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ABSTRACT. A necessary and sufficient condition is given for a semidynamical 
system to be uniformly persistent. As a consequence some known results are 
improved. 

1. Introduction. The concept of persistence plays an important role in math- 
ematical ecology. When a system of interacting species is "persistent" in a suitable 
strong sense, it is quite sure that no species will go to an extinction in the future. 
Various definitions of persistence have been considered in the literature in order 
to study the behavior of the solutions of differential systems modeling biological 
or chemical situations (see e.g. [3, 5] and the references therein). Among these, 
that of uniform persistence seems to be the most suitable from the point of view 
of applications, since it describes a situation more likely to be maintained under 
small perturbations due to stochastic effects. A semiflow on a closed subset E of a 
locally compact metric space is said to be uniformly persistent if the boundary of 
E is "repelling" in a suitable strong sense (see [3, 4]). 

The concept of uniform persistence was first introduced in [18] in order to study 
the behavior of hypercycles. Different terms were used since then: "cooperative- 
ness" (e.g. in [9, 10]), "permanent coexistence" (e.g. in [14]), "permanence" (e.g. 
in [11, 16]). A general theorem presented by Hofbauer in [9], and later improved 
by Hutson [12], has found many applications to population dynamics (see e.g. [1, 
14, 19]). 

Recently Butler, Freedman and Waltman [3] proved that, under certain con- 
ditions, uniform persistence is equivalent to weaker forms of persistence. With 
essentially the same assumptions, Butler and Waltman [4] were then able to obtain 
a necessary and sufficient condition for a dynamical system to be uniformly per- 
sistent, giving an application to a model describing the mutual interaction among 
three species. In [3 and 4] a fundamental hypothesis is the "acyclicity" of the flow 
restricted to the boundary of the considered set. There are however situations that 
arise rather naturally in some population models in which such a condition is not 
satisfied, and nevertheless uniform persistence still occurs (see e.g. Kirlinger [16], 
where a four-species differential system is analyzed). 

In this paper we prove a theorem which provides a necessary and sufficient 
condition for a semidynamical system to be uniformly persistent. More generally, 
we give a characterization of uniform repulsivity for a compact set. The result is 
rather different from the one in [4], since only "local" conditions are required. The 
proof uses only elementary topological arguments. Nevertheless the result improves 
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the previous theorems of Hofbauer and Hutson, as is shown in Corollary 2. It is 
also worth mentioning that the proof of our theorem holds true even in the case of 
discrete semidynamical systems. 

2. The main result. In this paper we consider a semidynamical system defined 
on a locally compact metric space (X, d). By this we mean a mapping 

7r: X x R+ > X, ir(x, t) = xt 

which is continuous and such that xO = x and x(ti + t2) = (xtl)t2 for any x in X 
and t1, t2 in R+, the set of nonnegative real numbers. The positive orbit of a point 
x E X is the set -y+(x) = {xt: t > O}. A set E C X is positively invariant if -j+(x) 
is contained in E for each x E E. 

DEFINITION 1. A subset S of X is said to be a uniform repeller iff there exists 
an ? > 0 such that for all x E X\S, lim inft +0 d(xt, S) > m . 

THEOREM 1. Let S be a compact subset of X such that X\S is positively in- 
variant. A necessary and sufficient condition for S to be a uniform repeller is that 
there exist a neighborhood U of S and a continuous function P: X -4 R+ satisfying 
the following conditions: 

(a) P(x) = 0 X x E S, 
(b) (Vx E U\S) (3Tx > 0): P(xTx) > P(x). 
PROOF. To prove the necessity, assume S to be a uniform repeller. Let q > 0 be 

like in Definition 1. Define P(x) = d(x, S) and U = {x E X: P(x) < q/2}. Then P 
is continuous, (a) holds and U is a neighborhood of S. Moreover, taken x E U\S, 
as a consequence of Definition 1 there exists a tx > 0 such that 

P(xtx) = d(xtx, S) > ?/2 > P(x). 
So (b) holds with Tx = tx, and the necessity is proved. 

To prove the sufficiency, we have to consider the following sets 

I(p) = {x E X: P(x) < p} 

where p is a positive real number. The continuity of P and (a) imply that I(p) is a 
closed neighborhood of S. Moreover, since S is a compact set in a locally compact 
space, I(p) is compact when p > 0 is sufficiently small. Let us fix p > 0 such that 
I(p) is a compact set contained in U. For q C]O,p[, we set V(q) = {x E X: q < 
P(x) < p}. We need the following 

Claim. For every q E]O,p[ there exists a T > 0 such that, taken any x E V(q) 
there is a tx E [0, T] such that xtx 0 I(p). 

