‘Lx,, Lx,) - u-4, XJ 5 c&J. (23) 

By lemma 3, we then have that 

11%111 = ~dlx,l11’2) asn + co. (24) 

Now, because of condition (N2”) we can split the sequence x,, in two subsequences, x; and xi, 
satisfying respectively 

((TX;)& U) 1 E(S.4, U) (U E kerL @ ker(S - L)), (25) 
and 

((TX;)& U) I (1 - &)(SU, U) (U E ker L @ ker(S - L)). (26) 

We want to show that both situations lead to a contradiction, proving the theorem. The two 
cases being symmetrical, we only consider one of the two, e.g. (26). Working as in lemma 2, and 
using the fact that 0 I Ix;, one gets 

llS-l’2(2rx; - (1 - &)S)UII I (1 - &)(IS”%ll (27) 

for every u E ker L @ ker(S - L) (just replace S by (1 - s)S). In particular, (27) holds for 
u = x:. Then, for a certain c > 0, 

and so 
lls-l/2(2rx; - (1 - E)s)x;]~ 5 (1 - E)(Is~/~x;II + ~ll,f:ll, 

llS-1’2(2Nx,: - (1 - E)Sx;)II 9 (1 - &)l/s”2x;(I + cll2;:‘ll + 2IIS-“Q?X,:II. (28) 

Because of (24), it is then easy to define a map Y: H + IR+ such that Y(x) = O(llxll) as I/XII + to 
and, from (28), 

(Nx;,x;) 2 & (S-‘Nx,:, Nx;) - Y(x;). (2% 

& (s-'Lx;,Lx;) I Y(xi), 

and so 

IILx~II = ~d14w2) asn+oo. (30) 

On the other hand, xi being a solution of (19)x,, we obtain 

(1 - ~,)$-<Sx~,P,x~> + A,(Nx;,P,x;) = 0. 

From (30), we have that JI(L - P,)x;)~ = o(IIx;)I”~) as n + 00, and, S being positive definite, it 
is easy to see that 

Since (xi) is a subsequence of (x,), it satisfies (20), which, combined with (29), (21) and (L4”), 
gives 

. . 1-A 
lirn+stp (Nx;, P,,x;) = -hF__l_nf 21, 2 (Sxi, Pox;) I 0. 

This, combined with (30), gives a contradiction with (Rl”). n 
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5. SIMPLE RESONANCE IN SYSTEMS OF DIFFERENTIAL EQUATIONS 

As a model of application of theorem 1, let us consider the following Dirichlet problem for 
a system of elliptic partial differential equations 

Au + Au + g(x, u) = 0 in n 
(D) 

u=o on asz. 

Here, n is bounded regular domain in IRN, the Laplacian A acts on functions having their values 
in lR”, A is a symmetric M x A4 matrix and g: Sz x IRM + IRM satisfies the Caratheodory 
conditions. Let B be another symmetric h4 x M matrix such that B - A is positive definite; we 
denotebycr, I (;yz I ... I oMandj3, I pz I ... I bM the eigenvalues of A and B respectively. 
By a monotonicity property of the eigenvalues (see, for instance, [18, p, 182]), we have that 
(Yi<pi(i= l,..., M). We will assume that 

(L6) fi lai,Pil n ED = 0, 
i=l 

where 0,(-A) is the spectrum of the Laplace operator (-A), under the Dirichlet boundary 
conditions. Suppose moreover that g satisfies the following condition: 

(N4) there exist c E L’(n; IR), d E L’(Q; R) such that, for a.e. x E Sz, for all u E IR”, 

(g(x, u), u) 2 ((B - A)- ‘g(x, u), g(x, u)) - c(x)/ ~1 - d(x). 

Let us introduce the abstract setting. Let H = L’(sZ; iR”), dom L = H2(Q R”) fl Hi(S2; il?), 
Lu = -Au - Au, (Nu)(x) = g(x, u(x)) and @u)(x) = (B - A)u(x). Then we have the following 
lemma. 

