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Abstract. — An answer is given to a problem raised in [6] and [8]. We prove
the existence of solutions for some boundary value problems in variational form
at resonance without monotonicity assumptions on the nonlinearity.

1. INTRODUCTION

The existence of solutions for semicoercive semilinear problems in
variational form follows from a coercivity condition of its action on
the kernel of the linear part when the nonlinearity is bounded or has
a convex potential (cf. [1, 6, 8]).

In [6] and [8), the question of weakening for example the convexity
assumption was raised in the context of a system of ordinary differen-
tial equations.

This paper provides a positive answer to this question. In particu-
lar, for the periodic problem for the system

u'(x) + DG(x, u(x)) = 0,

we are able to prove the existence of solutions if, in particular, G satis-
fies, besides the coercivity condition along the null space of the linear
part, a generalized convexity assumption of the form

G(x,u) = G(x,p) + {D,G(x,v), u —v) — 7 ©)
for a certain y = 0 and all x, « and v.
(*) Présenté par M. J. MAWHIN.
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More generally, we can also deal with the Dirichlet or the Neumann
problems associated to an elliptic operator at resonance with the first
eigenvalue. The coercivity assumption on the kernel goes back to
Ahmad, Lazer and Paul, while the assumption in (0) is only a particu-
lar case of a more general condition which will be introduced in Sec-
tion 3.

We will show that our condition generalizing the convexity is in
particular satisfied if the function is convex outside a sufficiently large
ball, and satisfies a certain coercivity condition. Many examples can be
given of non-convex functions satisfying assumption (0).

The paper is organized as follows. In Section 2 we prove an abstract
theorem which is the backbone of the paper. In Section 3 the setting
for an abstract differential problem is given, taking in mind the type
of applications we are going to give. Some general existence results are
given, which generalize also some results from [7]. Finally, in Section
4, we apply our theorems to three different kinds of problems : the
Dirichlet and Neumann problems associated to an elliptic differential
system at resonance with the first eigenvalue, and the periodic problem
for a sistem of ODE’s, at resonance, as well.

2. THE ABSTRACT THEOREM

Let L and H be two Banach spaces such that H < L algebraically
and topologically, with norms || - || and | - ||, respectively. Let L* be
the topological dual of L, with the usual norm | - [ and denote by
" (.,.) the bilinear pairing between L* and L.

Let Hy and H, be vector subspaces of H, such that H = H, ® H,.
For ue H, we will write ¥ = u, + u,, with uye Hy and u, € H,.

Let a: H— IR be a map such that there exists an a: R, - R
bounded below, satisfying a(f) - + o as t - + oo and

a) = a(l w 1) | 2 | 1)

for all ue H.
Let g: H — IR be bounded on bounded subsets of H, and such that
there exist

@, : Hy, > IR bounded below with the property

Di(ug) > + o as |y || —» ooin H, @
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and
®,: Hy, — L* continuous and bounded on bounded sets such that
g() = Dy(ug) + (Do), u — tp) 3
for every ue H and u, € H,.
THEOREM 1. — Let f = a + g. Under the above assumptions, every

minimizing sequence of f is bounded. If moreover f is weakly lower semi-
continuous, then f has a minimum.

PrROOF. — Let (#*) be a minimizing sequence for f in H. Since
Sy - infyf, we have that f{¥) is bounded from above.
Taking in (3) u = 0, we have by (2) that

(Po(o), up) > + 00 as Il U | » o in H,
Hence there is an R > 0 such that, whenever lu || = R, we have
(Do), u) > 0. If ug # 0, we define the function 4, : IR —» R by

h(t) = (Po(Rug | || ug |l ), Rug /|| uf ||).

Then A, is continuous by the continuity of @, and A,(— 1) <0< ().
Hence there exists a fe]—1,1[ such that /A(,) =0. Set
Ug = t,Ruf /|| u ||. Then, for all ye IR,

(2(Ug), yug) = 0. 4
If ug = 0, set U§ = 0. Then (4) holds in this case, too. By (1), (3) and
(4) we have
Jady z a(lui ) 1wkl + &(US) + (2,(UK), o — U
Za(luf ) lufll + C + (DU, uk + juf)
Za(luf ) lufll + C + Crluk|
where C = infy, @), C' = sup;y,; < & | D2(Uy) [l and r is such that

Il < rll- 1

Since the above constants are independent of k, we kan conclude that
there exists a C, > 0 such that, for all k,

k| <C,. (5)

Consider now (3), and take uweH and e, 1] such that
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Uy: = tu + (1 — f)w belongs to H,. We then have
8w) = Di(ug) + (1= 1)(DPolthg), u — w)
gw) = Di(ug) + UDPuo), w — u)
from which we obtain
1gw) + (1-0Dg(w) = &,(tu + (1—0w). 6)

Taking in (6) ¢ = 1/2, u = «* and w = —uk, we have by (1), (5) and
the boundedness properties of @ and g,

FO zallui ) uk ) + g@d
> C" ~ g(—uf) + 20,((1/2)uf)
= C" = C" + 20,((1/2)uk)
By (2), there exists a C, > 0 such that, for all k,
lugll < C,.

