CURVES AND SYMMETRIC SPACES, I

By SHIGERU MUKAI

Dedicated to Professor Heisuke Hironaka on His Sixtieth Birthday

We have announced some results on the canonical model of a compact Riemann surface in [M3]. In this article we prove them for a complete algebraic curve of genus 7. Curves of genus 8 and 9 will be treated in the forthcoming Part II.

Let $\wedge^\nu U$ be the even part of the exterior algebra over a ν-dimensional vector space U. The exponential map embeds the affine space $\wedge^2 U$ into the projective space $\mathbb{P}_* (\wedge U)$. The closure X of this image is a homogeneous space of the special orthogonal group $SO(2\nu)$ and parametrizes all Lagrangean subspaces U' of the 2ν-dimensional quadratic space

$$\left(U \oplus U^{\vee}, \begin{pmatrix} 0 & 1 \nu \\ 1 \nu & 0 \end{pmatrix}\right)$$

with dim $U' \cap U \equiv \nu \mod 2$. This projective variety $X \subset \mathbb{P}_* (\wedge U)$ is called the (even) orthogonal Grassmannian. In the case $\nu = 5$, $X \subset \mathbb{P}^{15}$ is the 10-dimensional projective variety defined by the following 10 quadratic forms:

$$N_1 = \xi_0 \xi_{2345} - \xi_{23} \xi_{45} + \xi_{24} \xi_{35} - \xi_{25} \xi_{34},$$
$$N_{-1} = \xi_{12} \xi_{1345} - \xi_{13} \xi_{1245} + \xi_{14} \xi_{1235} - \xi_{15} \xi_{1234},$$
$$N_2 = \xi_0 \xi_{1345} - \xi_{13} \xi_{45} + \xi_{14} \xi_{35} - \xi_{15} \xi_{34},$$
$$N_{-2} = \xi_{12} \xi_{2345} - \xi_{23} \xi_{245} + \xi_{24} \xi_{1235} - \xi_{25} \xi_{1234},$$
$$N_3 = \xi_0 \xi_{1245} - \xi_{12} \xi_{45} + \xi_{14} \xi_{25} - \xi_{15} \xi_{24},$$
$$N_{-3} = \xi_{13} \xi_{2345} - \xi_{23} \xi_{1345} + \xi_{34} \xi_{1235} - \xi_{35} \xi_{1234},$$
$$N_4 = \xi_0 \xi_{1235} - \xi_{12} \xi_{35} + \xi_{13} \xi_{25} - \xi_{15} \xi_{23},$$

$\text{Manuscript received February 1, 1994.}$
$\text{Research supported in part by a grant under The Monbusho International Science Research Program:}$
04044081.
$\text{American Journal of Mathematics 117 (1995), 1627–1644.}$

1627
\begin{align*}
N_{-4} &= \xi_{14}\xi_{2345} - \xi_{24}\xi_{1345} + \xi_{34}\xi_{1245} - \xi_{45}\xi_{1234}, \\
N_5 &= \xi_0\xi_{1234} - \xi_{12}\xi_{34} + \xi_{13}\xi_{24} - \xi_{14}\xi_{23}, \\
N_{-5} &= \xi_{15}\xi_{2345} - \xi_{25}\xi_{1345} + \xi_{35}\xi_{1245} - \xi_{45}\xi_{1235}.
\end{align*}

In [M1], we have observed that a transversal linear subspace of dimension 6 cuts out a (canonical) curve of genus 7 from $X \subset \mathbf{P}^{15}$ and proved that the generic curve of genus 7 is obtained in this way (over the complex number field). Here we make this earlier result into a final form:

Main Theorem. A curve C of genus 7 is a transversal linear section of the 10-dimensional orthogonal Grassmannian $X \subset \mathbf{P}^{15}$ if and only if C has no g^1_4. Moreover, the transversal linear subspaces which cut out C are unique up to the action of $SO(10)$.

By this theorem and (0.1), the system of defining equations of the canonical curve $C_{12} \subset \mathbf{P}^6$ of genus 7 is now quite explicit in the non-tetragonal case. This result will be applied to the classification of Gorenstein Fano 3-folds (cf. [M2]). When C is tetragonal, i.e., has a linear pencil g^1_4 of degree 4, its canonical model $C_{12} \subset \mathbf{P}^6$ is easier to describe by virtue of the presence of a ‘significant’ subvariety which contains C_{12}. See §6 and Table at the end of this article.

The proof of the ‘if’ part is better understood when compared with a result on a quintic normal elliptic curve $E_5 \subset \mathbf{P}^4$. Let V be the space $H^0(\mathbf{P}^4, I_E(2))$ of quadratic forms on \mathbf{P}^4 which vanish identically on E_5. Then dim $V = 5$ and E_5 is the common zero locus of forms in V. Hence, for each point $p \in E_5$, the space V_p of all forms $f \in V$ doubly vanishing at p is of dimension 2. Therefore, we obtain a morphism ρ_E to the 6-dimensional Grassmannian $G(2, V)$, which is a projective variety of \mathbf{P}^9 by the Plücker coordinate.

Proposition 0.2. The morphism $\rho_E : E_5 \longrightarrow G(2, V) \subset \mathbf{P}^9, p \mapsto [V_p]$, is an isomorphism onto a transversal linear section.

The proof is easy since a similar statement is almost obvious for a set of five points of \mathbf{P}^4 in general position. By the proposition, every quintic del Pezzo manifold $M_5 \subset \mathbf{P}^{m+3}$, $m = \dim M$, is a transversal linear section of the 6-dimensional Grassmannian. (Consult [Fuj] for more details on such manifolds.)

