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1. INTRODUCTION

First studies of periodic solutions for a differential equation
X+ ex+ gix)=e(t}),

where g is asymptotically linear in some sense, are due to W. 8. Loud [20]
and A. C. Lazer [16]. This was the starting point of a vast literature on the
Liénard equation

X+ flx)x + g1, x)=e(1) 1)
and its special case, the Duffing equation
X+ cx+ glt, xy=e(t). (2)

One can mention for example the papers by R. Reissig [31], M. Martelli
[213, J. Mawhin and J. R. Ward [27], J. Mawhin [25], C. Fabry [6], and
the literature therein. In these papers, the asymptotic behaviour of the non-
linearity g is controlled through inequalities such as

a(t)<lim infg-g’c-:"—)sum supg%-’flsb(z). (3)

These tend to keep away the quotient g(z, x)/x from the spectrum of the
linear operator Lx= — % as |x| — oo. Closely related results can be found
in J. Mawhin {23}, J. Mawhin and L R, Ward [28], P.Omari and
F. Zanolin [30]. Similar results for systems have been worked out in A. C.
Lazer and D. A. Sanchez [17], P. Habets and M. N. Nkashama [12], for
a Rayleigh equation in R. Reissig [327, and for third order equations in
G. Villari [33], O.C. Ezeilo and M. N. Nkashama [5]. See also the
references therein.
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PERIODIC SOLUTIONS 69

A major generalization was considered in E.N. Dancer [2,3] and
S. Fugik [9, 10]. There, existence of solutions for the equation

*+g(x)=e(r) (4)

is investigated when the function g is asymptotically positively
homogeneous, i.e.,

= &l
x—+o X x> - X

g(x) tim g(x) ' (5)

lim =2 LAl

Noticing that the quotient g(x)/x could vary from one eigenvalue of L as
x — — o0 to the next one as x » + o0, or even could cross eigenvalues of
L, S. Fucik called the function g a “jumping nonlinearity.” These authors
considered the positively homogeneous equation

X+ux, —vx_=0, (6)

where x, =max(x,0) and x_ =max(—x,0) and introduced the set K,
known as Fuéik spectrum, of points (g, v) € R? such that (6) has a non-zero
periodic solution. Basically they proved that in (g, v) ¢ K and g satisfies (5),
Eq. (4) has a periodic solution. Later, condition (5) has been generalized
for a Duffing equation (2) using assumptions of the type (3). In P. Habets
and G. Metzen [11], the asymptotic values of the quotient g(¢, x)/x are
controlled by the inequalities

t f
a(t) <lim infg(—’i) < lim sup 8t x) < b(r),
X

X - +© X X — 400

e(?)<lim inf&-)—Q

X = — o0 X

< lim sup <d(e),

g(1, x)
X — X
together with a condition called property P. This property replaces the
assumption (y, v) ¢ K by imposing that zero is the only periodic solution of
the positively homogeneous equation

X+cx+p(t)x, —q(t)x_=0,

whenever a(r) < p(t) <b(t), c(t)<q(¢t)<d(t). Such a property P appears
already more or less implicitly in A. Lasota and Z. Opial [18] and S. Inver-
nizzi [15]. Recent results along these lines are in P. Drabek and S. Inver-
nizzi [4], R. Iannacci, M. N. Nkashama, P. Omari, and F. Zanolin [14].
In the case of one-sided growth restrictions, see also P. Omari, G. Villari,
and F. Zanolin [29] and L. Fernandes and F. Zanolin [7].
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A similar phenomenon was observed by A. Fonda and F. Zanolin [8]
for the Liénard equation

X+ f(x) x+ g(x)=e(r). (7)

Assuming (5) as well as

lim f(x)=p, lim f(x)=gq,

x = 4+ X— —o0

they indicate a set K in the (g, v, p, ¢) space which generalizes the Fulik
spectrum and is such that if (x4, v, p, g) ¢ K, the equation (7) has at least
one periodic solution.

The original motivation of our paper was to prove the existence of
periodic solutions for (7) using a property P so as to weaken the above
conditions on f and g. Our purpose was also to apply these ideas to other
problems such as the Rayleigh equation

X+ f(1, x) + g(1, x) = e(1) (8)
and the third order equation
X +aX+bx+ g(t, x)=e(t) 9)

The paper is organized as follows. In Section 2, we consider a general
first order equation in R”

x=F(t, x). (10)

We describe what we mean by F being asymptotically positively
homogeneous and check this property in applications. Section 3 is devoted
to property P and the main existence theorem for periodic solutions of
(10). In Section 4, we investigate property P for equations in R? using
phase plane methods. This applies to Liénard and Rayleigh equations.
Section 5 studies property P for equations in R*® using L*-estimates on the
solutions and their derivatives. In Section 6, we deduce some existence
theorems for Liénard equation (1), Rayleigh equation (8) and the third
order equation (9). These contain and generalize results in P. Drabek and
S. Invernizzi [4], P. Habets and G. Metzen [11], A. Fonda and F. Zanolin
[8], and O. C. Ezeilo and M. N. Nkashama [5].
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2. THE MAIN PROBLEM

2.1. Consider the periodic boundary value problem
x=F(t, x
(, x) ()
x(0)=x(2n),

where F: [0, 2r] x R* > R" is a continuous function.
The following assumption expresses the fact that F is asymptotically
positively homogeneous.

