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First studies of periodic solutions for a diflerential equation 

2 A- cl + g(x) = e( t)$ 

where g is asymptoticahy linear in some sense, are due to W. S. Loud [ZO] 
and A. C. Lazer [16-J. This was the starting point of a vast literature on the 
LiCnard equation 

k+.f(x)R+g(t,x)=e(t) 

and its special case, the Duffrng equation 

(1) 

2 “t ck -t gfr, x) = e(t). f2) 

One can mention for example the papers by R. Reissig [31 “J9 M. Martelli 
[21]. J. Mawhin and J. R. Ward [27], J. Mawhin [25], C. Fabry [6], and 
the fiterature therein. In these papers, the asymptotic behaviour of the non- 
linearity g is controlled through inequalities such as 

These tend to keep away the quotient g(t, x)/x from the spectrum of the 
linear operator LX= --P as 1x1 -+ co. Closely related results can be found 
in J. Mawhin [23 J, J. Mawhin and J. R. Ward t2&], P. Omari and 
F. Zanolin [30]. Similar resuhs for systems have been worked out in A. C. 
Lazer and D. A. Sanchez [ 173, P. Habets and M. N. Nkashama [12], for 
a Rayleigh equation in R. Reissig [32], and for third order equations in 
G. Villari [33], 0. C. Ezeilo and M. N. Nkashama [S]. See also the 
references therein. 
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PERIODIC SOLUTIONS 69 

A major generalization was considered in E. N. Dancer [2, 31 and 
S. FuEik [9, 101. There, existence of solutions for the equation 

2 + g(x) = e(t) (4) 

is investigated when the function g is asymptotically positively 
homogeneous, i.e., 

Iirn g(x) 
- = PL, lim g(.w)=v 

x-+m x x--r--3c x 

Noticing that the quotient g(x)/x could vary from one eigenvalue of L as 
x + -co to the next one as x -+ + co, or even could cross eigenvalues of 
L, S. FuEik called the function g a “jumping nonlinearity.” These authors 
considered the positively homogeneous equation 

z++x+ -vx_ =o, (6) 

where x, = max(x, 0) and x- = max( -x, 0) and introduced the set K, 
known as FuEik spectrum, of points (p, v) E [w2 such that (6) has a non-zero 
periodic solution. Basically they proved that in (,u, v) 4 K and g satisfies (5), 
Eq. (4) has a periodic solution. Later, condition (5) has been generalized 
for a Dulfing equation (2) using assumptions of the type (3). In P. Habets 
and G. Metzen [ 111, the asymptotic values of the quotient g(t, x)/x are 
controlled by the inequalities 

g(t, xl a(t)<liminf- < lim sup s(4 xl - < b(t), x++cc x x--t fee X 

g(t, x) c(t)<liminf- < lim sup g(t, xl -Q d(t), x+--m x x--r --co X 

together with a condition called property P. This property replaces the 
assumption (p, v) 4 K by imposing that zero is the only periodic solution of 
the positively homogeneous equation 

1+ci++(t)x+ -q(t)x- =o, 

whenever a(t) < p(t) < b(t), c(t) < q(t) < d(t). Such a property P appears 
already more or less implicitly in A. Lasota and Z. Opial [ 181 and S. Inver- 
nizzi [ 151. Recent results along these lines are in P. Drabek and S. Inver- 
nizzi [4], R. Iannacci, M. N. Nkashama, P. Omari, and F. Zanolin [14]. 
In the case of one-sided growth restrictions, see also P. Omari, G. Villari, 
and F. Zanolin [29] and L. Fernandes and F. Zanolin [7]. 
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A similar phenomenon was observed by A. Fonda and F. Zanolin [S] 
for the Litnard equation 

2 +f(x) i + g(x) = e(t). (7) 

Assuming (5) as well as 

lim f(x) = p, lim f(x) = q, x- tz .r- -m 

they indicate a set K in the (cl, v, p, q) space which generalizes the FuEik 
spectrum and is such that if (,B, v, p, q) $ K, the equation (7) has at least 
one periodic solution. 

The original motivation of our paper was to prove the existence of 
periodic solutions for (7) using a property P so as to weaken the above 
conditions on f and g. Our purpose was also to apply these ideas to other 
problems such as the Rayleigh equation 

Z+f(t,i)+g(t,x)=e(t) (8) 

and the third order equation 

R + ai! + bi + g( t, x) = e(t). (9) 

The paper is organized as follows. In Section 2, we consider a general 
first order equation in KY 

i =F(t, x). (10) 

We describe what we mean by F being asymptotically positively 
homogeneous and check this property in applications. Section 3 is devoted 
to property P and the main existence theorem for periodic solutions of 
(10). In Section 4, we investigate property P for equations in [w2 using 
phase plane methods. This applies to Lienard and Rayleigh equations. 
Section 5 studies property P for equations in [w3 using L2-estimates on the 
solutions and their derivatives. In Section 6, we deduce some existence 
theorems for Lienard equation (I), Rayleigh equation (8) and the third 
order equation (9). These contain and generalize results in P. Drabek and 
S. Invernizzi [4], P. Habets and G. Metzen [ 111, A. Fonda and F. Zanolin 
[8], and 0. C. Ezeilo and M. N. Nkashama [S]. 
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2. THE MAIN PROBLEM 

2.1. Consider the periodic boundary value problem 

i=F(f, x) 

x(0) = x(27c), 
(11) 

where F: [0,27c] x Iw” + 58” is a continuous function. 
The following assumption expresses the fact that F is asymptotically 

positively homogeneous. 