For a canonical curve $C_{12} \subset \mathbf{P}^6$ of genus 7, we argue similarly. Set $W = H^0(\mathbf{P}^6, I_C(2))$ and $W_p = \{f \in W \mid f(x_1, \cdots, x_7) = 0 \text{ is singular at } p \}$ for $p \in C_{12}$. When C is not trigonal, W is of dimension 10 and W_p of dimension 5. Hence we obtain a morphism $\rho_C : C \longrightarrow G(5, W) \simeq G(5, W^\vee)$ to the 25-dimensional Grassmannian. Using the quadratic identity

\begin{equation}
N_1N_{-1} + N_2N_{-2} + N_3N_{-3} + N_4N_{-4} + N_5N_{-5} = 0
\end{equation}

among the 10 quadratic forms in (0.1), we show that the multiplication map
$S^2W \rightarrow H^0(\mathbb{P}^6, I_C^2(4))$ is not injective. Moreover, its kernel is generated by a nondegenerate symmetric tensor σ if C has no g^1_4 (Theorem 4.2). By our choice of σ, W^\perp_p is a Lagrangean of the quadratic space (W^\vee, σ) for every point $p \in C_{12}$, and the image of ρ_C is contained in the 10-dimensional orthogonal Grassmannian X. We actually prove the following:

Theorem 0.4. If a curve C of genus 7 has no g^1_4, then the Grassmannian morphism $\rho_C : C \rightarrow X \subset G(5, W^\vee)$, $p \mapsto [W^\perp_p]$, is an isomorphism onto a transversal linear section of $X \subset \mathbb{P}^{15}$.

By the construction and the uniqueness of σ, we have also

Corollary 0.5. If a curve C of genus 7 is cut out from $X \subset \mathbb{P}^{15}$ by a transversal linear subspace P, then every automorphism of C is the restriction of an automorphism of $X \subset \mathbb{P}^{15}$ which preserves P.

A key of our proof is the self-duality of $X \subset \mathbb{P}^{15}$: Its projective dual, or discriminant, is again a 10-dimensional orthogonal Grassmannian. More precisely, the projective dual is naturally identified with the odd orthogonal Grassmannian, which parametrizes all Lagrangean subspaces with $\dim U \cap U'' \neq \nu \text{ mod } 2$ (Proposition 2.7). We prove Theorem 0.4 in §5 using this duality. The ‘only if’ part of our Main Theorem is proved in §2 using the prehomogeneity of the 16-dimensional spin representation (Proposition 1.13).

This article was mostly prepared during the author’s stay at the Japan-American Mathematics Institute of the Johns Hopkins University in 1991. He is very grateful for their hospitality and support. He also thanks Mrs. Kozaki for her neat \TeX typing.

Notation and conventions. Varieties are considered over an algebraically closed field k of arbitrary characteristic. A smooth complete variety of dimension one is simply called a curve. A g^1_d on a curve C is a line bundle ξ of degree d with $\dim H^0(C, \xi) \geq r + 1$. For a vector space V, $G(s, V)$ is the Grassmannian of s-dimensional subspaces of V and $G(V, r)$ that of r-dimensional quotient spaces. Two projective spaces $G(1, V)$ and $G(V, 1)$ associated to V are denoted by $\mathbb{P}_s(V)$ and $\mathbb{P}^s(V)$, respectively. The dual vector space of V is V^\vee. More generally, for a vector bundle E, E^\vee is the dual vector bundle.

1. **10-dimensional orthogonal Grassmannian.** Let V be a 2ν-dimensional vector space with a quadratic form $q : V \rightarrow k$. We assume that q is nondegenerate, that is, the associated symmetric bilinear form $B(x, y) = q(x + y) - q(x) - q(y)$ is so. A ν-dimensional subspace over which q is identically zero is called a Lagrangean of (V, q). We denote the set of Lagrangeans by $\mathcal{L}(V, q)$, which is a subset of the Grassmannian $G(\nu, V)$. We fix a Lagrangean U_∞ and set $Z = \{[U] \mid U \cap U_\infty = 0\}$ in $G(\nu, V)$. When $[U_0] \in Z$ is fixed, Z is isomor-
phic to the \(\nu^2 \)-dimensional affine space associated with \(\text{Hom}(U_0, U_\infty) \) by the map

\[
\text{Hom}(U_0, U_\infty) \ni f \mapsto [\Gamma_f] \in G(\nu, V),
\]

where \(\Gamma_f \subset U_0 \times U_\infty = V \) is the graph of \(f \). Since \(V \simeq U_0 \oplus U_\infty, \wedge^\nu \! V \) is isomorphic to \(\bigoplus_i \text{Hom}(\wedge^i U_0, \wedge^i U_\infty) \). The composite of (1.1) and the Plücker embedding \(G(\nu, V) \subset \mathbf{P}^* (\wedge^\nu \! V) \) is equal to

\[
\text{Hom}(U_0, U_\infty) \ni f \mapsto 1 + f + (f \wedge f) + (f \wedge f \wedge f) + \cdots \in \mathbf{P}^* \left(\bigoplus_{i=1}^\nu \text{Hom} \left(\wedge^i U_0, \wedge^i U_\infty \right) \right).
\]

Assume that \(U_0 \) is also a Lagrangean. Then \(U_0 \) and \(U_\infty \) are dual to each other by the bilinear form \(B \).

Proposition 1.3. For \(f \in \text{Hom}(U_0, U_\infty) \simeq U_\infty \otimes U_\infty, \Gamma_f \) is a Lagrangean if and only if \(f \) lies in the kernel of the natural map \(U_\infty \otimes U_\infty \rightarrow S^2 U_\infty \).

By the proposition, \(\mathcal{L}(V, q) \) is a smooth subscheme of \(G(\nu, V) \). Moreover, by the map \(\wedge^2 U_\infty \rightarrow U_\infty \otimes U_\infty, a \wedge b \mapsto a \otimes b - b \otimes a \), the intersection \(\mathcal{L}(V, q) \cap Z \) is isomorphic to the \(\nu(\nu - 1)/2 \)-dimensional affine space \(\wedge^2 U_\infty \).

