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APPROXIMATE SELECTIONS AND FIXED POINTS 
FOR UPPER SEMICONTINUOUS MAPS 

WITH DECOMPOSABLE VALUES 
ARRIGO CELLINA, GIOVANNI COLOMBO AND ALESSANDRO FONDA 

ABSTRACT. We prove the existence of continuous approximate selections of 
upper semicontinuous maps from a separable locally compact metric space 
S into the decomposable subsets of L1 (T, Z). We then extend a fixed point 
theorem of Kakutani to upper semicontinuous maps with decomposable values. 

1. Introduction. In [1], Antosiewicz and Cellina presented an analogue of 
Michael's selection theorem for a special multivalued function related to differen- 
tial inclusions: the image of a point was the set of selections of a given multivalued 
map. The main tool in that proof was the idea of piecing together a finite number 
of measurable functions. In [6], Hiai and Umegaki, modifying somewhat an earlier 
definition of Rockafellar [8], called any set which is closed with respect to the op- 
eration of "piecing" decomposable. A subset F of L'(I) is decomposable whenever, 
given u and v in F and any measurable partition of I into A and B, UXA + VXB 
still belongs to F. In the same paper they proved that a closed set is decomposable 
if and only if it is the set of measurable selections of a multifunction. However, we 
shall retain the word decomposable for the sake of simplicity. 

In [2], it was shown that the set of selections of a constant multivalued map 
has the fixed point property; in [4] the existence of a fixed point was proven for a 
self-map of a decomposable set. 

The purpose of the present note is first to present a theorem on the existence of 
an approximate selection to an upper semicontinuous multifunction with decompos- 
able values, and then to obtain a further extension of the above fixed point theorem 
on decomposable sets to cover the case of upper semicontinuous maps with decom- 
posable values. This result is the analogue of Kakutani's theorem with convexity 
replaced by decomposability. 

2. Notation and basic definitions. In what follows, S is a metric space with 
distance d; T is a compact topological space with a a-field M of measurable subsets 
of T given by a nonnegative, finite nonatomic measure /'o; Z is a separable Banach 
space with the norm I * 1; L'(T, Z) is the Banach space of functions u: T -Z, 
integrable in the Bochner sense, with the norm Ilull1 = fT Iu(t)I d1io and the distance 
d1 (u, v) = llu - vII 1. In the product space S x L1 the distance will be the sum of d 
and d1. The L1 distance of u from a set F is di(u, F) = infveF Ilu - vI I. 

A set H C L' (T, Z) is called decomposable if u * XA + V * XT\A E H for every 
U, v E H and A E M; dec(K) is the set of all decomposable subsets of K C L1(T, Z). 

Upper semicontinuity is meant in the usual (E, 8) sense. 
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In a metric space, B(K, 8) is the open S-neighborhood of a set K. The graph 
of a map F is denoted by gr{F}. A function f? is an E-approximate selection of a 
map F if 

gr{f?} C B(gr{F}, eE). 

3. Main results. In this section we prove an approximate selection theorem, 
and we use this result to prove a fixed point theorem for upper semicontinuous 
multivalued functions. 

THEOREM 1. Let S be a locally compact and separable metric space, and F: S 
dec(L'(T, Z)) an upper semicontinuous map. Then for every E > 0 there exists a 
continuous E-approximate selection of F. Moreover, when F(S) is decomposable, 
fe(S) C F(S). 

PROOF. The proof is divided into two steps. 
STEP 1. We show that the theorem is true when S is compact. Fix E > 0; 

by the upper semicontinuity of F, for each s E S there is a 8(s) > 0 such that 
F(s') C B(F(s),E/3) whenever s' E B(s,6(s)). We can choose 8(s) < E/3. Since 
S is compact and {B(s,6(s)/2): s E S} is an open covering of S, there exist 
si,... ,sn E S such that, setting 8i = 6(si)/2, the balls B(si,8i) (i = 1,..., n) 
form a finite subcovering of S. Let {pi: i = 1, . . . , n} be a continuous partition of 
unity subordinate to it, and choose arbitrarily ui E F(si) (i = 1,... , n). We shall 
construct ft(s) as an appropriate decomposition of these maps. 