Assumption H. (i) Let
G(t, x, u) =Golt, x)+ G (1, x)u, (t, x, u)e [0,2n] x R"x R?,
be a continuous function which is positively homogeneous in x, i.e.,
V(t, x,u)e[0,2n] x R" x R”, Vi>0, G(t, Ax, u) = AG(t, x, u);
(i) let
a:[0,2n] - R” and p:10,2n] - R”

be continuous functions and

(ii1)) assume that for any ¢£>0, there exist y>0 and a continuous
function u(t, x) such that for every (¢, x)e[0,2z]xR" one has
u(t, xye [a(t) —ce, B(t) +ce],

where e € R” is the vector with all components equal to 1, and
|G(t’ X, u(t’ X)) _F(t’ X)l Sy

This assumption holds true in several important applications.

2.2. Application 1. Consider the system of equations

X= y_f(t’ X),
(12)
y=e(t)— gl(t, x),

where f, g, and e are continuous functions defined for te[0,2n], xeR.
Recall that the Liénard equation

X+ h(x)x+ g1, x)=e(1)
can be written in such a form.

In this application, we assume the following.
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Assumption Al. There exist continuous functions a, b, c, d, p,q,7,s
such that the following inequalities hold uniformly in ¢:

MS [im sup J:(t’—x)s b(1),
x X

X = + o0

a(t) < lim inf

X — 4+

St x)

<lim sup ——< d(1),
X

X = — QU

c(1) < lim infji%i)

X = — X

L . s
p()<lim infg(—xx—) <lim sup gx) <4q(2),

X = +w X + o0

2 . |5
8 X)Shm sup —g(—f—)ss(t).
x x

X =+ — o0

r(t) <lim inf

Let us show that the function
F([’ X, Y) = (y—f(t’ x)’ e(t) - g(t’ X))

satisfies Assumption H.
We shall first introduce the functions

é(a, x,b)=a, if x<aq,
=X, if xe(a b),
= b, if x=b,
and
@(x)=0, if xe[0,1],

=x—1, if xe(l,2],
=1, if x>2.
With these notations and for any ¢ >0, we write (12) as
X=y—u{t, x)x, +uy(t, x)x_ +h,(t, x),
y=—us(t, x)x, +us(t, x)x_ + hy(t, x),
where

x, =max(x, 0), x_ =max(—ux,0),

u (1, x) = & (a(t) e 283 (1), b0 + e),



PERIODIC SOLUTIONS

u(t, x) =8 (c(r) e T o), + s>,
us(t, x) =8 (p(t)—e,g%f—)w(lxl), q(t)+a>,

ug(t, x)= 5 (r(t)—e, g_(t;i) o(1x]), s(1) +e>.

Notice that we can choose R large enough, so that if x > R one has

L
a(t)—ssf(xx)sb(t)+s,
p—e<E0 < g 1

Similarly, if x < — R, one has
Z
c(t)—asf(xx)sd(t)+8,
Z
r(t)—aég(xx)és(t)+s.
If we define
U= (ulv u25 ll3, u4),
G(X, ) u)=(y“—u1x+ +uyx o, —uzx, +u4x7);

(1) = (a(t), c(2), p(1), r(1)),
B(e) = (b(2), d(1), q(1), s(1}),

it is clear that
o(t) —ee<<u(t, x) < B(t)+ee
and that the function
h(t, x)=F(t, x, y)— G(x, y, u(t, x))
=(—f4ux, —uUx_,e—g+usx, —usx_)
is bounded as it is continuous with compact support.

2.3. Application 2. The Rayleigh equation

X+ f(1, x)+ g(t, x)=e(t)

73
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can be written in vector form

x=y,  y=e(t)-glt,x)—f(t, y). (13)

As in Application 1, we assume that the functions f, g, and e are
continuous functions defined for re[0,2n], xeR and yeR. We also
assume that Assumption Al holds.

It is then easy to see that the function

F(t, x, y)=(y, e(t) — g(t, x) = f(1, ¥))
verifies Assumption H with
G, pyu)y=(y, —u, y, +try_ —usx, +usx_),
u(t, x, y)=(uy (1, y), us (8, ), us (1, x), us (1, x)),
where the functions u,, o, and § are defined as in Application 1.
2.4. Application 3. The third order equation
X+ax+bx+ g(t, x)=elt, x, X, %)

can be written as

x=y9 J>:Z, z'=e(t,x, y,Z)—g(t,X)—by—aZ- (14)
We assume that the functions g and e are continuous functions defined for
te[0,2n], xeR, yeR, ze R, and that the following condition holds.