We take the exterior algebra \(\wedge^* \! U_\infty \simeq \wedge^\text{ev} \! U_\infty \oplus \wedge^{\text{odd}} \! U_\infty \) as the space \(S \) of spinors of the quadratic space \((V, q) \). \(S = S^+ \oplus S^- \) is a \(\mathbb{Z}/2 \)-graded vector space with a Clifford map \(V \rightarrow \text{End} S, v \mapsto \varphi_v \). The endomorphism \(\varphi_v \) is a wedge product, or a creation operator, for \(v \in U_\infty \subset V \) and a derivation, or an annihilation operator, for \(v \in U_0 \simeq U_\infty^\vee \). The Clifford map is linear and satisfies

\[
\varphi_v(S^\pm) \subset S^\mp \quad \text{and} \quad \varphi_v^2 = q(v) \cdot 1_S
\]

for every \(v \in V \). For a Lagrangean \(U \), there exists a nonzero half spinor \(s_U \), i.e., an element of \(S^+ \cup S^- \), which satisfies \(\varphi_u(s_U) = 0 \) for every \(u \in U \). Such \(s_U \)'s are unique up to constant multiplication and called the pure spinor associated with \(U \). For example, \(s_U \) is equal to \(1 \in \wedge^0 U_\infty \) if \(U = U_0 \) and a volume element in \(\wedge^\nu \! U_\infty \) if \(U = U_\infty \). The uniquely determined point \([s_U] \) of the projective space \(\mathbf{P}^* (S^\pm) \) is called the spinor coordinate of \(U \).

Proposition 1.5. If \(\alpha \in \wedge^2 U_\infty \) is a bivector corresponding to a Lagrangean \(U \) in \(\mathbb{Z} \) via (1.1), then the exponential \(\exp (-\alpha) \in \wedge^\text{ev} \! U_\infty = S^+ \) is the pure spinor associated with \(U \).

Proof. Let \(\{e_1, \ldots, e_\nu\} \) be a basis of \(U_\infty \) and \(\{e_{-1}, \ldots, e_{-\nu}\} \subset U_0 \) its dual. We put \(-\alpha = \sum_{i<j} a_{ij} e_i \wedge e_j \) and let \(A \) be the skew-symmetric matrix \((a_{ij})_{1 \leq i \leq \nu} \) with \(a_{ij} + a_{ji} = a_{ii} = 0 \). The Lagrangean \(U \) is generated by \(\nu \) vectors \(u_i = e_{-i} - \sum_{j=1}^\nu a_{ij} e_j, 1 \leq i \leq \nu \), of \(V \). For a subset \(I = \{i < j < \cdots < \ell\} \) of
$\{1, 2, \ldots, \nu\}$, let e_I be $e_i \wedge e_j \wedge \cdots \wedge e_\ell$ and A_I the principal minor $(a_{ij})_{i,j \in I}$ of A. Then $\exp(-\alpha)$ is equal to $\sum_{|I|:\text{even}} (\text{Pfaff} A_I) e_I$ (by definition in positive characteristic). By the expansion theorem of Pfaffian, e.g.,

$$\text{Pfaff} A = \sum_{i=2}^\nu (-1)^i a_{1i} \text{Pfaff} A_{\{1,i\}},$$

we have $\varphi_{\nu_i}(\exp(-\alpha)) = 0$ for every i. \qed

More generally, a half spinor $s \in S = \wedge^* U_\infty$ is pure if and only if it is representable in the form $(\exp \alpha) \wedge x_1 \wedge \cdots \wedge x_h$ for some bivector $\alpha \in \wedge^2 U_\infty$ and vectors $x_1, \ldots, x_h \in U_\infty$ (see [Ch] §3.1).

We put $\mathcal{L}^+(V, q) = \{[U] \in \mathcal{L}(V, q) \mid \dim U \cap U' = \nu \bmod 2\}$, which is a connected component of $\mathcal{L}(V, q)$. Both $\mathcal{L}^+(V, q)$ and its complement $\mathcal{L}^-(V, q)$ are homogeneous spaces of the special orthogonal group $SO(V, q)$, which we call the orthogonal Grassmannians associated with (V, q). The following is easy to verify:

Proposition 1.6. Two Lagrangeans U and U' belong to the same component $\mathcal{L}^\pm(V, q)$ if and only if $\dim U \cap U' \equiv \nu \bmod 2$.

The pure spinor s_U belongs to S^+ if and only if U belongs to $\mathcal{L}^+(V, q)$. Since the annihilator $\{v \in V \mid \varphi_v(s_U) = 0\}$ of s_U is U, the map

$$\mathcal{L}^+(V, q) \ni [U] \mapsto [s_U] \in \mathbf{P}_\ast(S^+)$$

is injective. Both S_+ and S_- are irreducible representations of $Spin(V, q)$, a central extension of $SO(V, q)$ by $\{\pm 1\}$. The map is equivariant under the action of $SO(V, q)$, and an embedding by Proposition 1.5, which we call the spinor embedding. Since the determinant of a skew-symmetric matrix is the square of its Pfaffian, we have the following by (1.2) and Proposition 1.5:

Proposition 1.7. The hyperplane section of the composite $\mathcal{L}^+(V, q) \subset G(\nu, V) \subset \mathbf{P}_\ast(\wedge^\nu V)$ is linearly equivalent to twice the hyperplane section of the spinor embedding $\mathcal{L}^+(V, q) \subset \mathbf{P}_\ast(S^+)$.

Let κ be the projection of $\wedge U_\infty$ to the top part $\wedge U_\infty \cong k$ and define the bilinear form β on $\wedge U_\infty$ by

$$(1.8) \quad \beta(\xi, \xi') = (-1)^{p(p+1)/2} \kappa(\xi \wedge \xi'), \quad p = \deg \xi$$

for every homogeneous element $\xi \in \wedge U_\infty$ and $\xi' \in \wedge U_\infty$ ([Ca] §101). This pairing β is invariant under the action of $Spin(V, q)$, and called the fundamental polar form.