Hence () is bounded, and the proof is complete.

3. A NONLINEAR SYSTEM

Let Q be an open bounded subset of IR”, and H a Hilbert space
such that (Hy(Q))” < H < (H'(Q))" algebraically and topologically,
H{(2) and H'(L2) being the classical Sobolev spaces, and m > 1. We
will assume the boundary 82 to be sufficiently smooth in order to
have the Sobolev imbeddings. Let || - | denote the norm of H.

We consider the following problem.

(ZLu)(x) + DG(xu(x)) = 0, ()

where & is an unbounded semipositive definite self-adjoint linear ope-
rator on (L(Q))"and G: Q X IR" — IR is a Caratheodory function,
Gateaux differentiable in its second variable.
Let us denote by H, the kernel of % and, for every ue H, let us
write u = uy + u;, with u,€ H, and u, e H¢.
- We will consider the following assumption of #.

ASSUMPTION 1. — There is a § > 0 such that, for all ue H,
(Lulwyzdllu? ®)
where (|- ) denotes the scalar product in (LYQ))".
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REMARk 1. — The applications we are going to give in Section 4
deal with problems at resonance with 4,, the first eigenvalue. In those
cases, Assumption 1 is verified by taking 6 = 4, — A,.

We will also consider the following assumption on G.

ASSUMPTION 2. — There exist two Caratheodory functions ¢, :

Q xIR" > R and ¢g,: Q x R™ - IR"™ such that, for a.e. xe Q2 and all
u,ve R,

G(x,u) 2 gi(x,v) + {oyx,0),u — v ), ®

where { -, > denotes the scalar product in IR™.
If n = 2, we require the following growth restrictions.

[Glxu) | < bo(x) + ag|ul (10)
foixw) | < by(x) + a;|ulf (11)
| pa(x,u) | < by(x) + ay{u |p_l (12)

where, for i =0,1 and 2, we have a;>0, p>1 and, if n>=3,
p <2n/(n—2), and b;e LY(Q), q being the conjugate exponent of p (i.e.
1/p)+A/g=1).

We also assume that, for uy€ Hy,

limy 4 = o J¢l(x:u0(x)) dx = +o0. (13)
Q

REMARK 2. — The hypothesis (9) is in particular satisfied if G(x, -)
is convex for a.e. x, or, more generally, when G satisifies (0), by taking
¢y = G — y and ¢, = D,G. In this case, (13) is precisely the Ahmad-
Lazer-Paul coercivity condition on G [1]. The hypothesis (10), (11) and
(12) are needed in order to be able to apply the classical Sobolev’s

imbedding theorems.
Let us now define.the following functionals.

a:H-oR, au = (1/2)(Lu|u)

g:H-R, g = IG(x,u(x)) dx
Q

The map a is weakly lower semicontinuous, because, being semi-
positive definite and self-adjoint, we have that if ¥ < 4,

0< (LW — W —u = (Lulu) — 2Lu| ) + (LU | )

BRI NI Atk
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and then lim inf - 10 (L |4 > (Lul 1),

The map g is well defined, weakly continuous and bounded on
bounded subsets of H because, if n = 1, H is continuously and com-
pactly imbedded in the space of continuous functions, while if n > 2,
H is continuously and compactly imbedded in (L?(Q2))", with p chosen
as in Assumption 2, and because of (10) (cf. [5]).

It is readily seen that, setting f = a + g, the solutions of (7) corres-
pond to the critical points of £. It is also well known that if fis weakly
lower semicontinuous and possesses a bounded minimizing sequence,
ther f attains its infimum at a point of H, which is obviously a critical
point of f.

THEOREM 2. — Suppose Assumptions 1 and 2 hold. Then (7) has a
solution u e H.

Proor. — We define L to be the Banach space (L”(£2))", where
p=2ifn=1, and p is as in Assumption 2 if n > 2. We will identify
L* with (LY(£2))", q being the conjugate exponent of p. Define the func-
tions @, and &, as follows.

D :Hy—» R, D) = jﬂ’l(xr“o(x)) dx
Q
®,: Hy = L*,  Dy(up) = 925 ("))

By (11) and (12), we have that @, and @, are well defined, continuous
and send bounded sets into bounded sets (cf. [4, 5]). Condition (2) is
indeed assumed in (13) and, by (9),

j G(x,u(x)) dx

Q

I

g(u)

\%

J‘/’)(x»“o(x)) dx + j(bz(x»uo(x))a u(x) — wu(x) > dx
Q Q

D(ug) + (Do), u — up)

so that (3) holds as well. Hence Theorem 1 can be applied, and since
f is weakly lower semicontinuous, the result follows from the above
remarks.