Let us prove the Claim. Fix q E]0, p[. We are going to construct an open covering 
of the compact set V(q). By assumption (b), for any y E I(p)\S one can find a 
Ty > 0 and a real number hy > 1 such that P(yTy) > hyP(y). By the continuity 
of P there is an Ey > 0 such that, for all z E B(y, ey), 

(1) P(zTy) > hyP(z). 
Since V(q) is contained in I(p)\S, the open balls B(y,ey), as y varies in I(p)\S, 
cover V(q). There exists then a finite subcovering {B(yi,eyi): i = 1,...,m} of 
V(q). Defining h = min{hyi: i = 1, ..., m}, we have h > 1 and, by (1), 
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As a consequence, setting TM = max{Tyi: i = 1, ... , m}, we have 

(2) (Vz E V(q))(3] E [0, TM]): P(z?f) > hP(z). 

Let now n E N be such that 

(3) hn-1q < p < hnq 

and set T = nTM. We will check that T verifies the Claim. Suppose by contradic- 
tion that there exists x E V(q) such that xt E I(p) for all t E [0, T]. Since x E V(q), 
by (2) we have 

391 E [0, TM]: P(xJ4) > hP(x) > hq. 
If n = 1, then by (3) P(xSY) > p, i.e. xTJ j I(p) and we get the contradiction. If 
n > 1, since we are supposing xt E I(p) for all t E [0, T] and < < TM < T, we 
have xX4 E V(q). Hence by (2) 

3]4 E [0, T]: P((xTi)94) > hP(xJj-) > h2q. 

If n = 2, then by (3) P(x(,Ji + 42)) > p, i.e. x(,9Y + 54) 0 I(p), and this is a 
contradiction since 31 + 92 < 2TM = T. If n > 2, we repeat the same argument. 
At last we get 

39n- E [On T]: P(x(,T + +gn-)) > hnq > p 
and 51 + +9 + < nTM = T. Hence x(SY + + ?n) 0 I(p), a contradiction. 
The Claim is thus proved. 

We are now able to conclude the proof of Theorem 1. First of all we notice that 
for every x E I(p)\S we can find a tx > 0 such that xt; 0 I(p). It is sufficient to 
apply the Claim by taking q = P(x) to see this. Next we consider the points outside 
I(p), and we notice that either their positive orbit stays always outside I(p), or it 
enters V((q) for a certain fixed q e]O, p[ (e.g. q = p/2). The claim then gives us a 
T > 0 such that, whenever an orbit enters in V(q), it must go out of I(p) after a 
time at most equal to T (T is independent of the points in V(q)). The set 

F = {xt: xE V(;),t E [0,T]} 

is compact and has empty intersection with S. Hence choosing 

q = min{d(s,-y): s E S,-y E ]}, 
by what has been said above, q is positive and satisfies Definition 1. C1 

REMARK 1. If E is a positively invariant closed subset of X, one can restrict the 
study of the semidynamical system to E. The system on E is said to be uniformly 
persistent if and only if the boundary of E is a uniform repeller in the sense of 
Definition 1. Here and in the following corollaries we give conditions for a compact 
set S to be a uniform repeller. It is straightforward, though, to obtain the analogous 
conditions for the system to be uniformly persistent on a closed positively invariant 
set E with compact boundary. 

REMARK 2. When S is a compact set, assumption (b) is equivalent to the 
following one, which perhaps is easier to verify in applications. 

(b') (Vx E S)(3ex > 0)(Vy E B(x,ex)\S)(3T > 0): P(yT) > P(y) 
REMARK 3. It is easy to see that Theorem 1 holds true also for discrete semi- 

dynamical systems {Fk: k = 0, 1, ... }, where F: X -* X is a continuous map, X 
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is a compact set and (b) is replaced by 
(b") (Vx E U\S)(3k E {1, 2, ... }): P(Fkx) > P(X). 

The proof is a direct modification of the one given above. 
REMARK 4. Theorem 1 can be easily extended to local semidynamical systems 

(cf. [2]). provided that Definition 1 is adapted in the obvious way. Indeed, if S is 
compact, since X is locally compact, there is q > 0 such that {y E X: d(y, S) < q } 
is compact. Hence lim inft,,x d(xt, S) > q for each x E X\S such that wx < +0. 
Then it is sufficient to analyze the orbits of those x for which wx = +00. 

REMARK 5. In the proof of Theorem 1 we never consider the orbit of any point 
of the set S: the result still holds if the semidynamical system is defined only 
on X\S. Hence Theorem 1 is independent of the result in [4], where an acyclic 
condition is required for the flow on S. We further remark that the hypothesis in 
[4] of dissipativeness of the flow is here substituted by the compactness of the set S. 
As far as applications are concerned, however, one usually can assume the system 
to be defined on a compact set E, in which case they are both satisfied taking S to 
be the boundary of E (see Remark 1). 

We now give a simple consequence of Theorem 1. In what follows, S will always 
denote a compact subset of X such that X\S is positively invariant. 

COROLLARY 1. Let S be as above. If for every x E S there is a Tx > 0 such 
that xTx E X\S, then S is a uniform repeller. 