Now we put $\nu = 5$ and $X = \mathcal{L}^+(V, q)$. Let $\{e_{\pm 1}, \ldots, e_{\pm 5}\}$ and A be as in the proof of Proposition 1.5. $\mathcal{L}^+(V, q)$ is a 10-dimensional projective variety and its
open subset is the image of
\[\wedge^2 U_\infty \quad \longrightarrow \quad \mathbb{P}^{15}, \]
\[\alpha = - \sum_{i<j} a_{ij} e_i \wedge e_j \quad \exp (-\alpha) = (1 : a_{ij} : \text{Pfaff}_{ijkl} A). \]

For every \(v \in V \), we define the quadratic form \(N_v \) on \(S^+ \) by \(N_v(s) = \beta(s, \varphi_v(s)) \) where \(\beta \) is the fundamental polar form in (1.8). We abbreviate \(N_{e_{\pm i}} \) by \(N_{\pm i} \) for \(i = 1, \ldots, 5 \). Then \(N_i(s) = \beta(s, e_i \wedge s) \) and \(N_{-i}(s) = \beta(s, \frac{\partial s}{\partial e_i}) \), and we have (0.1). By Proposition 1.5, \(X \) is the common zero locus of the five quadratic forms \(N_1, \ldots, N_5 \) on the affine open subset \(\wedge^2 U_\infty \). Since the embedding is \(SO(10) \)-equivariant, we have

Proposition 1.9. The 10-dimensional orthogonal Grassmannian \(X \subset \mathbb{P}^{15} \) is the common zero locus of the 10 quadratic forms in (0.1).

For an even spinor \(s \in S^+ \), we define a vector \(v(s) \in V \) by
\[v(s) = N_{-5}(s)e_5 + \cdots + N_{-1}(s)e_1 + N_1(s)e_{-1} + \cdots + N_5(s)e_{-5}. \]

Then \(s \) is pure if and only if \(v(s) = 0 \). Consider the odd spinor
\[\varphi_{v(s)}(s) = N_{-5}(s)e_5 \wedge s + \cdots + N_{-1}(s)e_1 \wedge s + N_1(s)\frac{\partial s}{\partial e_1} + \cdots + N_5(s)\frac{\partial s}{\partial e_5}. \]

A direct computation shows

Proposition 1.10. \(\varphi_{v(s)}(s) = 0. \)

By (1.3) or by a direct computation, we have

Corollary 1.11. \(q(v(s)) = 0 \), that is, \(N_1(s)N_{-1}(s) + \cdots + N_5(s)N_{-5}(s) = 0 \).

Assume that an even spinor \(s \in S^+ \) is not pure. The endomorphism \(\varphi_{v(s)} : S \to S \) is not zero but square zero. Its kernel coincides with its image and is identified with the space of spinors of the 8-dimensional quadratic space \((v(s)^{1/2}/k \cdot v(s), \bar{q}) \). Let \(F \) be a 7-dimensional linear subspace of \(P_*(S^+) \) corresponding to \(\text{Ker} \ \varphi_{v(s)} \cap S^+ \). Then the intersection \(F \cap X \) is the orthogonal Grassmannian of \((v(s)^{1/2}/k \cdot v(s), \bar{q}) \), which is a hyperquadric in \(F \cong \mathbb{P}^7. \) Hence we have

Proposition 1.12. For every point \([s] \in \mathbb{P}^{15} \setminus X \), there exists a 7-dimensional linear subspace \(F_{[s]} \) such that \(F_{[s]} \owns [s] \) and \(F_{[s]} \cap X \) is a 6-dimensional quadric.

The special orthogonal group \(SO(V, q) \) acts on \(Q^8 = \{ [v] \mid q(v) = 0 \} \subset P_*(V) \) transitively and the stabilizer group \(SO(v^{1/2}/kv, \bar{q}) \) acts on \(F_{[s]} \setminus X \) transitively. Hence we have

Proposition 1.13. (II) The special orthogonal group \(SO(10) \) acts on the complement \(\mathbb{P}^{15} \setminus X \) of the 10-dimensional orthogonal Grassmannian \(X \) transitively.
We consider the quadric hull \(\bigcap_{Q \supset X \cup \{p\}} Q \) of the union of \(X \) and a point \(p \notin X \). Every secant line of \(X \) passing through \(p \) is contained in the hull. Hence \(F_p \) in Proposition 1.12 is contained in the hull.

Proposition 1.14. For every point \(p \notin X \), the quadric hull of \(X \cup \{p\} \) is the union of \(X \) and the 7-dimensional linear subspace \(F_p \) in Proposition 1.12.

Proof. By Proposition 1.13, we may assume that \(p \) corresponds to the even spinor \(s = 1 + e_1 \wedge e_2 \wedge e_3 \wedge e_4 \). Since \(v(s) = e_{-5} \), \(F_p \) is defined by

\[
(*) \quad \xi_{15} = \xi_{25} = \xi_{35} = \xi_{45} = \xi_{2345} = \xi_{1345} = \xi_{1245} = \xi_{1235} = 0.
\]

Assume that \(q \) corresponding to \(t = \sum \xi_i e_i \) belongs to the quadric hull of \(X \cup \{p\} \). Then \(t \) satisfies

\[
N_{-5}(t) = \cdots = N_{-1}(t) = N_1(t) = \cdots = N_4(t) = 0.
\]

If \(N_5(t) = 0 \), then \(t \) is pure and \(q \) belongs to \(X \). Hence it suffices to show that \(t \) satisfies \((*)\) assuming \(N_5(t) \neq 0 \). We denote the five \(4 \times 4 \) principal minors of \(A = (\xi_{ij}) \), \(\xi_{ij} + \xi_{ji} = \xi_{ii} = 0 \), by \(A^{(1)}, \ldots, A^{(5)} \).

Case 1. Assume that \(\text{rk} A = 2 \), i.e., Pfaff \(A^{(i)} = 0 \) for \(1 \leq i \leq 5 \). Since \(N_1(s) = \cdots = N_4(s) = 0 \neq N_5(s) \), we have \(\xi_0 \xi_{2345} = \cdots = \xi_0 \xi_{1235} = 0 \neq \xi_0 \xi_{1234} \) and hence \(\xi_{2345} = \xi_{1345} = \xi_{1245} = \xi_{1235} = 0 \). Since \(N_{-1}(s) = \cdots = N_{-4}(s) = 0 \), we have \(\xi_{15} = \xi_{25} = \xi_{35} = \xi_{45} = 0 \).