Assumption H. (i) Let 

G(f,x,~)=Go(f,x)+G*(f,x)~, (t, x, u) E [O, 27-c-j x R" x RP, 

be a continuous function which is positively homogeneous in x, i.e., 

V(t, x, u) E [O, 271-j x 58" x R", v'I>o, G( t, lx, u) = AG( t, x, u); 

(ii) let 

a: [0,27T]+RP and p: [0,27r]+RP 

be continuous functions and 

(iii) assume that for any E>O, there exist y >O and a continuous 
function u(t, x) such that for every (r, x) E [0,2n] x Iw” one has 
44 xl E [Idt) -w B(f) + Eel, 

where e E (wp is the vector with all components equal to 1, and 

IG(t, x, u(f, xl) - F(f, x)1 d y. 

This assumption holds true in several important applications. 

2.2. Applicafion 1. Consider the system of equations 

i= y-f(t, x), 

.G = e(f) - g(f, XL 
(12) 

where f, g, and e are continuous functions defined for t E [0,2n J, x E [w. 
Recall that the Lienard equation 

i+h(x)i+g(t,x)=e(t) 

can be written in such a form. 

In this application, we assume the following. 
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Assumption Al. There exist continuous functions a, b, c, d, p, q, r, s 
such that the following inequalities hold uniformly in t: 

a(t)<Iiminf’~<hmsup’~gb(t), 
x-+m x .r- +m X 

c(t)<liminf.flf’<hmsup’~<d(t), 
x--m x x-+--a X 

g(t, x) p(t)<liminf- g(t, x) 
x-+00 x 

< lim sup - 
X 

G s(t), 
x- +m 

g(4 x) . r(t) ,( lim inf - g(t, x) 
x---m x 

d hm sup - d s(t). 
x-+-m X 

Let us show that the function 

et, 4 VI = (Y -f(t, x), e(t) - g(t, xl) 
satisfies Assumption H. 

We shall first introduce the functions 

and 

&a, x, b) = a, if x < a, 

= x, if xc (a, b), 

= 6, if x 3 b, 

dx) = 0, if XE [O, I], 

=x- 1, if x~(l, 21, 

= 1, if x > 2. 

With these notations and for any E > 0, we write (12) as 

2=y-u,(t,x)x++u,(t,x)x-+h,(t,x), 

)‘= -u,(t, x)x+ + u,(t, x)x- + Mt, xl, 

where 

x+ = max (x, 0), x- =max( -x, 0), 

cp(lxl),b(t)+~ 3 
> 
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( f(c xl u,(t,x)=d C(f)-&,--- cP(lxo~4~)+~ > x 
> 

u3(4x)=6 At)--E,y- 
( 

d4 x) 
dlxlh q(t)+& 3 

> 

u,(t,x)=d r(t)--E,fi 
( 

g(c xl 
dlxl)~4~)+~ . 

> 

Notice that we can choose R large enough, so that if x 2 R one has 

a(t)-E4fo<b(t)+E, 
X 

&At, x) 
p(r) - E d - < q(t) + E. 

X 

Similarly, if x d -R, one has 

g(c xl r(l) - E < - < s(t) + E. 
X 

If we define 

G(x, y, u)=(y-u,x+ +u2x-, -u3x+ +u,x-), 

a(t) = (4th 4th p(t), r(l)), 

B(t) = (Mt), 4th 4(t), s(t)), 

it is clear that 

cc(t)--~e<u(t,x)<~(t)+~e 

and that the function 

4~ x) = Qt, x, Y) - G(x, Y, 46 xl) 

=(-f+u,x+-u2x~,e-g++3x+-uu,x~) 

is bounded as it is continuous with compact support. 

2.3. Application 2. The Rayleigh equation 

ji+f(f,.t)+ g(t,x)=e(t) 
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can be written in vector form 

.t = y, 3=4t)-g(t,x)-At, Y). (13) 

As in Application 1, we assume that the functions J g, and e are 
continuous functions defined for t E [0,27z], x E lF! and y E R. We also 
assume that Assumption Al holds. 

It is then easy to see that the function 

F(t, x, Y) = (Y, e(t) - s(t, x) -.f(t, Y)) 

verifies Assumption H with 

W,Y,~)=(Y, --~~Y++u~Y---~x++u~x~), 

46 x, y) = (u, (6 Yh u2 (2, y), u3 (6 xl, u‘l(t, x)), 

where the functions ui, ~1, and B are defined as in Application 1. 

2.4. Application 3. The third order equation 

X + a.? + !I.? + g( t, x) = e( t, x, CC, 2) 

can be written as 

1 = y, j = z, i = e( t, x, y, z) - g( t, x) - by - az. (14) 

We assume that the functions g and e are continuous functions defined for 
t E [0,27c], x E R, y E R, z E R, and that the following condition holds. 