LEMMA 4. Condition (L6) is equivalent to (Ll’), while (N4) implies (Nl’). 

Proof. Integrating the inequality in (N4) immediately proves the second part of the 
statement, with ci = [l&z and c2 = IjdllLl. In order to show the equivalence of (L6) and 
(Ll’), fix II E IO, l] and define D = AB + (1 - I)A. Let (dj 1 i = 1, . . . , M) be a basis in lRM 
made of eigenvectors of D, di being associated to an eigenvalue aj and the ai being arranged in 
increasing order: 6i I a2 I 9 .- I 8,. By the monotonicity property mentioned above, we have 
CX;<6iI/?ifOri= l,..., M. For u E H, we can write u(t) = CE 1 ui(t) di, so that 

LU - ~SU = c” (-AUK - 6iUi)di. 
i=l 

It is clear that u is a nontrivial solution of Lu = ASu if and only if ai E oD(-A). But, this is 
precisely forbidden by (L6). Hence, (L6) is equivalent to the fact that, for A E IO, 11, Lu = ASu 
implies u = 0. n 

We shall denote by E one of the following Banach spaces of functions, in which H2(Q; R”) 
is compactly imbedded: 

ifN= 1, E = C’(sZ; R”); 

if N = 2, E = W’vp(s2; F?) (1 I p < 00); 

ifNr 3, E = W1sp(Q; @) (p+J- 
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It is known that the operator L, considered as an operator acting on E, has a compact 
resolvent. We will write v, - u whenever v, 3 u and v,(x) -+ U(X) a.e. on Sz. Let us also 
introduce the orthogonal projector P,,: H + N onto ker L. 

THEOREM 4. Assume that (L6) and (N4) hold. Moreover, assume that there exists a number 
k, > 0 and a function k2 E L’(Q; F?) such that, for a.e. x E R, for all v, w E lR”, 

(g(x, v), w) 2 -k,lw - VI2 - k2(x)lwl. (31) 

If, for every u E ker L\{O), 

CL) 
.i 

lim inf (g(x, ,uv(x)), PO v(x)) dx > 0, 
0 “-uU 

then problem (D) has a solution. 

Remarks. (1) In the line of lemma 2, we can observe that the hypothesis (N4) can be replaced by 

(NS) g(x, u) = Ux, u)u + h(x, u), 

where, for every (x, U) E 0 x lR”, IY(x, U) is a symmetric matrix such that 0 I Qx, U) I B - A, 
while h is a bounded function. 

Moreover, if (NS) holds, it is immediate to find k, > 0 and k2 E L2(sZ; D?) such that (31) is 
satisfied as well. 

(2) When M = 1, condition (LL) reduces to the classical Landesman-Lazer condition, as will 
be shown below. Notice first that, in the case M = 1, condition (31) is satisfied if there exists 
h E L2(i2; W) such that, for a.e. x E &2 and for all u E R”, 

(sgn u)g(x, u) 2 -h(x), (32) 

and if g is growing at most linearly in U. This can be seen by considering separately in (31) the 
cases where v and w have the same sign or opposite signs. 

If g satisfies (32), we can define g+(x) = lim inf g(x, r) and g-(x) = lim sup g(x, r). Then, for 
**+* r--co 

u E ker L\(O), we have 

lim inf g(x, ,~v(x))P, v(x) = 
[ 

s+ww if U(X) > 0 

U--*U 
p*+CO g_(x)u(x) if U(X) < 0. 

So, condition (LL) becomes 

.i 
g+ww dx + 

.i 
g-CMX) dx > 0, 

u>o u<o 

which is the usual Landesman-Lazer condition. 
As far as the hypotheses (L6) and (N4) are concerned, they are obtained by assuming that 

A = A,, E 0,(-A), ]A, B] fl o,(-A) = 0 and 

(33) 
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Using (32) and (33), it can be shown that g can be split up into g(x, u) = y(x, u)u + h(x, u), 
where 

0 5 ~(x, u) I B - A and I&& @I 5 6x), 

with k E L’(Q; IR) (see Fabry and Fonda [14]). It is then easy to check that (N4) holds. 
(3) Results similar to theorem 4 have been obtained by Brezis and Nirenberg [8]. However, 

in the scalar case, they can deduce the usual Landesman-Lazer condition only on a 
supplementary condition, namely that g-(x) 5 g+(x) a.e. on 51, or that g has sublinear growth. 
This supplementary assumption was avoided in [5, 121. However, those results did not follow 
from an abstract theorem as the one we have, but rather from some semi-abstract one. 