Case 2. Assume that \(\text{rk} A = 4 \). Then the radical of \(A \) is spanned by \((\text{Pfaff} A^{(1)}, \ldots, \text{Pfaff} A^{(5)})\). Since \((\xi_{2345}, \ldots, \xi_{1234}) \) is also contained in the radical by the condition \(N_{-1}(t) = \cdots = N_{-5}(t) = 0 \), there exists a constant \(c \) such that

\[
(\xi_{2345}, \ldots, \xi_{1234}) = c(\text{Pfaff} A^{(1)}, \ldots, \text{Pfaff} A^{(5)}).
\]

Since \(\xi_0 \xi_{1234} - \text{Pfaff} A^{(5)} = N_5(t) \neq 0 \), we have \((c\xi_0 - 1) \text{Pfaff} A^{(5)} \neq 0 \). Similarly, by the condition \(N_1(t) = N_2(t) = N_3(t) = N_4(t) = 0 \), we have \((c\xi_0 - 1) \text{Pfaff} A^{(i)} = 0 \) and \(\text{Pfaff} A^{(i)} = 0 \) for \(1 \leq i \leq 4 \). This implies \(\xi_{2345} = \xi_{1345} = \xi_{1245} = \xi_{1235} = 0 \). So the radical of \(A \) contains \((0, 0, 0, 0, 1)\) and we have \(\xi_{15} = \xi_{25} = \xi_{35} = \xi_{45} = 0 \). \(\square \)

Corollary 1.15. The 7-dimensional linear subspace \(F_p \) is the union of all secant lines of \(X \) passing through \(p \).

Let \(R \) be a 2-plane in \(\mathbf{P}^{15} \) such that the intersection \(X \cap R \) contains at least four points. Since \(X \) is an intersection of quadrics, we have either: 1) \(X \cap R \) consists of the four points; 2) \(X \cap R \) is a conic in \(R \); or 3) \(R \subset X \). If 1) holds, then there
are two secant lines of X which intersect at a point $p \not\in X$. This is impossible by Proposition 1.12 and the corollary. Hence we have

Proposition 1.16. The 10-dimensional orthogonal Grassmannian $X \subset \mathbb{P}^{15}$ has no 4-secant 2-plane; that is, if a 2-plane R has at least four common points with X, then the intersection $X \cap R$ is of positive dimension.

2. Linear section of the orthogonal Grassmannian. Let (V, q) be a 2ν-dimensional nondegenerate quadratic space and $0 \to \mathcal{E} \to V \otimes \mathcal{O}_G \to \mathcal{F} \to 0$ be the universal exact sequence on the Grassmannian $G(\nu, V)$. Since $T_G \simeq \mathcal{E}^\vee \otimes \mathcal{F}$, the anti-canonical class $-K_G$ of the $G(\nu, V)$ is 2ν times the Plücker (hyperplane section) class. By Proposition 1.3, $\mathcal{L}(V, q)$ is a complete intersection in $G(\nu, V)$ with respect to the vector bundle $S^2\mathcal{E}^\vee$. Since $c_1(S^2\mathcal{E}^\vee)$ is $(\nu + 1)$ times the Plücker class, The anti-canonical class $-K_\mathcal{L}$ of $\mathcal{L}(V, q)$ is the restriction of $(\nu - 1)$ times the Plücker class by the adjunction formula. By Proposition 1.7, we have

Proposition 2.1. The anti-canonical class of the $\nu(\nu - 1)/2$-dimensional orthogonal Grassmannian $\mathcal{L}^+(V, q)$ is equal to $2(\nu - 1)$ times a hyperplane class of the spinor embedding $\mathcal{L}^+(V, q) \subset \mathbb{P}(S^+)$.}

Now we put $\nu = 5$ and $X = \mathcal{L}^+(V, q)$. Let P be a 6-dimensional linear subspace of $\mathbb{P}(S^+) = \mathbb{P}^{15}$ which intersects X transversally, and put $C = P \cap X$. Since P is an intersection of 9 hyperplanes, we have $K_C = (9H + K_X)|_C = H|_C$ by the proposition. By the Schubert calculus, $X \subset \mathbb{P}^{15}$ is of degree 12. Hence the genus of C is equal to $\frac{1}{2}\deg X + 1 = 7$. Moreover, since $H^0(P, \mathcal{O}_P(1)) \to H^0(C, \mathcal{O}_C(1))$ is injective, the natural inclusion $C \subset P = \mathbb{P}^6$ is the canonical embedding. By Proposition 1.16, $C \subset \mathbb{P}^6$ has no 4-secant planes. Therefore, by the geometric Riemann-Roch theorem (see [GH] §2.3), we have the ‘only if’ part of our Main Theorem, that is,

Proposition 2.2. The 10-dimensional orthogonal Grassmannian $X \subset \mathbb{P}^{15}$ has a canonical curve of genus 7 as its linear section and every smooth curve $C = P \cap X$ of genus 7 obtained in this way has no g_4.

We need two more properties of the orthogonal Grassmannian for the proof of Theorem 0.4. Let R_X be the space of quadratic forms on \mathbb{P}^{15} which vanish identically on X. The number of linearly independent quadrics which pass through canonical curve of genus 7 is equal to 10 (see (3.1)). Hence R_X is isomorphic to V by the linear map

$$\alpha: V \to R_X, \quad v \mapsto N_v.$$

(2.3)

If v is nonzero nulvector, i.e., $q(v) = 0$, then the quadratic form N_v is equal to the pull-back of the fundamental polar form by the linear map

$$S^+ = S^+(V, q) \to S^+(v^\perp / k \cdot v, q) = \text{Im} \varphi_v.$$
Hence N_v is of rank 8 and the singular locus F of $N_v = 0$ is the projectivization of $\text{Ker} \, \varphi_v$. Therefore, the intersection $F \cap X$ consists of all $[U] \in X$ with $v \in U$. Hence we have proved

Proposition 2.4. Let $[U]$ be a point of X corresponding to a Lagrangean of (V, q) and $R_{X, [U]}$ the subspace of R_X consisting of quadratic forms f such that $f(s) = 0$ is singular at the point $[U]$. Then $R_{X, [U]}$ coincides with the image of U by the linear map α in (2.3). In particular, the following diagram is commutative:

$$
\begin{array}{ccc}
X & \subset & G(5, V) \\
\rho_X & \downarrow & \alpha_* \\
& & G(5, R_X)
\end{array}
$$

Here ρ_X is the map associating $R_{X, [U]} \subset R_X$ for each $[U] \in X$.