Assumption A3. There exist continuous functions p, q, r, s such that the 
following inequalities hold uniformly in t 

‘dt> x) p(t) < lim inf - < lim sup g(t, xl 
-G q(t), x-+ar x x4 +m X 

g(t, x) r(t)<liminf- < lim sup At, x) -<.$t), x--m x x--cc X 

and there exist 6,> 0, d,>O such that for any tE [0,27c], (x, y, Z)E R3, 
one has 

le(t, x, y, z)l G 6, + 4dl4 + I .A + I4 1. 

Let us prove that the function 

F(t, x, y, z) = (Y, z, 44 x, y, z) - s(t, xl - bY - az) 

verifies Assumption H. 



For any E r 0, we write (14) as 
I=y, JjZ& 

where 

If we define 

Moreover 

ft(& -u, Y, z) = J-lb, x, y, z) - G(x, y, z, u(t, x, J-, 2)) 

= (0, 0, h, I& x, y, 2) + &ftt x)) 

is bounded since the functions 

~~~~~,~~,~,z)=e(~,x,y,z)-u,(t,x,y,z)(lxl+I~]-t-]zl) 

h,(t,x)= ---g(t, K)+U~(t,X)X+ -U~(t,X)X- 

ai2 continuous functions with compact support. 

3. PROPERTY P AND THE MAIN THEOREM 

3.1. DEFINITION. Given functions G(t, x, u), ~(t], and /3(t) as in 
Assumptive H, we say that the triplet (G, a, 8) has property P if for any 
u E L2 such that 

Vt E [a, 2x1, u(t) 65 Cdt), B(f)17 
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zero is the only solution of the boundary value problem 

i = G( t, x, u(t)) 

x(0) = x(2n). 

3.2. In order to prove our main theorem, we need the following lemma. 

LEMMA 1. Let G(t, x, u), GI( t ), and p(t) be as in Assumption H. Zf 
(G, CI, /I) has property P, then there exists E > 0 such that (G, c1- me, p + &e) 
has property P. 

Proof Suppose the contrary is true. Then for any n E N, there exists 
U, E L2 such that 

v t E [O, 2x1, U,(f)E n(r)+, j?(t)++, 
[ 1 

and x, E H’, x, # 0 such that 

4 = G(t, x,(t), u,(t)) 

X”(0) =x,(271). 

(15) 

(16) 

The positive homogeneity of G in x allows us to choose x, such that 
llx,ll HI = 1. 

As Cc H’, the x, are uniformly bounded in /[.[I cD. The U, are also 
uniformly bounded. Hence from (15) it follows that the X, are equi- 
continuous. Going to a subsequence, we can then suppose x, --% x. 

Likewise, since u, is a bounded sequence in L2 we can suppose u, L u, 
for some u EL*. It follows that 

CC.3 x,, u,) --!I?- G( ., x, u). 

Indeed, for any cp E L2 we have 

s 
2n CWG 4th u,(t)) - G(& 4th 4t))l q(t) dt 

0 

= jin CGo(h x,(t)) - Go(t, x(t))1 v(t) dt + j;’ CG, (h x,(t)) 

- G,(c x(f))1 u,(r) v(t) dt + jzn G, (G x(tI)(u,(t) - 41)) v(t) dt. 
0 

From Lebesg$e dominated convergence theorem, the two first terms go to 
zero. As u, - U, the same holds true for the third one. 
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Taking the weak limit of (15) in L*, and the limit in (16) we obtain 

i(f) = G(r, x(r), u(r)) 
(17) 

x(0)=x(271). 

As u,A u, it is easy to see that for each i = 1, . . . . p and almost every 
re [0,27r], one has 

mi( t) < lim inf uni( t) < lim sup uni( t) < jIi( t). 
n-rm n-m 

Hence changing u on a set of measure zero, we can assume 

As (G, c1,p) has Property P, we deduce from (17) that x = 0. 
On the other hand, from the positive homogeneity of G in x, we can find 

K > 0 such that 

v(t,x)E[O,27c]x KY, vu E Cdt) -e, B(r) + el, IG(c x, u)l <K 1x1. 

Hence we can write 

1 = /lx, II’,1 = /Ix, II t2 + ll~nll t2 

<27-c /Ix,,I(:+~*~G2(rx,(r),u,(f))dt~2~(l+K)* Ilxnll2, 
0 

which implies 

x=limx,#O. 

This is a contradiction. 1 

3.3. To prove the existence of solutions of (1 l), we shall apply coin- 
cidence degree theory [24]. It is clear that Leray-Schauder’s degree [ 193 
could be used at the expense of reformulating the problem as a fixed point 
problem. 

Given functions F( t, x) and G(t, x, U) as in Assumption H, and a 
continuous function uo: [0,27r] + Rp, we shall use the following notations: 

DomL= {x~C’~~(0)=~(27c)}; 

L :DomL-+C,x-+x’; 

N,:C+C,x+F(.,x); 

No: C + C, x + G( ., x, uo). (18) 
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It is clear that N, and N, are L-compact on bounded subsets of C and that 
L is a linear Fredholm map of index zero. 

THEOREM 1. Assume : 

(i) F satisfies Assumption H; 