(4) Notice that, in case g turns out to be bounded, condition (LL) of theorem 4 becomes 
equivalent to 

P 

J lim inf(g(x, puv(x)), u(x)) dx > 0. 
n V-U 

IL++03 

Proof of theorem 4. We will apply corollary 1. Lemma 3 shows that (Ll’) holds, as well as 
(Nl’). It then remains to prove that (Rl’) is satisfied. Suppose, by contradiction, that there 
exists a sequence (u,) such that ((u,(( -+ 00, ((Lu,/( = O( (Iu,((i”) and (for a subsequence) 

lim (Nu,, P,u, > 5 0. 
n-m 

Applying the right inverse K: Im L -+ E of L, which is compact, we can extract a subsequence, 
still denoted by (u,), such that (Z - P0)u,/((u,((1’2 converges strongly in E. In particular, 

(Z - m~n~ll~nll converges to 0. Since ker L is finite dimensional, it can be assumed that 
POu,/IIu,)l and, consequently, u, := u,/IIu,II converges strongly in E to some function 
u E ker L\(O). Going if necessary to a further subsequence, we will also have that v,(x) 
converges pointwisely to u(x), a.e. in Sz, so that v,, - u. Letting p,, = ])u,)), we have, by the 
hypothesis made on the u,, 

litfl_imnf ,I :. II - (Z%, PO u,> = lit;“+Ff 
i 

(g(x, pu, u,(x)), PO u,(x)) d-x 5 0. 
0 

Now, we want to apply Fatou’s lemma. By (31), we have 

(g(x, Z&%(X)), PO%(X)) 2 -z Iv - Qbw12 - ~2wvm)l. 

Since (I - P0)u,/llu,111’2 converges strongly in E, and hence in L2(S2; R”), we can find a 
function ‘or E L2(sZ; R) such that, for a subsequence, 

(1 - w4l(x) 
ll%Y2 5 r,(x) for a.e. x E CJ. 

On the other hand, since P,u, converges to u, there exists a function q2 E L’(Q; IR) such that 

I~2w%~&)l 5 rl2w. 

We can then conclude that there exists a function y E L’(C2; fR) such that, for a.e. x E M, 

(g(x, & u, (x)), PO u, 6)) 2 Y(X). 
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This allows us to apply Fatou’s lemma, which gives 

contradicting hypothesis (LL). n 

We will now give an application of theorem 2. We consider the periodic problem 

(P) 
i 

2.4” + Au + g(x, 2.4) = 0 

U(0) - u(2n) = U’(0) - u’(2n) = 0. 

As before, A and B will be two symmetric A4 x Mmatrices with eigenvalues cur I CQ 5 ... I crM 
and p, I p2 I ... I PM, respectively, and we will have czl < pi for i = 1, . . . , M. In analogy 
with condition (L6), we assume 

(L7) i”j layi9Pil n ~PCmu’) = 03 
i=l 

where op(-+“) denotes the spectrum of the operator u -+ -u”, under the periodic boundary 
conditions. The function g: [0,27c] x lRM + IRM * is supposed to satisfy Caratheodory conditions 
and (N4). In the following theorem, we denote by (~1 the Euclidian norm of u E IT?. 

THEOREM 5. Assume that the conditions (L7) and (N4) hold (with 0 = (0,2n)). Suppose that 
there exist functions cr E L’((O, 271); IR) and c, E L’((O, 27r); IR) such that, for a.e. x E (0, 27c), 
for all U, v E lR”, 

I&x, u) - g(x, v)l 5 cr(x)lu - VI + cz(x). 