PROOF. We will apply Theorem 1 by choosing P(x) = d(x, S). By Remark 2 
it is then sufficient to verify condition (b'). Fix x E S; by the hypothesis, one can 
choose Tx > 0 and 7x > 0 such that d(xTx, S) > 2r7. By continuity, there exists 
ex < 7x such that yTx E B(xTx, r17) whenever y E B(x, e). Setting T = Tx, 

P(yT) = d(yT, S) > d(xT, S) - r7 > r7 > d(y, S) = P(y). 

So (b') is verified and the proof is complete. C1 
We now give a generalization of a result of Hutson [12, Theorem 2.5] which 

includes a previous theorem of Hofbauer [9]. By Q(S) we denote the whole w-limit 
of the orbits on S, i.e. Q(S) = {z e X: 3x E S, (tn)n, tn -* +00, z = limn,oo xtn}, 
and we denote by Q2(S) its closure. 

Since we have to consider differentiation along the orbits, we will suppose for 
simplicity X to be a (closed) positively invariant subset of Rn, and the system 
considered to be the dynamical system generated by an autonomous ODE in Rn. 
We denote differentiation along the orbits by a dot "*" (see [17, p. 29]). 

COROLLARY 2. Let S be as above, and P E C(X,R+) n C1(X\S,R) be such 
that P(x) = 0 X x E S. Moreover, let there exist a lower semicontinuous function 

X - R, bounded below, and an a E [0,1] such that 
(i) P(x > [P(x)]a0(x) Vx E X\S, 
(ii) VX E E, supT>o Tg (xs) ds > 0, 

where E denotes S or, whenever S is positively invariant, FQ(S). Then S is a 
uniform repeller. 

PROOF. Let us first consider the case E = S. In order to verify condition (b'), 
let us fix x E S. By (ii), there exists T > 0 such that fj 7p(xs) ds > 0. By the 
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lower semicontinuity of X, there exists ex > 0 such that, for every y E B(x, ec)\S, 
we have 

0 < 
T 

?k(ys) ds < [ p 
P(ys) ds = 

la [P(yT)1-0 - P(y)1-O] if a < 1, 
J; -0 ][P(y8)] { log P if a- 1. 

So (b') holds and the corollary follows from Theorem 1. 
Consider now the case E = a(S). By Fatou's Lemma, the function y 

f0j (ys) ds is lower semicontinuous (see [12, Lemma 2.4]). So also the map 
T 

y-* sup / ?/(ys) ds 
T>O 0 

is lower semicontinuous, and since Q(S) is compact, by (ii) there exist 6 > 0 and 
an open set W D Q(S) such that 

T 

(4) sup / 3(ys) ds> 6 VyEW. 
T>0 J 

Fix now x E S. Since W is open and contains Q(S), there exists a tx > 0 such that 
xt E W for all t > tx, so that by repeated use of (4) we obtain 

T 

sup / (xs) ds > 0. 
T>0 

Then (ii) holds with E = S and the first part of the proof gives us the result. C1 
REMARK 6. It is not difficult to generalize assumption (ii) in Corollary 2, in 

the spirit of condition (b'). In such a way the choice of a k identically zero on S 
is admitted provided that k > 0 "near" S. This seems to slightly generalize the 
theorems of Hofbauer and Hutson. 

In the following corollary we consider the case of a finite number of functions Vi 
having properties similar to the function P of Corollary 2. 

COROLLARY 3. Let S be as above and suppose there exist Vl,... , Vk E C(X, R+) 
nC1 (X\S, R) satisfying the following properties: 

(i) V7,(x) > 0 Vx E X\S,Vi, 
(ii) (Vx E S)(3iE {1,.. ., k}): Vi(x) = 0. 

Moreover let there exist lower semicontinuous functions X,: X - R and a, > 0 
(i = 1, ..., k) such that 

(iii) Vi(x) = 0 => 4,(x) > 0, 
(iv) 1V7 (x) > [Vi (x)] It Oi(x) VX E X\S - 

Then S is a uniform repeller. 

PROOF. In order to apply Theorem 1, define P(x) = min{V,(x): i = 1,... , k}. 
Clearly P is continuous and verifies (a). Let us then verify (b'). Fix x E S. We 
can assume without restrictions that, for a certain r E {1,.. . , k}, 

Vi(x) = = Vr(x) = 0; Vi(x) ?& 0 Vi > r. 

By (i), (iii), (iv) and the lower semicontinuity of 0, there exists 7x > 0 such that 
Vi(y) > 0 for any y E B(x,r17)\S and i E {1,...,r}. It follows easily that there 



116 ALESSANDRO FONDA 

exists e, E]O, 1h[ such that for each y E B(x,ex)\S there is a T > 0 sufficiently 
small such that P(yT) > P(y), and the proof is complete. C1 
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