(ii) the triplet (G, CI, /I) has property P; 
(iii) for some continuous function uO: [O, 2n] -+ Rp such that 

v’t E [O, 2n], %(t) E E@(f), B(t)13 

one has 

where N, is defined as in (18) and fz,, = 1.x E C I /lx]/ r < 11. 

Then the problem (11) has at least one soiution. 

Proof We consider the homotopy 

Lx-RN,x-(I -A)N,,x=O 

which corresponds to the boundary value problem 

~=~~F(t,x)+(l-1)G(t,x,u,(t)), 

x(0) = x(2rc). 

For any 1 E I;O, 11, the function 

Y(t, x, %)=IF(t,x)+(l -12) G(t,x, u,,(t)) 

(19) 

verifies Assumption H with the same functions G, CL, B. Indeed, let us fix 
E>O. There exist y >O and u(t, .X)E [E(t)-&e, P(t) + ae] such that the 
function 

H( t, x) = F( t, x) - G( t, x, u( t, x)) 

verifies IH(t, x)1 <y. Further, we can write 

Y(u(t, x, A) = G(t, x, zIu(r, x) + (I- 2) u*(t)) + IH(t, x) 

which is such that 

k(t,x)+(l-d)uO(t)E[cr(t)-Ee,P(t)+Ee] 



By Lemma 1, we can choose E >O such that (G, 01-&e, p+ se) has 
property P. Let us prove that there exists an a priori bound for the solu- 

tions of (19). Assume on the contrary that there exist sequences of real 
numbers (;I,) in 10, l] and of functions X, such that Vn E N, Il.x,ll, 5 n, 
and 

.-C,=.%,F(t, x,)+(1-;t,,fG(t, ~~7 uoft)l, 

x,(O) = &(27c). 

Clearly the 6, are uniformly bounded. Hence theHp, are bounde$ in II’ 
and, going to subsequences, we can assume u,- VfH1, 0, - Y # 0, 

and 3,, -+ IE [O, 11. Likewise, as the functions gn(f) 5 &~(b, x,(t)) t 
(I - 2,) g*(t) are uniformly bounded, we can assume U, -2% u E L2. Going 
to the limit in (20) we obtain 

r; = G(t, u(r), u(r)) 

v(0) = v(2n). 

As in L,emma 1, it is clear that changing u on a set of measure zero, we 
have 

t/t E [O, 2n], u(t) f [a(t) - ee, /3(r) + 8ze J 

and, from praperty P, that u = 0, which contradicts n,z V, Hence, there 
is a constant c such that, for any R and any soution x of (191, 

//-~I/ ov G c. 

By invariance of the degree with respect to an homotopy and excision, one 
has 

where 

Hence, there exists x ~fZr such that Lx = N,x; i.e., the problem (I 1) has at 
least one solution. u 
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COROLLARY 1. Assume: 

(i) F satisfies Assumption H; 
(ii) the triplet (G, u, j?) has property P; 
(iii) for some continuous function uO: [0, 2711 + lRp such that 

Vt E [O, 2?r], %l(t) E C@(t), P(t)17 

the function G( t, x, uO( t)) is linear in x. 

Then the problem (1) has at least one solution. 

The proof follows from the observation that property P implies L-N,, 
is one to one and therefore that d(L - IV,, 52,) # 0. 

4. THE PROPERTY P FOR SECOND ORDER SYSTEMS 

4.1. Consider the equation 

R = G( t, x), (21) 

where the function G: [O, 27~) x R2 + R2 satisfies Caratheodory conditions 
and is positively homogeneous in x: 

V(t, x) E [O, 2n] x Iw*, VA > 0 : G( t, Ax) = AG( t, x). 

We will establish some conditions under which the only 2rr-periodic 
solution of (21) is the trivial one. To this end, let us introduce polar 
coordinates 

x = (r cosf?, r sin 0). 

One computes 

1!9 = 9( t, cos 0, sin 0) 

= cos 0G,(t, cos 19, sin 0) - sin 8G,(t, cos 8, sin 0). (22) 

Consider also comparison systems 

.t = A(t, x) and i = B( t, x), 

where the functions A and B are positively homogeneous in x and such 
that the functions 

d(t, x)=x,A,(t, x) -x,A,(t, x), g’(t, x) = xl Bz(f, x) -x2 B,(t, x) 
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are continuous. Introducing polar coordinates, we have respectively 

4 = d( 2, cos 8, sin O), (23) 
4 = S?( t, cos 6, sin 0). (24) 

PROPOSITION 1. Assume 

@-(t, x) < 9th x) d B(t, x) (25) 

and let 0 be a solution of (22), cp be a minimal solution of (23), and e be a 
maximal solution of (24), each of them defined on [0,2n] and such that 
0(O) = ~(0) = e(O). Then for any t E [0,2n] one has 

v(t) G e(t) G Ii/(t). 

Proof See P. Hartman [ 13, Theorem 4.1, p. 261. 1 

COROLLARY 2. Assume (25) holds. For any t?O E [0,27c], suppose that the 
functions cp, minimal solution of (23) such that ~(0) = 8,, and $, maximal 