Let us choose vij E F(sj) (i, j = 1, ... , n) such that 

di(ui, vij) = j Iu(t) - vij(t)I dio 

< inf j uiu(t) - v(t)I dimo + j = di(ui, F(sj)) + 

and define the set functions 

uij (E) = J uiu(t) - vij(t) I dio (i,j = 1, ... , n) 

for every E E M. It is easy to see that, for each i, j E {1,. . . ,n}, n} ij is a finite 
nonatomic measure over M. Following an idea of Fryszkowski [3] (see also [7]) we 
apply here a consequence of Lyapunov's theorem (cf. [5]): there exists a family 
(A,),E[o,1] of measurable subsets of T such that 

(P1) Act C Af if a < 3, 
(P2) ,iuj(Ao.) = a,uij(T) (i,j = 1, .. ., n), 
(P3) jio(Aa) = acio(T). 
Set ao 0-, ai&(s) = pi (s) + + pi(s) and define the approximate selection as 

n 

fe (S) = ZUiXAO( (9) \Ae_ 1 (.9)- 
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We claim that ft has the required properties. First of all f, is continuous. In fact, 
fix so; then 

n 

IIfe(")-hf(so)II = IUi(XAcX (8)\Ac,_1(9) -XAc (0)\ARZ-_(90)) 
i=l1 1 

< jA lUi(t) I IXAai(8)\Acixi(s)(t) -XA,i(SO)\A,i-i(90)(t)I ( o 

<E |Ui I { IXA, (9) XAa (.90) I + IXAc 1(9) -XAc- 1(o90) I } dtso 

luiuI dlIo + f IUiI dllo 
cAa (9) ,AAc (,90) Ac_1 (9)A,Aaji_ 1 ( d90) 

and, by the integrability of ui and (P3), the continuity of f, follows. 
It is clear that if F(S) is decomposable then ft(S) C F(S). It remains to verify 

that f, is an e-approximate selection of F. For this purpose, fix s E S and let 
I(s) = {i E {1,.. . , n}: pi(s) > O} and i E I(s) such that 5i = max{ i: i E I(s)}. 

Then, for every i E I(s), we have si E B(s,,26&) so that F(sj) C B(F(s,),E/3) 
and 

1pi, (T) < di (ui, F(,s-,)) + E/3 < 2 E. 

Moreover, since F(s,) is decomposable, we have that 

i- E Vji - 
XActi(a)\Aji- (s) E F(s). 

iEI(s) 

Finally, 

d((5,fe(9)), (si,&.4)) < d(s,s-) ? (Ui - Vi)XAct(a)\Aact() 
iEI(s) 

< S() + E jj(Ui - Vii-)XAc (8)\A0e (S) 

3 iEI(s) 

iGI(s) 

= ?+ E [ai(s) - aji(s)]yj- (T) 
iEI(s) 

+ 2E 1: pi(s) = E 
iEI(s) 

and the proof of the first step is complete. 
STEP 2. Let S be locally compact and separable. Then there exists a sequence 

(Q2n)n of open sets such that Qn is compact nonempty, Qn C Qn+l and Un Qn = S. 
Fix e > 0; by the upper semicontinuity of F, for each s E S there is &(s) > 0 such 

that F(s') C B(F(s), E/9) whenever s' E B(s, 6(s)). We may choose b(s) < e/3. 
The hypothesis on S allows us to consider a countable number of balls B(si, Si), 
with 5i = b(si)/2, which cover S, such that for every n E N the set In = {i e 

N: B(si,%i) nf n #4 0} is finite. Let {pi: i E N} be a continuous partition of 
unity subordinate to this covering of S. In order to construct f?, choose arbitrarily 
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ui E F(si) (i E N). As it has been shown in Step 1, we can construct on every Qn2 
an E-approximate selection f(f), and for every s E S there is wPn (depending on 
s) in F(s?) such that 

d((s, f? (S))n(S?W ))) < E/3, 

where i satisfies Xi = max{Si: pi(s) > 0}. 
Consider a family (Ca)aE[o,1] of measurable subsets of T such that 
(1) Ca C C'3 if a < 3, 
(2) io (Cac) = at&o(T) (a E [0, 1]). 

Set fe(s) = f?(2() for s in ?1; in general, let n > 2 be such that s E Qn\Qn-f1 
Set 

a(s) = d(s, Qn-1)/(d(s, Qn-1) + d(s, S\Qnf)) 
and define 

-s f,~'(n1(s)XC".' ?fin~()XTc( f? ? ()XCX(9)f (8) XT\COT ( 9); 
f? is well defined and continuous on S. Moreover, setting 

(n+l) (n) 
W- XCO (9) + XT\CO(8) 

we have that w- E F(sj) and, finally, d((s, f?(s)), (s-, W )) .< [. 
The following is a fixed point theorem for upper semicontinuous multivalued 

maps. 

THEOREM 2. Let K be a nonempty closed subset of L' (T, Z), and F: K 
dec(K) an upper semicontinuous map with closed graph. Moreover, let F(K) be 
decomposable and totally bounded. Then there exists s- E K with s- E F(S-). 

PROOF. We can apply Theorem 1 to the map G = FI F(K): For each n E N 
there exists gn: F(K) -* F(K) which is a 1/n-approximate selection of G. Then 
gn satisfies the assumptions of Fryszkowski's fixed point theorem [4], so that there 
exists sn = gn(sn), for every n E N. By the compactness of F(K) we can assume 
(8n)n to converge to some point s-, which is a fixed point of G. O 
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