Suppose moreover that g(x, U) = g, (x, U) + gz(u), where g, is an even function and 

(34) 

l im inf (Sl (x9 u), 4 > a > o 

I++- It412 - * (35) 

If there exists a positive integer m such that each oi which belongs to crp(-u”) is the square of 
an odd multiple of m, then problem (P) has a solution. 

Proof. We will apply theorem 2 with N = L’((O, 27~); lR”), 

domL = (U E H2((0, 27~); IR”) I u(0) - ~(27~) = u’(0) - ~‘(27~) = 01, 

Lu = --u” - Au, (Ah)(x) = g(x, u(x)) and (G)(x) = (B - A)u(x). It is easy to see that the 
arguments of lemma 3 also apply to this case, so that (Ll’) and (Nl’) hold. Consequently, (Ll) 
is satisfied for some CY > 1, and (Nl) for p = 0. Let (Arr u)(x) = g, (x, u(x)) and (N,@(x) = 
g2(u(x)). From (39, it is easy to deduce that 

liminf(N,U’U)=-II>O 
Ilull -m lM12 - * 
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On the other hand, by the hypothesis on those eigenvalues ai of A which belong to oP(-x”), 
the components of any element u E ker L are linear combinations of COS(kimX) and sin(k,mx), 
when the ki are odd numbers. It follows from this observation that u is of period 2n/m and that 
u((x - n)/m) = +(x/m), for all x E IR. Let us now evaluate (N,u, u). We have: 

or, using the 2x/m-periodicity of u, 

Wzu,u) = ~:'(gz(~(~)),~(;))~. 

Splitting the integral into two parts, we can write 

Wzu, u> = j: (g+(;)), u(i)) ds + jr (b+(;))v u(b)) ck 

the change of variable s’ = s - n, the fact that u((s - rr)/m) = -u(s/m), and that g, is even, 
then show that 

(N,u, u) = 0. 

This, combined with the result obtained above for Ni , shows that condition (R3) holds. The 
result then follows from theorem 2. n 

It is easy to see that, in the above theorem, the condition (N4) could be weakened by 
replacing c(x)lul + d(x) by p(u), where p(u) = o(u2) for IuI + 00. Under that generalization, 
we see that theorem 5 can be applied, with M = 1, in cases where the function (sgn u)g(x, u) is 
not bounded below. For instance, the result holds in the scalar case for A = n2, n odd, 
0 < u < n + l/2, e E L’((O, 27~); E?), c arbitrary and 

g(x, u) = vu - cIuI-~‘~u + qlul sin(log(1 + 1241)) + e(x). 

This shows that there exist functions g verifying the hypotheses of theorem 5, but not 
Landesman-Lazer conditions; indeed, those conditions can only be written when (sgn u)g(x, u) 
is bounded below. 

6. DOUBLE RESONANCE FOR A SCALAR PROBLEM 

In this section we will give an application of theorem 3 of Section 4 to the following scalar 
Dirichlet problem: 

L 

Au + g(x, u) = 0 in Sz 
(D’) 

u=o on an 

Here, Sz is a bounded regular domain of lRN and g: Q x IR + IR is a Caratheodory function such 
that, for every r L 0, 

SUP Id*, 4 E L2P; w 
14 sr 
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Let 1, < A2 < A3 < ... be the eigenvalues (which can be multiple) of (-A) with Dirichlet 
boundary conditions, and assume that, for some k I 1, 

Izk 5 lim inf g(x, 5 lim sup g(x, 5 Ak+i, 
l++m u I+- u 

uniformly in x. Assume moreover that there exists h E L2(Q; F?) such that 

and 
sgn(u)]&+i u - g(x, ~11 1 -W) 

for every u E m and almost every x E &2. 