solution of (24) such that $(O) = 8,, are such that 

cd274 - eo, w74 - e,i A wz = a. 

Then Eq. (21) has no nontrivial 2x-periodic solution. 

Suppose now that A and B are independent of t and that for any x 

4?(x) = x1 B,(x) - x,B,(x) < 0. (26) 

Then we know that q(t) and t&t), solutions of (23) and (24), decrease. In 
this case, let t, and tti be the time necessary for cp and Ic/ to decrease of 2n. 

COROLLARY 3. Assume (25) and (26) hold and A, B are independent of 
t ; cp and J/ are defined as in Proposition 1. 

Zf t, 2 2?z/(n+ l), then any Zn-periodic solution x of (21) has at most 
2(n + 1) zeros in [0,271[ and if t, > 27c/(n + 1) then x has less than 2(n + 1) 
zeros. 

Zf tti Q 2x/n, then x has at least 2n zeros and if t+ -C 2x/n, x has more than 
2n zeros. 

4.2. In order to compute t, and tti in applications, we often have to 
investigate a comparison system which is piecewise linear 
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The equivalent of (23) or (24) reads then 

6 = - ( sin2 0 + L cos 8 sin 8 + K cos’ 0), (27) 

the solution of which is decreasing if 

L2-4K<O. 

Let t,(L, K) be the smallest positive time such that (27) has a solution 
with 

e(0) = 2, e(f,)=o. 

One computes (see P. B. Bailey, L. F. Shampine, and P. E. Waltman 
Cl, P. 361) 

t,(L, K) = jr” 
de 

0 sin20+Lcos8sin0+Kcos20 

(28) 

It is easy to see also that if we define ti(L, K) (i= 1, . . . . 4) as the time 
necessary for a soution of (27) to go from 8= rc- i(n/2) to 
8 = (n/2) - i(z/2), one has 

t,(L, K)=t,(-L, K)=t,(L, K)=t,(-L, K). 

4.3. Application 1. Considering (12) we have to investigate property P 
for the functions 

G(x, y, u)=(y-ulx+ +u2x-, -u3x+ +u,x-), 

a = (4 c, P, r), 

B = (6 4 q, 3). 

(29) 

We shall assume for simplicity that the functions a and p are constant. 
Hence, we must prove that under appropriate conditions on a and /I, the 
system 

i=y-u,(t)x+ +u,(t)x- 

p= -u3(t)x++u,(t)x_ 

has no nontrivial periodic solution if u E C and 

a 6 u(t) d P. 

(30) 
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PROPOSITION 2. Assume a < b, c < d, p d q, r < s, and 

a2 - 4p < 0, b*-4p<O, c* - 4r < 0, d*-4r<O, 

and that for some n E N 

(31) 

then the triplet (G, ~1, 8) defined in (29) has property P. 

Remark. Notice that if a = b = c = d= 0, the assumption (31) reduces to 

(32) 

which is the usual condition imposing that the rectangle [p, q] x [r, s] 
keeps away from the FuEik’s spectrum (see, e.g., [ 11 I). 

Prooj Let u be a function such that cc< u(t) < b and let (x, y) be a 
nontrivial solution of (30). Consider the functions 

A,(x, y)=y-ax, +dx-, if y 2 0, 

=y-bx, +cx-, if y CO, 

A,(x, y)= -qx+ +sx-, 

B,(x, y)= y-bx, +cx-, if y 3 0, 

=y-ax+ +dx_, if y CO, 

B,(x, y) = -px+ + rx-. 

One easily checks that (25) and (26) hold. Next one computes from (28) 
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and 

t+ = tl ( -by P) + tl (a, P) + t, C-4 r) + t, (c, r) 

271 
<--. 

n 

From Corollary 3, it follows that the number No of zeros of x on [0,27~[ 
is such that 

2(n+ l)>N,>2n, 

which is a contradiction. 1 

COROLLARY 4. Assume a = b, c = d, p < q, r <s, and 

a2 - 4p < 0, c2-4r<O 

and that, for some n E N 

then the triplet (G, ~1, /3) defined in (29) has property P. 

PROPOSITION 3. Assume 0 =S a < 6, 0 < c < d, p < q, r <s, and 

b2-4p<O, d2-4r<O. 
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Assume further that 

1 1 

Jzq+.Jm 
2 2. 

Then the triplet (G, a, /?) defined in (29) has property P. 

Remark. Similar propositions can be obtained depending on the sign of 
a, b, c, and d. For instance, if a B 0, d < 0, one can use the condition 

1 1 

&zQmi 
>/ 2. 

Proof of Proposition 2. To prove this result, one computes as in 
Proposition 2 

From Proposition 1, it follows that the time necessary for 8 to decrease 
of 2~ is larger than t, > 27~. Hence, we have no nontrivial periodic 
solution. 1 

PROPOSITION 4. Assume a = b, c = d, p < q, r < s, and 

a2-4p<O, c2-4rCO. 

If further 