Assumption A3. There exist continuous functions p, ¢, r, s such that the
following inequalities hold uniformly in ¢

() < lim inf £ ¢ Jim sup £
X

X — +oC X = + 00

<q(1),

(1) < lim inf £22) < lim sup ﬂ’;ﬁ <s(t),
X

X— —w X = — oo

and there exist §,>0, 4,> 0 such that for any te[0, 27], (x, y, z) e R?,
one has

le(s, x, y, 2)| <60+ do(lx] + |yl + |21).
Let us prove that the function
F([, X, Vs Z) = (y5 Z, e(t, X, Vs Z)_ g(ts x‘)—_by_az)

verifies Assumption H.
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For any ¢> 0, we write (14) as
=y,  y=z
I=uy(t, x, y, )IxI+ 1yl +z]) —ua (8, x)x
+udt, x)x_ —by—az+his, x, ¥, ),

where

w4 %, 7, 2) = e(t, %, ,2) ¢ (§ (x| + 3] + |z|))/(|x1 1yl + 200,

w3 =0 (o) =5, 2 p(ixl) gt0) - ),

s, =5 (0= £ (1) s 42,
If we define
Glx, pzyuy={(y, z,uy (x| + iyl + 2]} —wpx +usx _ —by—az),
a(t)=(—4dq, p(t), (1)),
B(r)=(do, q(2), s(1)),
it is clear that
af{ty—seSult, x, y, 2) < B(f) +ce.
Moreover
ht,x, v, 2)=F(1, x, v, 2) — G(x, y, z, u(t, x, ¥, 2))
={0,0, A, (. x, ¥, 2} + A, {1, x})
is bounded since the functions
hi(t, x, y,z)=e(t, x, y, 2) —u (%, p, 2)(Ux] + |y +12])
hat, x)= —glt, x)Fuy{t, x)x, —usf{t, x)x_

air¢ continuous functions with compact support.

3. PROPERTY P AND THE MAIN THEOREM

3.1. DermuimioN.  Given functions G(f4, x, u), «(r), and (s} as in
Assumption H, we say that the triplet (G, o, §) has property P if for any
ue L? such that

Viel0,2n],  u(t)e [alt), B(1)],
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zero is the only solution of the boundary value problem
*=G(t, x, u(t))
x(0) = x(2x).
3.2. In order to prove our main theorem, we need the following lemma.
LemMa 1. Let G(t, x,u), a(t), and f(t) be as in Assumption H. If

(G, o, B) has property P, then there exists ¢ >0 such that (G, o — ge, f§ + ge)
has property P.

Proof. Suppose the contrary is true. Then for any ne N, there exists
u, € L? such that

Vie [0, 2n], u,,(l)e[oz(t)—%e, ﬁ(t)+%e]

and x,€ H', x, #0 such that
X, = G(t, x,(1), u,(1)) (15)
x,(0) = x,(2n). (16)

The positive homogeneity of G in x allows us to choose x, such that
X 1 = 1.

As Cc H!, the x, are uniformly bounded in |-|[,. The u, are also
uniformly bounded. Hence from (15) it follows that the x, are equi-
continuous. Going to a subsequence, we can then suppose x,—> X.

Likewise, since u, is a bounded sequence in L* we can suppose u,, Ly,
for some ue L% Tt follows that

G, Xy ) —5 G (-, x, w).
Indeed, for any ¢ € L? we have

27
J, [G x,(0) (1)) = Glt, x(), ul))] (1) di

= 7 Golt, %)= Gott XD () di+ | L6 (1. 3,00)

0
— Gt DT (1) @ i+ [ Gty XN sn(8) — (1)) (1) .

From Lebesnge dominated convergence theorem, the two first terms go to
zero. As u, — u, the same holds true for the third one.
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Taking the weak limit of (15) in L? and the limit in (16) we obtain

x(t)=G(t, x(¢), u(t))
x(0)=x(2n).

(17)

2
As u,,ix u, it is easy to see that for each i=1, .., p and almost every
te [0, 2n], one has

a(t) < lim inf u,(¢) <lim sup u, (1) < f(1).

n— 0

Hence changing u on a set of measure zero, we can assume
Vee[0,2n],  u(r)e[al2), p(z)].

As (G, a, B) has Property P, we deduce from (17) that x=0.
On the other hand, from the positive homogeneity of G in x, we can find
K> 0 such that

V(t,x)e[0,2n] xR”, Yuel[a(t)—e, B(t)+e], |G(t, x, u)] < K |x|.
Hence we can write

L= 12, 0130 = I, 22 + 1,0 22
2r
<27 ix,0% +J G(1x,(1), u,(1)) dt < 2m(1 + K)? || x, 12,
]

which implies
x=1lim x, #0.
This is a contradiction. ||

3.3. To prove the existence of solutions of (11), we shall apply coin-
cidence degree theory [24]. It is clear that Leray-Schauder’s degree [19]
could be used at the expense of reformulating the problem as a fixed point
problem.

Given functions F(¢, x) and G(t, x,u) as in Assumption H, and a
continuous function u,: [0, 2n] — R?, we shall use the following notations:

Dom L= {xe C'|x(0)=x(2r)};
L :DomL—->C, x—x;
N.:C>C x> F(,x);
Ny:C— C, x - G(-, x, ug). (18)
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It is clear that N, and N, are L-compact on bounded subsets of C and that
L 1s a linear Fredholm map of index zero.