THEOREM 6. Assume the above setting. If, moreover, the following condition holds: 
(LL) for every u E ker(-A - hJ\(Oj, 

.i 
lim inf[g(x, U) - L, u] u(x) dx + 

V>O u-+- I 
lim sup[g(x, u) - Aku]u(x) dx > 0, 

v<o u-‘--m 

for every w E ker(-A - n,+,)\{O), 

1 
lim inf[Ak+i 24 - g(x, u)]w(x) dx + 

i 
lim sup[A,+, u - g(x, u)] w(x) dx > 0, 

w>o u++m w<o u---m 

then problem (D’) has a solution. 

Proof. We will apply theorem 3. It can be shown as in [14] that it is possible to write g(x, U) as 

g(x, u) = v(x, u)u + r(x, u), 

where & I y(x, U) 5 &+i and T(X, U) is bounded by an L2-function. Defining H = L2(sZ; F?), 
dam(L) = H2(sZ) n H,‘(n), Lu = -AU - Iz,u, NU = g(., u(m)) - A,&(.), S = (&+i - hk)l 
and (Iu)u = [y(*, u(m)) - &Iv(*), it is easy to show that (Ll”) and (N2’) hold. By 
contradiction, suppose that (N2”) is not verified. Then, there exist sequences (u,) in L2(C2; I?) 
and (u,), (w,) in ker L @ ker(S - L) such that 

i( 
Y(X, %2(x)) - Ak - +,+1 - ak) u,“(x) dx I 0 

. cl > 

and 

.r( 
2 k+l 

n 
- Y(xv h(x)) - ;(A,,, - Ak) 

> 

w;(x)& 5 0. (37) 

Moreover, (u,) and (w,) can be normalized in L’(Ch; I?). Then, since ker L @ ker(S - L) is finite 
dimensional, we can assume that, for subsequences, u, converges to some u # 0 and w, 
converges to some w # 0 in, e.g. H2(Q) C L 2N’(N-2)(i2; IR). On the other hand, we can suppose 
that y(*, u,(a)) converges weakly to some p in J?‘~(SZ; F?), and, by the fact that the convex set 
(p E LN”(n; R): A, 5 p(x) 5 &+I a.e. on Q) is weakly closed, one has Ak I p(x) 5 ak+i a.e. 
on Q. But then, passing to the limit and using the fact that the eigenfunctions of the Laplacian 
can be equal to zero only on sets of zero measure, one deduces from (36) that Y(x) = & for a.e. 
x E a, and from (37) that p(x) = Ak+i for a.e. x E S& which is a contradiction. So (N2”) is 
proved to hold. One can finally show as in the proof of theorem 4 that (LL) implies both (Rl”) 
and (R2”). The conclusion follows. n 
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It is easy to see that a result similar to theorem 6 can be proved by the use of theorem 3 for 
a periodic boundary value problem for a scalar ordinary differential equation. Thus, we have 
been able to provide an abstract approach to the result in [14]. 

7. A TWO-DIMENSIONAL PERIODIC PROBLEM AT RESONANCE 

In this section we want to compare theorems 1 and 3 when applied to the following periodic 
problem in R2: 

(P’) 
i 

XN + n2x + g(t,x) = 0 

x(0) - x(2n) = x’(0) - x’(27r) = 0. 

Here x = (x1, x2) E R2, g = [0,2n] x IR2 + R2 is a Caratheodory function whose components 
are of the form 

where 
gi(t* X) = Yi(t, x)xj + ri(t, X) (i = 1, 2), 

0 5 Yi(t, X) I y < 2n + 1 

and ri(t, x) is bounded by an L2-function. The following is a consequence of theorem 3. 

THEOREM 7. Assume that, for an E > 0, 

Yl (t, x) + Y2(f, 4 2 e, (38) 

for all x E R2 and a.e. t E [0,27r]. Suppose moreover that, for any function u: [0,27r] + IR of 
the form u(t) = (I cos nt + b sin nt, one has 

and 

s 
lim inf g, (f, x1, x2)u(t) dt + lim sup g, (t, x1, x,)u(t) dt > 0, (39) 

v>o Xl-+- s V<O Xl--m 
x2/x, --t 0 x2/x, + 0 

lim inf g2(t, xi, x2)u(t) dt + 
s 

lim sup g,(t, x1, x2)u(t) dt > 0. (40) 
v>o x2-+= v<o x2--- 

X,/X*-+0 X&-O 

Then, problem (P’) has a solution. 