Let us now introduce the following
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AssuMPTION 3. — Hp=span {n', .., 7"}, and for every
iL,je{l,....m}, ni(x) > 0 for ae. x€Q, while n; = 0 when i # j.

REMARK 3. — Assumption 3 will be satisfied in all our applications.
For the Neumann and the periodic problems, it is sufficient to take
¢ = 1. For the Dirichlet problem, it is a consequence of the fact that
the first eigenfunction has a definite sign in Q.

The following theorem is an illustration of a case when the Assump-
tion 2 is satisfied. As far as we know it is not included in any known
result.

THEOREM 3. — Let Assumptions I and 3 hold. Let G: Q x R™ - IR
be a Caratheodory map of the form

G(x.u) = c)y(x.u),

where ¢ - Q — IR is continuous, bounded, nonnegative and positive on a
set , of positive measure, and y : @ X R™ — IR is continuously diffe-
rentiable in its second variable. Assume moreover :

(k) 3R = 0: w(x, ") is convex outside the ball Bg, for a.e. x € Qy;
(kk) liminf},|  o[w(x.uw)/|u]] > sup, <l D,,t;/(x,u)i unif. a.e. in x.
(kkk) If n = 1, then 3bg e L'(Q2):
I Dy (x,u)| < br(x)

for ae. xeQ and all ue Bg.
If n = 2, then

| Dy(xu)| < b(x) + alupf™

for a.e. xeQy and all ue R™, where a > 0, be LY(Q), p > 2 and, if

n>3,p<2n/(n-2),1/p) + (/g =1
Then Assumption 2 holds, and the equation

(ZLu)(x) + ()Dy(xux)) = 0

has a solution ue H.

PrOOF. — We will prove that there is a L' — map y: 2 — IR, such
that Assumption 2 is satisfied for ¢, and ¢, as follows:

p(x.u) = c(X)plxu) — y(x)
Pa(x,u) = c(X)Dy(x,u).
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Notice first of all that if such a y exists, then (10), (11) and (12) hold
when n > 2, by (kkk). Moreover, by Assumption 3, if | 4y | — oo in H,
then [ uy(x) | - oo for a.e. x € 2, and since

f%(x,uo(x») dx > f Y (xu(x)) dx = |y Il

Q Q

so that (13) holds by (kk), as well. Further, (i) or (iii) in Proposition
1 holds.

. What we still need to show in order to be able to apply Theorem
2 is the existence of a y € L'() such that the map 6: @, x R* - R
defined by

O(xup) = y(xu) — p(xp) = (Dy(xp), u — v)

is bounded below by —y(x). We will consider four different cases.
CASE 1. — ueBg, v € Bg. The result follows by (kkk).

CASE 2. — u ¢ By, v¢ Bg. Then O(x,u,) > 0 for a.e. x € Q, because
of (k).

CASE 3. — ueBg, v¢ Bg. In this case, define e IR™ such that
4| = R and
@=—wla—ul=@-dv-al
Then
O0x,uv) = [w(xd) — y(xp) — (Dy(xp), & — u) +
+ ywlow) — wxd) + (Dy@p), & — u)

By (k) and (kkk),

O(xup) = —c(x) + {Dyxp), & — u)
cx) + (Dy(xp),v —a)|a — ul/|lv— 4]
2 = cx) + {Dyxd,v—ay|ad—ul|l/|lv— d|
= —cx) + {Dy(xd), & — u)
2 — y(x),

where y e LI(Q).
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CASE 4. — u ¢ Bg, ve Bg. In this case we write
O(xup) = [wCafiul — {Dy(xp), uflul D] u| — y(wo) —
(Dy(x), v
and the resuit follows from (kk) and (kkk).

4. APPLICATIONS

Theorem 3 and, more generally, Theorem 2, have been written in
- order to be applied to boundary value problems. In this section we
illustrate three type of problems : the Dirichlet, the Neumann and the
periodic solutions problem. They are considered to be at resonance
with the first eigenvalue of the corresponding differential operator.
We denote by 4 the operator A1d™, where Id™ is the identity
m X m matrix. By A; we denote the first eigenvalue of (— 4) subject to
the Dirichlet condition.

THEOREM 4. — Let G : Q x R™ — R be Caratheodory, Gateaux dif-
ferentiable in its second variable, and verifying Assumption 2. Then the
following problems have a solution.

1) DIRICHLET PROBLEM.
— Au(x) — Au(x) + DGxu(x)) = 0, xeQ
u(x) = 0, xeoQ
2) NEUMANN PROBLEM
— A™u(x) + D,G(x,u(x)) = 0, xef
ux) = 0, xeoQ
3) PERIODIC PROBLEM
n=1,Q2=1lab) *
- u'(x) + D,G(x,u(x)) = 0, xela, bl
u(@) = u(b) u'(a) = u'(b).
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