THEOREM 1. Assume:

(i) F satisfies Assumption H,
(it) the triplet (G, o, B) has property P;
(iii} for some continuous function uy: [0, 2n] — RF such that

Vie[0,2rn],  ue(t)e [a(r), B(1)],

one has
d(L — Ny, 24)#0,

where N is defined as in (18) and Q,= {xeC| x| . <1}.
Then the problem (11) has at least one solution.
Proof. We consider the homotopy
Lx— AN, x—(1—A) Nox=0
which corresponds to the boundary value problem
X=AF(t, x)+ (1 — ) G(1, x, up(?)),
x(0)=x(2x).

(19)

For any A€ [0, 1], the function
Y(t, x, A)=AF(t, x)+ (1 = 1) G(1, x, uy(2))

verifies Assumption H with the same functions G, «, f. Indeed, let us fix
¢>0. There exist y>0 and u(z, x)e [a{t)—ee, f(¢)+ce] such that the
function

H(1, x)==F(1, x) — G(t, x, ult, x))
verifies |H(t, x)| <y. Further, we can write
Wt x, y=G(t, x, Jult, x)+ (1 — Ay ug(2)) + AH(¢, x)
which is such that
Au(t, x)y+ (1 — L) up(r) € [a(t) — ee, f(t) + ce]

and
[AH(t, x)| <.
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By Lemmal, we can choose £>0 such that (G,x—ee, f+ee} has
property P. Let us prove that there exists an a priori bound for the solu-
tions of (19). Assume on the contrary that there exist sequences of real
numbers (4,) in [0, 1] and of functions x, such that VneN, |ix . =n,
and

X, =4, F(t, x, )+ (1 —4,) G(£, x,,, ul1)),
x,(0)=x,(2n).
Let v, =x,/x.l.. The functions v, are solutions of
H{t, x,(1))

0,(t) = G(t, v,(1), Au(t, x, (1)) + (1 = A, ) upl2}} + 4,
12,0 o (20)

0,(0) =v,(2n).

Clearly the o, are uniformly bounded. Hence the v, are bounded in H
and, going to subsequences, we can assume v, i\@eﬁ s U, - v#0,
and 4, 4e[0,1]. Likewise, as the functions mn,(f)=2A,u(t, x,(1})+
{(1t—21 )uo(z) are uniformly bounded, we can assume u, LN ue L* Going
to the limit in {20) we obtain

t= G, v{1), u(1))
U(O) = v(2n).

As in Lemma 1, it is clear that changing u on a set of measure zero, we
have

Vtel0, 2n], u(t) e [aft) —ce, Bl1)+ ee]

and, from property P, that v =0, which contradicts v, —<, 1. Hence, there
is a constant ¢ such that, for any 4 and any soution x of (19),

Ixlle < e

By invariance of the degree with respect to an homotopy and excision, one
has

d(L—N,, Q2 )=d(L - Ny, 2)=d(L— N,y, 2,)+#0,
where
={xeC|lx|,<e+1}
Hence, there exists x € 2, such that Lx = N,x; ie., the problem (11) has at

least one solution. §

505/81/1-6
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COROLLARY 1. Assume:

(i) F satisfies Assumption H,;
(1) the triplet (G, a, B) has property P,
(iii) for some continuous function uy: [0, 2n] — R” such that

Vie[0,2rn],  uo(t) e [a(t), B(1)],
the function G(t, x, ug(t)) is linear in x.
Then the problem (1) has at least one solution.

The proof follows from the observation that property P implies L — N,
is one to one and therefore that d(L — N,, 2,) #0.

4. THE PROPERTY P FOR SECOND ORDER SYSTEMS

4.1. Consider the equation
X =G(t, x), (21)

where the function G: [0, 2n] x R? - R? satisfies Caratheodory conditions
and is positively homogeneous in x:

V(t, x)e[0,2n]x R%,  Vi>0:G(t, ix) = AG(t, x).

We will establish some conditions under which the only 2a-periodic
solution of (21) is the trivial one. To this end, let us introduce polar
coordinates

x = (rcos@, rsin 6).
One computes
6=%(t, cos 0, sin 6)
= cos 0G,(t, cos 0, sin 8) — sin 8G (¢, cos 6, sin 8). (22)
Consider also comparison systems
X =A(t, x) and X = B(t, x),

where the functions 4 and B are positively homogeneous in x and such
that the functions

(L, x)=x,A,(t, x) —x,4,(t, X), B(t, x)=x,B,(t, x)—x,B,(, x)
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are continuous. Introducing polar coordinates, we have respectively

6= <#(1, cos 6, sin 6), (23)
6 = (1, cos 8, sin 6). (24)

PROPOSITION 1. Assume
AL, x)<%(t, x) < HB(tL, x) (25)

and let 0 be a solution of (22), ¢ be a minimal solution of (23), and Y be a
maximal solution of (24), each of them defined on [0, 2n] and such that
6(0) = @(0) = y(0). Then for any te [0, 2n] one has

(1) <6(2) <Y (1)
Proof. See P. Hartman [ 13, Theorem 4.1, p. 26]. |

COROLLARY 2. Assume (25) holds. For any 6, € [0, 2n], suppose that the
Sfunctions @, minimal solution of (23) such that ¢(0)=0,, and Y, maximal
solution of (24) such that y(0)=6,, are such that

Lo(2n) —bo, Y(21) — 01 N (21)Z = .
Then Eq. (21) has no nontrivial 2rn-periodic solution.