then the triplet (G, tl, j?) defined in (29) has property P. 

Proof As above one computes 

t~=&+&2- 
and the proof follows. 1 

The following proposition gives a necessary and sufficient condition for 
the system with constant coeffkients 

i= y-ax+ +cx 

y= -px+ +rx 

to have only the trivial solution. 
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PROPOSITION 5. -4ssume a = b, c = d, p = q # 0, r = s # 0. Then the triplet 
(G, c(, 8) defined in (29) has property P if and only if one of the following 
does not hold: 

(i) a’-4p<O, c2-4r<O; 

(ii) C/J- + a/& = 0; 

(iii) (l/J- + l/JG?)’ E N. 

Proof: The proof follows from direct computation of the solutions (see 
A. Fonda and F. Zanolin [S, Lemma 1 ] ). 

4.4. Application 2. To investigate periodic solutions of (13) we consider 
property P for the functions 

W,y,u)=(y, -u,y++u,y_-u,x++uqx~), 

u= (a, c, P, r), 

B = (b, 4 q, $1, 

and we assume as above that CI and j3 are constant. 

(33) 

PROPOSITION 6. Assume a < b, c < d, p < q, r <s, and 

a’-4p<O, d2 - 4p < 0, c2 - 4r < 0, b2-4r<O. 

If further 

7-c 1 
-< -1 -- 
n f 1 Jm ‘OS 

+&2cos-1 

then the triplet (G, c(, /I) defined in (33) has property P. 

Remark. As for Proposition 2, we notice that if a = b = c = d = 0, 
assumption (34) reduces to (32). 

Proof: Let u E L2 be such that CI < u(t) 6 /I and (x, y) be a nontrivial 
solution of 

i= y, I; = -u1(t) y, +242(t) y- -z+(t) x+ +&J(t) x-. 
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Consider the functions 

87 

A(x,y)=(y, -by++cJJ--qx), if x 20, 

=(y, -ay+ +dy--sx), if x < 0, 

wx, y)=(y, -UY+ +e -PXL if x20, 

=(y, -by+ +cy_ -TX), if x < 0. 

The proof follows then as the proof of Proposition 2. 1 

Statements similar to Corollary 4, Propositions 3 and 4, are easy to 
obtain. For example, we can write the following. 

PROPOSITION 7. Assume a = b = c = d, p d q, r d s, 

a2-4p<o, u2-4r<O 

and 

Then the triplet (G, a, b) defined in (33) has property P. 

The constant coefficient case can also be investigated and needs some 
more care. 

PROPOSITION 8. Assume a = b, c = d, p = q # 0, r = s # 0, and 

a+c#O. 

Then the triplet (G, tl, b) defined in (33) has property P. 

Proof: Property P refers to 2rc-periodic solutions of the differential 
equation 

i = y, I;= -(UY+ -cy-)--(px, -rx-). (35) 

Assume a + c < 0 and let (x(t), y(t)) be such a periodic solution. We can 
assume that for some t, > 0 

Y(O) = Y(fl) = 0 and VfE(O, t,), y(t)>O. 

Notice also that from the positive homogeneity of (35) the functions 
k(x(t), y(t))> k E R + , are also periodic solutions. All the solutions of (35) 
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are periodic and the origin is a global center. Next we consider the closed 
curves defined by the functions 

Yk: [o, zt,] + R2, t G t, + Y;(t) = W(f), y(t)), ItEE%+. 

t>t1 -+y,(t)=k(x(2t, -t), -y(22, -t)). 

These curves cover the whole plane and for each t we can define k(t) E 53 + 
such that (x(f), Y(f)) E ?k(t). Clearly k(t) = I if y(t) 3 0. Moreover k(r) is 
strictly increasing if y(t) < 0. This follows from the fact that along Y;(Z) the 
vector field G points outward the regions r, bounded by yk. Indeed for 
such a point one computes 

yjJt)=k(-y(2t,-t), -ffy(2t,-t)-px+(2r,-t)+rX~(2t,-t)) 

and 

GtY,(t)) = k( -Y@t, - t), cY(2f, - t) - px+ (2t, - t) + rx-(at, - t)). 

Since 

cy-px, +rx- -=z -uy-p-x+ +rx-, 

the vector field G points outward. At last, as k(27c) z=- k(O), we cannot have 
(x(2n), ~(27~)) = (x(O), y(0)) which contradicts the periodicitiy of (x, y). 1 

The above proposition can also be proved by direct computation of the 
solutions. In fact we can prove more generally the following necessary and 
suffkient condition for the constant coefficient case to have property P. 

PROPOSITION 9. Assume a = b, c = d, p = q # 0, r = s # 0. Then the triple1 
(G, a, p) defined in (33) has property P $ and on@ !f one of the foliowing 
does not hold: 

(i) a2-4p<O, a2-44rcO; 
(ii) a+c=O; 