Let $C \subset \mathbb{P}^6$ be a transversal linear section of $X \subset \mathbb{P}^{15}$ and define R_C and $R_{C, p}$ in the same way as above. Since the restriction map $R_X \to R_C$ is an isomorphism, we have

Corollary 2.5. Let ρ_C be the Grassmannian morphism associating the subspace $R_{C, p} \subset R_C$ for each $p \in C$. Then the following diagram is commutative:

$$
\begin{array}{ccc}
C & \subset & X \subset G(5, V) \\
\rho_C & \downarrow & \alpha_* \\
& & G(5, R_C)
\end{array}
$$

Here α' is the composite of α and the restriction map $R_X \to R_C$.

The two spaces of half spinors, $S^+ = \wedge^{e\nu} U_\infty$ and $S^\nu, \, \nu = (--)^\nu$, are dual to each other with respect to the fundamental polar form β in (1.8). Hence a Lagrangean U in $\mathcal{L}^\nu(V, q) \subset \mathbf{P}_* (S^\nu)$ defines a hyperplane of $\mathbf{P}_* (S^+)$, which we denote by H_U.

Proposition 2.6. The multiplicity of the hyperplane section $H_U \cap \mathcal{L}^+ (V, q)$ at the point $[U_0]$ is equal to $\frac{1}{2} \dim U_0 \cap U$.

Proof. For a subset I of $\{1, 2, \ldots, \nu\}$, let U_I be the Lagrangean generated by e_i with $i \in I$ and e_{-j} with $j \notin I$. Then its pure spinor is $e_I \in S$ defined in the proof of Proposition 1.5. Hence H_{U_I} is defined by $\xi_\nu = 0$ under the coordinate system $\sum_j \xi_j e_j$ of S. Hence, the proposition holds for U_I with $|I| \equiv \nu \mod 2$ by Proposition 1.5, since dim $U_0 \cap U_I = |I|$. It holds for every U, since $\mathcal{L}^{\pm} (V, q)$ is a homogeneous space of $SO(V, q)$. \Box
In the case $\nu = 5$, combining with Proposition 1.13, we have

Proposition 2.7. The two 10-dimensional orthogonal Grassmannians $\mathcal{L}^+(V, q) \subset \mathbf{P}_*(S^+)$ and $\mathcal{L}^-(V, q) \subset \mathbf{P}_*(S^-)$ are each other’s projective dual variety with respect to the fundamental polar form.

The spinor embedding is similarly defined for an odd dimensional quadratic space. Let (V, q) be a 2ν-dimensional quadratic space and $V \longrightarrow \text{End} S$ its Clifford map as in §1. Let φ_1 be the involution of S which is ± 1 on S^\pm. Then the Clifford map extends to $V' \longrightarrow \text{End} S$, $(v, a) \mapsto \varphi_{(v, a)} := \varphi_v + a\varphi_1$, so that $\varphi_{(v, a)}^2 = q'(v, a) \cdot 1_S$ for every $(v, a) \in V' := V \oplus k$, where we put $q'(v, a) = q(v) + a^2$. For a Lagrangean U of (V', q'), i.e., a ν-dimensional subspace with $q'|_U \equiv 0$, its pure spinor $s_U \in S$ is defined in the same way as (V, q). The set $\mathcal{L}(V', q')$ of Lagrangeans is a $\nu(\nu + 1)/2$-dimensional homogeneous space of $\text{SO}(V', q')$ and equivariantly embedded into $\mathbf{P}_*(S)$ by the correspondence $[U] \mapsto [s_U]$. By the fundamental polar form β, a nonzero spinor defines a hyperplane of $\mathbf{P}_*(S)$. We denote by H_U the hyperplane defined by the pure spinor s_U. Since $\beta(s_U, s_{U'}) = 0$ if and only if $U \cap U' \neq 0 ([\text{Ca}] \S 111)$, we have

Proposition 2.8. The hyperplane section $H_U \cap \mathcal{L}(V', q') \subset \mathbf{P}_*(S)$ corresponding to a Lagrangean U of (V', q') consists of all Lagrangeans U' with $U' \cap U \neq 0$.

In the case $\nu = 4$, $\mathcal{L}(V', q') \subset \mathbf{P}_*(S)$ is the 10-dimensional orthogonal Grassmannian $X \subset \mathbf{P}^{15}$ regarded as a homogeneous space of $\text{SO}(9)$. The singular locus of $H_U \cap \mathcal{L}(V', q')$ consists of $[U']$ with $\dim U' \cap U \geq 3$ and $\mathcal{L}(V', q')$ is self-dual with respect to the fundamental polar form by Proposition 1.13.

3. Quadrics passing through a canonical curve. Let $C \subset \mathbf{P}^{g-1}$ be a canonical curve of genus g and set $W = H^0(\mathbf{P}^{g-1}, I_C(2))$. By Noether’s theorem, we have

$$
(3.1) \quad \dim W = g(g + 1)/2 - \dim H^0(\mathcal{O}_C(2K)) = (g - 2)(g - 3)/2.
$$

Let E be the bicanonical twist $N^\vee_{C/P} \otimes \mathcal{O}(2)$ of the conormal bundle of $C \subset \mathbf{P}^{g-1}$. E is a vector bundle of rank $g - 2$. By the exact sequence

$$
0 \longrightarrow N^\vee_{C/P} \longrightarrow \Omega_P|_C \longrightarrow \mathcal{O}_C(K) \longrightarrow 0,
$$

det E is isomorphic to $\mathcal{O}_C((g - 5)K)$. Since $N^\vee_{C/P} = I_C/I^2_C$, we obtain a linear map $W \longrightarrow H^0(C, E)$ and the homomorphism $W \otimes_k \mathcal{O}_C \longrightarrow E$. For a point $p \in C$, we denote the kernel of $W \longrightarrow E_p$ by W_p, where E_p is the fibre of E at p. W_p is the kernel of the natural linear map $S^2H^0(\mathcal{O}_C(K - p)) \longrightarrow H^0(\mathcal{O}_C(2K - 2p))$. If $p \neq q$, then the intersection $W_p \cap W_q$ is the kernel of $S^2H^0(\mathcal{O}_C(K - p - q)) \longrightarrow H^0(\mathcal{O}_C(2K - 2p - 2q))$.
Theorem 3.2. ([GL]) Let D be a divisor with $\dim H^0(\mathcal{O}_C(D)) = 1$. If $\deg D$ is smaller than the Clifford index of C, then the linear map

$$S^2H^0(\mathcal{O}_C(K - D)) \longrightarrow H^0(\mathcal{O}_C(2K - 2D))$$

induced by multiplication is surjective.