Suppose now that 4 and B are independent of ¢ and that for any x
B(x)=x,By(x)—x,B,(x)<0. (26)

Then we know that ¢(¢) and Y (t), solutions of (23) and (24), decrease. In
this case, let 7, and ¢, be the time necessary for ¢ and y to decrease of 2x.

COROLLARY 3. Assume (25) and (26) hold and A, B are independent of
t; @ and Y are defined as in Proposition 1.

If t,22n/(n+ 1), then any 2m-periodic solution x of (21) has at most
2(n+1) zeros in [0, 2n[ and if t,>2n/(n+ 1) then x has less than 2(n+ 1)
zeros.

If t, <2m/n, then x has at least 2n zeros and if t, < 2m/n, x has more than
2n zeros.

4.2. In order to compute ¢, and ¢, in applications, we often have to
investigate a comparison system which is piecewise linear

()= o))
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The equivalent of (23) or (24) reads then
6= —(sin? 8+ L cos 0 sin 6 + K cos? 6), (27)
the solution of which is decreasing if
L*—4K <.

Let ¢,(L, K) be the smallest positive time such that (27) has a solution
with

One computes (see P.B. Bailey, L. F. Shampine, and P.E. Waltman
[1,p.36])

do
sin? 0+ L cos 8sin 0+ K cos? 0

! cos ™! L
JK—-L¥4 2 /K
It is easy to see also that if we define t(L, K) (i=1,..,4) as the time

necessary for a soution of (27) to go from O=n—i(n/2) to
0 = (n/2) —i(n/2), one has

/2
(L K)= |

(28)

1L, K)=to(— L, K)=t5(L, K) = t,(— L, K).

4.3. Application 1. Considering (12), we have to investigate property P
for the functions

G('x’ s u)=(}’_u1x+ +ux_, —UzX +u4x‘),
a=(a,c p,r) (29)
B=(b,d, q,s).

We shall assume for simplicity that the functions o and B are constant.
Hence, we must prove that under appropriate conditions on « and f, the
system

X=y—u(t)x, +u(t)x_
. Y 1 + 2 (30)
y=—us(t) x . +uylt) x_

has no nontrivial periodic solution if u e C and

a<su(t)<p.
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PROPOSITION 2. Assume a<b, c<d, p<q, r<s, and
a*—4p<0, br—4p <0, c?—4r<0, d>—4r <0,

and that for some ne N

vt v v Oy

n+1<\/4q__;cos 2\/(; +\/m§cos 2\/3
a5 e ()
+ 4s_czcos 2\/; + 4S_dzcos 2\/;

1 1

- b [ a
WCOS <—2\/;)+mcos (2—\/—;)

1 _ d 1 3 c 7
+——__4r_d2cos 1(—2\/7>+ ____4r_czcos ‘(——2\/;><; (31)

then the triplet (G, u, B) defined in (29) has property P.

<

Remark. Notice that if a =b = ¢ =d =0, the assumption (31) reduces to

2 < 1 N 1 < 1 N 1 <g

NN AN

which is the usual condition imposing that the rectangle [ p, ¢] x[r, 5]
keeps away from the Fulik’s spectrum (see, e.g., [11]).

(32)

Proof. Let u be a function such that a<u(r)<f and let (x, y) be a
nontrivial solution of (30). Consider the functions

A(x,y)=y—ax +dx_, if y=0,
=y—bx, +cx_, if y<O,
Ayx, y)=—gx, +5x_,

By(x, y)=y—bx, +tex_, if y20,
=y—ax, +dx_, if y<O,

By(x, y)=—px, +rx_.

One easily checks that (25) and (26) hold. Next one computes from (28)
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to=t(—aq)+1(bq)+t,(—c, 5)+1,(d,s)

e () )
\/mcos 2\/5 +mcos 2\/‘.]
o (s
* 43—(:200s 2\/; * 4s—a’2cOS 2\/;
27

>n+1

and

ty=t(=b,p)+t(a, p)+t,(—~d r)+1t(cr)

- ) w1 )

2 -1
cos

4p —b*
+-—2——cos”‘<— d >+ 2 cos“(——c—>

Jar —d? 2\/; Jar—¢? 2\/;
2n

<.

n

From Corollary 3, it follows that the number N, of zeros of x on [0, 2n[
is such that

2n+1)> Ny>2n,

which is a contradiction. |
COROLLARY 4. Assume a=b, c=d, p<q, r<s, and
a*—4p<0, ?—4r<0

and that, for some ne N

1 1 1 1 1 1
+ < + =
”+1<\/4q~a2 \/Zs—cz \/41)_(12 \/4r_c2<n

then the triplet (G, o, B) defined in (29) has property P.

PROPOSITION 3. Assume 0<a<b,0<c<d, p<q, r<s, and

b*—4p<0, d?—4r<0.
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Assume further that
1 N 1 S
J4q—a? \/4s—(:2/

Then the triplet (G, o, ) defined in (29) has property P.

2.