(iii) 7c[(l/J4p-az)cos-‘a/(2~)+(1/~~)cos~’a/(2~)]~N. 

5. PROPERTY P FOR 3d ORDER SYSTEMS 

5.1. Consider the equation 

i= y, j = 2, P= -+(t)x+ +u3(t)x_ -by-az (361 
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or, which is equivalent, 

R+al+blfu,(r)x+ -u,(t)xp =o (37) 

together with the conditions a E 08, h E R, 

PROPOSTI+ITON 10. Let a # 0 and amme that for some n E N 

n2, < p(t) = r(t), q(t) = s(t) d (n + 1 )*a, 

both inequalities being strict on a ,subset of [IO, 21r] of positive measure. 
Then the triplet 

G(x,y,z,u)=(y,z, -u,x++u,x~-by-az), 

4tf = (p(t), p(t)), 

P(f) = (4(f)> q(t)), 

has property l? 

(38) 

Proof: The proof follows from Lemma 1 in 0. C. Ezeilo and M. N. 
Nkashama [S]. 1 

We can extend this result to the somewhat more general equation 

“t = y, j = 2, 

i=u,(t)(lxl+IyI+IzI)--u2(t)x++u3(t)x--by-az. 

for which we have the following. 

COROLLARY 5. If the triplet (G, CX,~) with G defined as in (38) and 

u(t) = (p(f), r(t)), P(f) = (q(t), S(f))> 

has property P, there exists Ed > 0 such that the triplet 

~(x,y,z,~)=(~,z,~~(lx-l+IylfI~l)-~~~++~~x_-by-az), 

a(t) = t-h p(t), r(f)), 

m = (b s(t), s(t)) 

has property P. 
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Proof: It is clear that the triplet 

G a(t) = (0, p(t), r(t)), m = (0,4(t), s(t)) 

has property P. The proof follows then from Lemma 1. m 

5.2. PROPOSITION 11. Let p > 0, v > 0, p > 0 and define 

m = min(p, v), M = max(p, v), 

Assume m > p and one of the following conditions holds: 

(i) aGO; 

(ii) a>M+b,; 

(iii) 6> 1 -b,; 
(iv) m>ab+b,(a+,/a); 

(v) M<ab-b,(a+Jb+b,). 

Then the triplet 

G(x,y,z,u)=(y,z, -u2x++z43x~-by-az), 

cl=(p-p, V-P), 

b=b++P, v+p) 

has property P. 

Proof: Let us suppose that x is a nontrivial 2x-periodic solution of (37) 
and let 

f(t) = (P - UZ(f)) x+(t) - (v -e(t)) x-(t). 

Equation (37) reads 

X+aR+b.?++x+ -vx_ =f(t). 

Multiplying (39) by x and integrating gives 

m llxll t2 - llfll L2 II-d Lz d a IMI 2L2. 

(39) 

We notice further that IlfIIL2<~ /Ix((~~, from which follows 

O<(m-p) llxll~2Qa Il~llt2, (40) 
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i.e., 
a > 0. 

This contradicts (i). 
Multiplying (39) by k and integrating, one gets 

I llall tz - b II4 t21 d llfll L* llfll~2 d P bll L2 II4 L2 

and from (40) 

i.e., 

(b-b,) llill:2 < /Iill :2 G (b + b,) 11412L2. 

In particular, by Wirtinger inequality, 

1 <b+b,, 

(41) 

which contradicts (iii). 
Multiplying (39) by 2 and integrating, one gets 

m II*;-11 22 - llfll L2 II4 L2fa Il.4l~2~~ ll4~2+ llfllL2 llfllL2. (42) 

From (40) and the Wirtinger inequality we have 

a<M+b,, 

contradicting (ii). 
From (42), (41), and (40), it follows 

[m- bo(b+b,)“*] IIillf,2<a llill~26a(b+bo) 114~2 

and 
m - b,(b + b,,)‘12 < a(b + b,), 

which contradicts (iv). 
Similarly, it follows from (42), (41), and (40) that 

a(b - b,) lli11 ;Z d a II211 $ < CM + bo(b + bo)1’2] llill f.2 

and 

4b - b,) G M + b,(b + bo)l/*, 

which contradicts (v). 1 
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5.3. Let us consider the constant coefficients case 

X+a.f+bbl+px+ -vx- =O, (43) 

with (p, v) E R2. We define a subset U(a, b) of R2 as follows. 

(1) If a=0 or b-c 1, set 

U(a, b)= {(p, v):,u.v>O}. 

(2) IfafO, b>l,andnEfV issuch thatbe[n2,(n+1)2[,set 

U(a, 6) = {(p, v) 1 p. v > 0, (p - ab)(v - ab) > 0} 

u {(P, v) I cc, v E 1 an’, a@ + 1 )‘C >. 

PROPOSITION 12. Assume (p, v) E U(a, b). Then the triplet 

G(x,y,z,u)=(y,z, -u2x++u3x~-by-az) 

4t) = (P> VI 

B(t) = (f4 VI 

has property P. 

ProoJ It is a consequence of Propositions 10 and 11, together with a 
symmetric formulation of Proposition 11 for the case p < 0, v < 0. 

Remark. Proposition 12 gives sufficient conditions for a third order 
system with constant coeflicients to have only the trivial solution. In case 
p = v, it is well known (see [S]) that a necessary and sufficient condition 
for property P to hold is 

P#O and VnEN*[b#n2 or p#ad]. 

One can check that such an assumption is equivalent to 