Let $C \subset \mathbb{P}^6$ be a canonical curve of genus 7. Then E is a rank 5 vector bundle with $\det E \simeq \mathcal{O}_C(2K)$ and $\dim W = 10$. If C is not trigonal, C is a (scheme-theoretic) intersection of W. Hence, $\dim W_p = 5$ for every point $p \in C$. The Clifford index of C is at most 3, and equal to 3 if and only if C has no g^1_4. By the above theorem, we have

Proposition 3.3. If C has no g^1_4, then

$$S^2H^0(\mathcal{O}_C(K - p - q)) \longrightarrow H^0(\mathcal{O}_C(2K - 2p - 2q))$$

is surjective and $\dim W_p \cap W_q = 1$ for every pair of distinct points p and q of C.

The following lemma, together with the above proposition, plays an important role in the next two sections.

Lemma 3.4. Let C be as above and fix a point $p \in C$. Then the union of $W_q \cap W_p$, $q \neq p \in C$, generates W_p.

Proof. Assume the contrary, that is, there exists a 4-dimensional subspace V of W_p which contains $W_q \cap W_p$ for every $q \neq p$. Let $C_p \subset \mathbb{P}^5$ be the image of the projection of the canonical curve from p. We regard W_p as a space of quadratic forms on \mathbb{P}^5. By Proposition 3.3, C_p is a connected component of the common zero locus of W_p (cf. the remark below). Let S be a component of the common zero locus of $V \subset W_p$ containing C_p, and L the linear web of quadrics in \mathbb{P}^5 corresponding to V. Since C_p is the intersection of S and a quadric Q, the dimension of S is equal to 1 or 2. For every $q \neq p$, L contains a member which is singular at q. Hence in the case $\dim S = 1$, S is singular along C_p and we have

$$2^4 \geq \deg S \geq 2 \deg C_p = 22,$$

by the refined Bezout’s theorem [Ful], which is a contradiction. In the case $\dim S = 2$, the intersection $S \cap Q = C_p$ is complete and we have $2 \deg S = \deg C_p = 11$, which is absurd. \hfill \Box

Remark 3.5. The curve $C_p \subset \mathbb{P}^5$ in the proof coincides with the common zero locus of W_p (see [L] §2.4).
4. Quadratic relation among quadratic forms. Let $C \subset \mathbb{P}^6$ be a canonical curve of genus 7. Let W, E and W_p be as in the preceding section. If C is a transversal linear section of the 10-dimensional orthogonal Grassmannian, then by Corollary 1.11 there is a quadratic relation among quadratic forms, that is, the multiplication map $\mu: S^2W \to H^0(\mathbb{P}^6, I^2_C(4))$ is not injective. By the commutative diagram

\[
\begin{array}{ccc}
S^2W & \longrightarrow & S^2H^0(C, E) \\
\mu \downarrow & & \downarrow \\
H^0(\mathbb{P}^6, I^2_C(4)) & \longrightarrow & H^0(C, S^2E)
\end{array}
\]

the natural map $f: S^2W \to H^0(S^2E)$ is not injective, either.

In this section we prove the following:

Theorem 4.2. If C has no g_4^1, then every nonzero tensor in $\text{Ker} f$ is nondegenerate.

Corollary 4.3. $\dim \text{Ker} f \leq 1$.

Let σ be a nonzero degenerate symmetric tensor in the kernel of f and denote its rank by $r \leq 9$. Let R be the unique r-dimensional subspace of W such that S^2R contains σ. Since σ is nondegenerate as a quadratic form on R^\vee, we have

\[
\dim R \cap W_p \geq \frac{r}{2}
\]

for every $p \in C$. By Proposition 3.3, we have

\[
\dim R \cap W_p + \dim R \cap W_q \leq r + 1
\]

for every pair of distinct points of p and q of C. Hence we have either

(4.6a) r is odd (resp. even) and $\dim R \cap W_p = \frac{r+1}{2}$ (resp. $= \frac{r}{2}$) for every point p of C, or

(4.6b) r is even, there exists a point $p \in C$ with $\dim R \cap W_p = \frac{r}{2} + 1$

and $\dim R \cap W_q = \frac{r}{2}$ for every point $q \neq p$.

In the case (4.6a), $(R \cap W_p)^\perp$ is a Lagrangean of the quadratic space (R^\vee, σ). If r is odd, $R \cap W_p \cap W_q$ is nonzero for every p and q. Hence, by Proposition 3.3 and Lemma 3.4, we have $R \cap W_p = W_p$. It follows from (4.5) that $r = 9$. If r is even, then

\[
\dim R \cap W_p \cap W_q \equiv \frac{r}{2} \mod 2
\]
by Proposition 1.6. In particular, if \(r = 2 \) or 6, then \(R \cap W_p \cap W_q \neq 0 \) for every \(p \neq q \), which contradicts Lemma 3.4. Hence we have \(r = 4 \) or 8.

Claim. (4.6a) does not occur.

Let \(F \) be the subsheaf of \(E \) generated by \(R \subset W \subset H^0(E) \) and \(\Phi \) the morphism of \(C \) to Grassmannian induced by \(R \otimes \mathcal{O}_C \to F \). The image of \(\Phi \) is contained in the orthogonal Grassmannian \(Y \) associated with \((R^\vee, \sigma)\). In the case \(r = 9 \), \(W_p \) is contained in \(R \). Let \(H_p \) be the hyperplane associated with \(\Phi(p) \) by the fundamental polar form. Then, applying Proposition 2.8 to \((R^\vee, \sigma)\), we have \(\Phi^{-1}(H_p \cap Y) = \{p\} \) by Proposition 3.3. Hence we have \(np \sim \Phi^* \mathcal{O}(1) \) for every point \(p \) of \(C \), where \(n = \deg \Phi > 0 \), which contradicts the finiteness of \(n \)-torsion points of \(\text{Pic} \, C \).