Proof. Let H = L2([0, 27r]; R2), 

dam(L) = lx E H2([0, 2721; R2): x(0) - x(2n) = x’(O) - x’(27r) = 0). 

Choose y’ E ]y, 2n + 1[ and define: 

Lx = (-x;’ - n2x,, xi + (n2 + y/)x,), 

Nx = (g1(*,x,(*), X2(‘)), Y’X2(‘) - g2(.,-%(.),x2(*)))r 

cwu = (rl(.,xl(.),xz(.))U1(‘), [Y’ - Y2(‘,X,(~),X2(~))1~2(~)), 

s = y’l. 



Nonlinear equations and eigenvalue problems 443 

It is not difficult to verify the conditions (Ll”) and (N2’). Moreover, we have 

2a 2* 

~cw, u> = 

5 
rl(cxl(0, ~2Wb4:W dt + 

5 
b' - Y2(f, xl(t), x2W)l&f) dt. 

0 0 

We notice that each element of ker L is of the form (a cos nt + b sin nt, 0), whereas each 
element of ker(S - L) is of the form (0, a cos nt + b sin nt). Hence, condition (N2’7 is verified, 
in particular, if there exists E’ > 0 such that, for every x E L’([O, 27~1; IR2), either 

.r 

2* 

~1 (t, xl(t), x2(t))U2(t) dt 1 E’ 
0 s 

2a 

u2(t) dt (41) 
0 

for every u of the form u(t) = a cos nt + b sin nt, or 

s 2T 

.i 

2?r 

y2 (t, x1 (t), x2 (t))U2(t) dt 2 E’ u2(t) dt 
0 0 

for every u of the same form. That one of the two branches of the alternative holds follows 
from (38). In fact, defining the intervals 

Z, = 1t E [O, 274: r1(t,x,(t),xzW) 1 w, 

z2 = (t E [O, 2n]: yz(t,x,(t),x,(t)) 1 E/2), 

one has from (38) that I, U I2 = [0,2n], and so one of the two intervals has the measure of at 
least rr. If, for instance, meas L rc, it is easy to find an E’ > 0 such that (41) holds. 

Once condition (N2”) is proved, one proceeds as in the proof of theorem 4 to show that (39) 
implies (Rl”) and (40) implies (R2”). For that purpose, notice that if for a sequence 
(x”), llLx”Ij = O(/j~“ll”~) for m + 00, one has that x~/IIx;“]IL* converges to zero in 
L2([0, 2n]; W) and, for a subsequence, the convergence also holds pointwise. Moreover, going 
if necessary to a subsequence, x~/]lxm]] , Lz will converge pointwise to some function of the form 
CICOS nt + bsin nt. This implies that xr(t)/xr(t) will converge to zero as n + co, for a.e. 
t E ]0,27r[. In this way, one can see why the limits in (39) can be taken for a ratio x2/x, going 
too. n 

We simply state now the result one obtains by applying directly theorem 1 to problem (P’), 
taking Lx = -x” - n2x, Nx = g( *, x(e)), S = yZ. In this context, we drop condition (38), but 
on the other hand reinforce conditions (39) and (40), and obtain the following theorem. 

THEOREM 8. Assume that, for any function u: [0,27c] + [R of the form u(t) = a cos nt + b sin nt, 
one has 

.i 
lim inf gi (t, x1, x2)u(t) dt + lim sup g, (t, x1, x2)v(t) dt > 0, (42) 

u>o x14+- 1 lJ<o x1--- 
X2 E iR x* E IR 

and 

I 
lim inf g,(t, x1, x2)u(t) dt + 

s 
lim sup g,(t, x1, x2)0(t) dt > 0. (43) 

V>O x2-+- U<O x2--= 
x1 E IR x1 E IR 

Then problem (P’) has a solution. 
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