Remark. Similar propositions can be obtained depending on the sign of
a, b, ¢, and d. For instance, if a=0, d<0, one can use the condition

1 + 1 >
N \/4s—d2/ '

Proof of Proposition2. To prove this result, one computes as in
Proposition 2

t,> i + z
T JAg—at Jas— ¢t
From Proposition 1, it follows that the time necessary for 0 to decrease

of 2n is larger than ¢,>2n. Hence, we have no nontrivial periodic
solution. |

=27

PROPOSITION 4. Assume a=b, c=d, p<q, r<s, and
a*—4p <0, 2 —4r<0.

If further
1 1

1
ﬂq*a2+\/4s—c2> ’

then the triplet (G, o, B) defined in (29) has property P.

Proof. As above one computes

. 2n + 2n
C SMq—d Jas—¢

and the proof follows. ||

>2n,

The following proposition gives a necessary and sufficient condition for
the system with constant coefficients

X=y—ax, +cx_
y=—px,+rx_

to have only the trivial solution.
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PROPOSITION 5. Assume a=b, c=d, p=q#0, r=5+#0. Then the triplet
(G, a, p) defined in (29) has property P if and only if one of the following
does not hold:

(i) a*—4p<0, *—4dr<0;
(i) ¢/ \/r+a\/p=0;
(ili) (1//4p—a*+1//4r—c?) " "eN.

Proof. The proof follows from direct computation of the solutions (see
A. Fonda and F. Zanolin [8, Lemma 1]).

4.4. Application 2. To investigate periodic solutions of (13) we consider
property P for the functions

Glx, yuy=(p, —uyy. tuyy_ —uzx, +usx_),
a={(a,c p,r), (33)
ﬂ: (b’ d, q, S)a

and we assume as above that « and f§ are constant.

PROPOSITION 6. Assume a<b, c<d, p<gq, r<s, and

a®—4p<0, d*>—4p <0, 2 —4r <0, b?—4r<0.

If further
" < ! cos“( b >+ ! cos“(——c—>
n+1 " Jag—p? 29/ Jag-¢ 2./q
1 . d 1 . a
/v (M)m—.— (‘57)
S—;—cos1< a >+ ! cos“(———d—>
4p—a? 2 /p) JAp-d® 2./p

1 _ [ 1 - b bid
+———___4r_czcos 1(2\/;>+ __.4r_b2cos 1<————2\/;><; (34)

then the triplet (G, a, B) defined in (33) has property P.

Remark. As for Proposition 2, we notice that if a=b=c=d=0,
assumption (34) reduces to (32).

Proof. Let ue L? be such that e <u(t)<f and (x, y) be a nontrivial
solution of

x=y, V=—u (1) yy Hus() yo —us(t) x4 +u(t) x .
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Consider the functions

A(x’ )’)=(y, _by+ +C}L~qx), if x=0,
=) —ay+ +dy,'_sx), lf x<0,
B(x, y)=(y, —ay, +dy_ — px), if x=0,

=(y, by, +cy_—rx), if x<O.
The proof follows then as the proof of Proposition2. |}

Statements similar to Corollary 4, Propositions 3 and 4, are easy to
obtain. For example, we can write the following.

PROPOSITION 7. Assume a=b=c=d, p<gq, r<s,
a?—4p <0, a’—4r<0
and
1 1
\/4q—a2+\/4s—a2>1.

Then the triplet (G, o, ) defined in (33) has property P.

The constant coefficient case can also be investigated and needs some
more care.
PROPOSITION 8. Assume a=b, c=d, p=q+#0, r=5#0, and
a+c#0.

Then the triplet (G, a, B) defined in (33) has property P.

Proof. Property P refers to 2z-periodic solutions of the differential
equation

X=y, y=—lay,—cy )= (px, —rx_) (35)

Assume a+ ¢ <0 and let (x(z), y(2)) be such a periodic solution. We can
assume that for some ¢, >0

y(0)=p(t;)=0 and Vie(0,t,), y(t)>0.

Notice also that from the positive homogeneity of (35) the functions
k(x(1), y(1)), ke R, are also periodic solutions. All the solutions of (35)
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are periodic and the origin is a global center. Next we consider the closed
curves defined by the functions

1. 00,26,1 R, 1< -y () =k(x(t), p(1)), keR,.
1>t -y () =k(x(2t,—1), —y(2t, —1)).

These curves cover the whole plane and for each ¢ we can define k(1)e R,
such that (x(¢), (1)) €yy,. Clearly k(t)=1 if y(t)>0. Moreover k(z) is
strictly increasing if y(¢) < 0. This follows from the fact that along y, (¢} the
vector field G points outward the regions I, bounded by y,. Indeed for
such a point one computes

Yy =k(—y{(2t; — 1), —ay(2t, — 1} — px (26, — )+ rx_(2t, — 1))
and
GO =k(—y2t,— 1), cy(2t,— ) — px (26, — )+ rx__(2t, — 1))
Since
cy—px,+rx_<-—ay—px,+rx_,
the vector field G points outward. At last, as k(2n) > k(0), we cannot have
(x(2m), y(2m)) = (x(0), ¥(0)) which contradicts the periodicitiy of (x, y). |}

The above proposition can also be proved by direct computation of the
solutions. In fact we can prove more generally the following necessary and
sufficient condition for the constant coefficient case to have property P.