bL, cl) E U(a, b). 

Hence, Proposition 12 generalizes the linear case. Necessary and sullicient 
conditions in the general case p # v seem to be unknown. 
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6. EXISTENCE OF PERIODIC SOLUTIONS IN APPLICATIONS 

6.1. Consider the boundary value problem 

f= Y-f(4 XL 

3 = e(t) - g(t, x), 

x(0) = x(2n), Y(O) = Jon). 

(44) 

THEOREM 2. Assume: 

(i) the functions f, g, and e are continuous and defined for 
tE [O, 2n], XER; 

(ii) Assumption Al holds; 

(iii) the triplet 

G(x, y, u)=(y-ulx+ +u,x-, -u3x+ +u,x-), 

cc(t) = (4th c(t), p(t), r(t)), 

P(t) = (b(t), 4th q(t), s(t)), 

has property P; 

(iv) there exists some constants U’E R4 such that 

a(t) d 24O 6 B(t). 

Then the problem (44) has at least one solution. 

Proof. We will apply Theorem 1. From Paragraph 2.2 it is clear that 
Assumption H holds. 

Next, using Proposition 5, we can find a path ~8 = (u:, u:, u:, u:) in iR4, 
1 E [LO, 11, that links u” to a point U’ such that 

and for any A E 10, 11, the differential equations 

f=y-24:x+ +u;x 

j= 34:x+ +z& 
(45) 

have no nontrivial 2n-periodic solutions. Indeed, in case UT < 0 or U: d 0 a 
path can be found such that condition (i) of Proposition 5 does not hold. 
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In case MY> 0 and u& > 0 we can choose a path such that, for any 
AE IO, 11, 

(see [S]), so that condition (ii) of Proposition 5 does not hold. As for 
A=l, (44) reduces to a linear system, it follows that for 
Q,= {x~C:j[xJ[, < l} and N, defined in (18), 

d(L-N,,Q,)#O. 

The proof follows now from Theorem 1. 1 

Conditions for (iii) to hold are given in Propositions 2, 3, 4, and in 
Corollary 4. Other methods can be used as in P. Habets and G. Metzen 
[ 111. Theorem 2 generalizes among others results from [ 111 and A. Fonda 
and F. Zanolin [S]. 

6.2. In our second application we consider the boundary value problem 

i = y, P=e(t)-g(t,x)-f(t,y), 

x(0)=x(2x), Y(O) = .Jox). 
(46) 

THEOREM 3. Assume: 

(i) the functions A g, and e are continuous and defined for t E [0,27-c], 
XER, yER; 

(ii) Assumption Al holds; 

(iii) the triplet 

G(x,Y,u)=(Y, -u,Y++u,Y--u,x++u,x-), 

a(t) = (4th c(t), p(t), r(t)), 

P(t) = (b(f)> 4th q(t), s(t)) 

has property P; 

(iv) there exists some constant MOE R4 such that 

a(t) d u” <B(t). 

Then the problem (46) has at least one solution. 

The proof is identical to the proof of Theorem 2 but uses Proposition 8 
instead of Proposition 5. Conditions ensuring (iii) are given in Proposi- 
tions 6 and 7. 
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6.3. Consider the third order problem 

R -t a2 + hi + g( 1, x) = e( t, x, i, T), 

x(0) = x(271), i(0) = $27c), 2(O) = n( 271). 
(47) 

THEOREM 4. Assume: 

(i) the functions g(t, x) and e(t, x, y, z) are continuous functions 
defined for t E [0,271], x E R, y E R, z E R; 

(ii) Assumption A3 holds; 

(iii) the triplet 

G(x,y,z,u)=(y,z, -u2x+, +u,x--by-az), 

a(t) = (p(tL r(t)), 

B(t) = (4(t), s(t)) 

has property P; 

(iv) there exists some constant u” E U(a, b), where U(a, b) is defined as 
in 5.3, such that 

Then there exists E~>O such that zf A,<E~, the problem (47) has a 
solution. 

The proof of this theorem goes as the proof of Theorem 2. One has only 
to notice that from Corollary 5, there exists so > 0 such that the triplet 

~(x,~,z,~)=(y,z,~(lxl+IyI+Izl)-u,x+, +u,x--by-az), 

a(t) = (-&o, p(t), r(t)), 

B(t) = CEO? q(t), s(t)) 

has property P. 
Assumption (iii) can be obtained from Propositions 10 and 11. Theorem 

4 generalizes then a result of 0. C. Ezeilo and M. N. Nkashama [S]. 
6.4. Let us remark that in Theorems 2 and 3, assumption (iv) can be 

replaced by: 

(iv’) there exists some functions 

uO(t) = by(t), u:(t), u;(t), U:(t)) 

505:81/l-7 
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such that 

In this case, the proof uses Corollary 1 instead of Theorem 1. 
A similar statement holds for Theorem 4. 
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