PROPOSITION 9. Assume a=b, c=d, p=g+#0, r=5s#0. Then the triple
(G, a, B) defined in (33) has property P if and only if one of the following
does not hold:

(i) a®>—4p<0, a®>—4r<0;
(i) a+c=0;

(iii) m[(1//4p—a*)cos! a/(2\/;>)+ (1//4r-a*)cos ! a/(Z\/;)] eN.
5. PROPERTY P FOR 3d ORDER SYSTEMS

5.1. Consider the equation

X=y, y=z, = —u{t)yx, +us{t)x_—by—az (36}
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or, which is equivalent,
X+aX+bx+u(t)x, —us(t)x_=0 (37
together with the conditions a€ R, be R,
Py <Suy(1)<q(?),
r(t) S us(t)y < s(t).
ProrosTITION 10. Let a#0 and assume that for some neN
ma<p(ty=r(t), q(t)=s(t)<(n+1)%a,

both inequalities being strict on a subser of [0, 2rn] of positive measure.
Then the triplet

Glx, v,z,u)=(y, 2, —uyx, +usx_ —by—az), (38)
a(t)=(p(1), p(1)),
B(1)=(g(1), q(1)),
has property P.

Proof. The proof follows from Lemma 1 in O.C. Ezeilo and M. N.
Nkashama [5]. |

We can extend this result to the somewhat more general equation
X=y, y=1z
=u (x| + 1yl +z]) —up(t) x, +us(t) x_ —by—az.

for which we have the following.

COROLLARY 5. If the triplet (G, a, B) with G defined as in (38) and
at)=(p(e), r(1)),  B(ty=(q(2), s(1)),
has property P, there exists £,>0 such that the triplet
G(x, y, z,u)=(p, z, u (|X] + | p| + |z]) =ty x . + usx_ — by —az),

6;([): (_"80: P([), r(t))a
B(1) = (e0, q(1), 5(1))

has property P.
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Proof. 1t is clear that the triplet

G, a@n)=(0,p(1),r(1)),  B(t)=(0,q(), s(1))
has property P. The proof follows then from Lemma 1. |

5.2. PROPOSITION 11. Let u>0, v>0, p =0 and define

a 1/2
m=min(y, v), M =max(y, v), b0=p< ) .
m—p

Assume m > p and one of the following conditions holds:
(i) a<o0;
(1) a>M+by;
(i) b>1—by;
(iv) m>ab+byla+/b+by);
(v) M<ab—byla+/b+by).

Then the triplet
G(x, y, z,u) = (y, z, =X, +usx_ — by —az),

a:(:u'_p’v_p)’
B=(u+p,v+p)

has property P.

Proof. Let us suppose that x is a nontrivial 2z-periodic solution of (37)
and let

fO)=(u—u (1)) x (1) = (v —u;(2)) x _(2).
Equation (37) reads
X+akX+bx+px, —vx_=f(1) (39)
Multiplying (39) by x and integrating gives
mxl = 1 £l 2 1xl) 2 < @ 1% 72
We notice further that || /| .2 < p || x|l ;2, from which follows

0<(m—p)lxliz<a %l zz (40)
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a>0.

This contradicts (i).
Multiplying (39) by % and integrating, one gets

LIENZ =& 1% 5 < N2 1% 2 < p llx] 2 110 2

and from (40)

. a 12 . .
1512 — b 212 < p (;n——p) 1512 = b 151122,

1e.,
(b—bo) %[ 72 < 1% 7 < (b + bg) 1% 32

In particular, by Wirtinger inequality,
1<b+b,

which contradicts (iii).
Multiplying (39) by % and integrating, one gets

m XN — 112 1% 2 <@ &0 2 < MR+ 1S 2 1% 2.

From (40) and the Wirtinger inequality we have
as<M+b,,

contradicting (ii).
From (42), (41), and (40), it follows

[m—bo(b +bo)' ] %1172 < a X172 < a(b + bo) %] 22

and
m—by(b+by)* <a(b+b,),

which contradicts (iv).
Similarly, it follows from (42), (41), and (40) that

a(b —bo) X[ < a 1% 72 < [M + bo(b + bo) '] 1 %] 22
and
a(b - bo) < M + bo(b + bo)l/z,

which contradicts (v). |}

91

(41)

(42)
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5.3. Let us consider the constant coefficients case
X+a¥x+bx+ux, —vx_=0, (43)
with (g, v) € R% We define a subset U(a, b) of R? as follows.
(1) Ifa=0o0rb<1, set
Ula, b= {(u, v):p-v>0}.
(2) Ifa#0,b>1, and neN is such that be [n’, (n+ 1)*[, set

Ula, b)= {(u,v)|p-v>0, (u—ab)(v—ab)>0}
U, v)uvelan® a(n+1)°[}.

PrOPOSITION 12. Assume (u, v)e Ula, b). Then the triplet

G(x, y, z,u)=(y, z, —uyXx , +us3x_ —by—az)
a(t) = (1, v)
B(1)=(u, v)
has property P.

Proof. 1t is a consequence of Propositions 10 and 11, together with a
symmetric formulation of Proposition 11 for the case u <0, v<0.

Remark. Proposition 12 gives sufficient conditions for a third order
system with constant coefficients to have only the trivial solution. In case
w=yv, it is well known (see [5]) that a necessary and sufficient condition
for property P to hold is

p#0 and  VneN*[b#n® or u#an*].

One can check that such an assumption is equivalent to

(1, n)e Ula, b).

Hence, Proposition 12 generalizes the linear case. Necessary and sufficient
conditions in the general case u # v seem to be unknown.
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6. EXISTENCE OF PERIODIC SOLUTIONS IN APPLICATIONS

6.1. Consider the boundary value problem

X= y —f(t9 )C),
)}ze(t)_g(t’x)’ (44)
x(0)y=x(2n),  y(0)=y(2n).

THEOREM 2. Assume:

(i) the functions f, g, and e are continuous and defined for
te[0,2rn], xeR;
(ii) Assumption Al holds;
(iii) the triplet
Glx, yu)=(y—uyx  +uyx_, —usX, +usx_),
a(t) = (a(t), e(2), p(1), (1)),
B(r) = (b(2), d(1), q(t), s(1)),
has property P,
(iv) there exists some constants u® e R* such that

a(t) <u® < B(2).
Then the problem (44) has at least one solution.

Proof. We will apply Theorem 1. From Paragraph 2.2 it is clear that
Assumption H holds.
Next, using Proposition 5, we can find a path u* = (u}, u3, u?, u?) in R?,
A€[0, 1], that links «° to a point u' such that
w=ub =l

and for any A€ J0, 1], the differential equations

. A A
X=y—uix, tusx_
1%+ 2 (45)

y=—uix, +uix_

have no nontrivial 2n-periodic solutions. Indeed, in case <0 or u<0 a
path can be found such that condition (i) of Proposition 5 does not hold.
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In case u3>0 and u3>0 we can choose a path such that, for any
Ae 0, 1],

A A

Uz uy

=+ =7 0
\/u—ﬁ ug

(see [8]), so that condition (ii) of Proposition 5 does not hold. As for

A=1, (44) reduces to a linear system, it follows that for
Q,={xeC:|x||l, <1} and N, defined in (18),

d(L — Ny, Q,) #0.
The proof follows now from Theorem 1. |

Conditions for (iii) to hold are given in Propositions 2, 3, 4, and in
Corollary 4. Other methods can be used as in P. Habets and G. Metzen
[11]. Theorem 2 generalizes among others results from [11] and A. Fonda
and F. Zanolin [8].

6.2. In our second application we consider the boundary value problem

x=y’ y=€(1)—g(1,)€)—f([, )’),
x(0)=x(2n),  »(0)= y(2m).

(46)

THEOREM 3. Assume:

(1) the functions f, g, and e are continuous and defined for te [0, 2],
xeR, yeR,

(ii) Assumption Al holds;
(iii) the triplet
Gx, yyu)=(y, —u, . +Usy_ —usx, +uux_),
a(t) = (a(1), c(2), p(2), (1)),
B(2) = (b(z), d(1), 4(1), (1))

has property P;
(iv) there exists some constant u® e R* such that

a(t) <u® < B(2).

Then the problem (46) has at least one solution.

The proof is identical to the proof of Theorem 2 but uses Proposition 8
instead of Proposition 5. Conditions ensuring (iii) are given in Proposi-
tions 6 and 7.
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6.3. Consider the third order problem

¥ 4oyt by
AT WA T VA

+
e

{
\és

yI=¢p
Ay=7

(47)

g
x(0)=x(2n), X0)=%Q2n),  ¥0)=%(2n).

THEOREM 4. Assume:
(i) the functions g(t,x) and e(t,x, y,z) are continuous functions
defined for te [0,2n], xeR, yeR, zeR;
(il) Assumption A3 holds;
(iil) the triplet
G(x, y,z,u)y=(p, z, —uyx,, +u;x_ —by—az),
a(r) = (p(1), r(1)),
B(1) = (q(2), s(1))
has property P,

(iv) there exists some constant u° € U(a, b), where Ul(a, b) is defined as
in 5.3, such that

a(t) <u® < B(o).

Then there exists €,>0 such that if Ay<g,, the problem (47) has a
solution.

The proof of this theorem goes as the proof of Theorem 2. One has oniy
to notice that from Corollary 5, there exists ¢, > 0 such that the triplet
é(xa Y, Z, u)'—_ (ya Z, u([x[ + IyI + IZI)_u2x+s +u3x—- —bJ"‘aZ)’
fi(t) = ( — &g, p(t)’ r(t))a
B(Z) = (805 q(t)s S(l))
has property P.
Assumption (iii) can be obtained from Propositions 10 and 11. Theorem
4 generalizes then a result of O. C. Ezeilo and M. N. Nkashama [5].

6.4. Let us remark that in Theorems 2 and 3, assumption (iv) can be
replaced by:

(iv') there exists some functions

(1) = (ui(e), ui(r), ug(e), uS())

505/81/1-7
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such that

a(t) <u(r) < (2).

In this case, the proof uses Corollary 1 instead of Theorem 1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

A similar statement holds for Theorem 4.
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