In the case \(r = 8 \), \(Y \) is a smooth hyperquadric in \(\mathbb{P}^7 \). By Proposition 3.3 and (4.7), \(R \cap W_p \cap W_q = 0 \) for every \(p \neq q \). We have the contradiction \(np \sim \Phi^* \mathcal{O}(1) \) in a similar way to \(r = 9 \). In the case \(r = 4 \), \(Y \) is \(\mathbb{P}^1 \) and \(\Phi \) is injective by Proposition 3.3 and (4.7). This is absurd and completes the proof of the claim.

In the case (4.6b), \(R \cap W_p \cap W_q \) is nonzero for every \(q \) different from \(p \). Hence \(R \cap W_p = W_p \), that is, \(W_p \subset R \) by Lemma 3.4 and we have \(r = 8 \). \(W_p^\perp \) is a 3-dimensional subspace of \(R^\vee \) over which \(\sigma \) is identically zero. There are two Lagrangeans of \((R^\vee, \sigma)\) which contains \(W_p^\perp \) as a subspace. Let them be \(U_+^\perp \) and \(U_-^\perp \) for 4-dimensional subspaces \(U_\pm \) of \(R \). By Proposition 1.6, one of \(U_\pm \), say \(U_- \), satisfies that \(\dim U_- \cap W_q \) is odd for every point \(q \neq p \) of \(C \), which contradicts Lemma 3.4. So (4.6b) is impossible, either, and the proof of Theorem 4.2 is completed.

5. Spinor embedding of curves of genus 7. Let \(X \subset \mathbb{P}^{15} \) be the 10-dimensional orthogonal Grassmannian and \(R(N) \equiv \sum_{i=1}^5 N_iN_{-i} = 0 \) the quadratic relation in Corollary 1.11. Let \(\Xi \) be the open subset of Grassmannian consisting of 6-dimensional linear subspaces \(P \) which intersect \(X \) transversally. By Proposition 2.2, we obtain a morphism

\[
(5.1) \quad \alpha: \Xi/\text{SO}(10) \longrightarrow \mathcal{M}_7
\]

to the moduli space \(\mathcal{M}_7 \) of curves of genus 7. If \(C \) belongs to the image of \(\alpha \), then \(C \) has no \(g_2^+ \). By Corollary 4.3, the kernel of \(f: S^2W \to H^0(S^2E) \) is generated by the restriction of \(R(N) \). Hence we can recover the original embedding \(C \hookrightarrow X \) from \(W \subset H^0(E) \) and \(f \) by Corollary 2.5. It follows that \(\alpha \) has its inverse on the image of \(\alpha \). So we have

Proposition 5.2. The morphism \(\alpha \) is injective.

Since \(\text{Aut} \, C \) is finite, we have \(\dim \Xi/\text{SO}(10) = \dim \Xi - \dim \text{SO}(10) = 7(16 - 7) - 45 = 18 = \dim \mathcal{M}_7 \). Hence the image of \(\alpha \) contains a non-empty Zariski open subset. By the irreducibility of \(\mathcal{M}_7 \) ([DM]) and Corollary 4.3, we have
Corollary 5.3. The map f: $S^2W \rightarrow H^0(S^2E)$ is not injective for any curve C of genus 7. Moreover, $\dim\ker f = 1$ if C has no g^1_4.

Proof of Theorem 0.4. Let $C \subset \mathbf{P}^6$ be a non-tetragonal canonical curve of genus 7 and σ a generator of the kernel of f: $S^2W \rightarrow H^0(S^2E)$. The Grassmannian morphism $\rho_C: C \rightarrow G(W, 5)$ is injective by Proposition 3.3. Since σ vanishes at each fibre of E, its image is contained in one, say X^+, of the two orthogonal Grassmannians X^\pm associated with (W, σ). Let ξ be the pull-back of the tautological line bundle $\mathcal{O}_\mathbf{P}(1)$ by

$$\Phi: C \rightarrow X^+ \subset \mathbf{P}(S^+) = \mathbf{P}^{15}.$$

By Proposition 1.7, ξ^2 is isomorphic to $\det E \cong \omega_C^2$. Hence $\deg \xi = \deg \omega_C$ and $\dim H^0(\xi) \leq 7$. Therefore, the linear span P of $\Phi(C)$ is of dimension ≤ 6.

Claim. The intersection $P \cap X$ is transversal at every point of $\Phi(C)$.

It suffices to show that every hyperplane H containing P intersects X transversally along $\Phi(C)$. If the intersection $H \cap X$ is transversal (everywhere), then there is nothing to prove. So we may assume that $H = H_U$ for some $[U] \in X^-$ by virtue of Proposition 2.7. Since $\Phi(C) \subset H$, $W_p \cap U$ is nonzero for every p by Proposition 2.6. Since $\dim W_p \cap U$ is even, $\dim W_p \cap U = 2$ or 4. If $\dim W_p \cap U = 4$, then $W_p \cap W_q \cap U$ is nonzero for every $q \in C$, which contradicts Lemma 3.4. Hence $H \cap X$ is transversal along $\Phi(C)$ again by Proposition 2.6.

By the claim, we have $\dim P = 6$ and hence $\xi \cong \omega_C$. Moreover, since the morphism $C \rightarrow P$ is canonical, Φ is an embedding. By the claim, the intersection $X \cap P$ contains $C \cong \Phi(C)$ as a connected component. Since $X \cap P$ is connected by Enriques-Severi-Zariski’s lemma ([H], p.244), $X \cap P$ coincides with $\Phi(C)$, which completes the proof of Theorem 0.4 and hence the ‘if’ part of our Main Theorem.

6. Tetragonal curves of genus 7. Let C be a curve of genus 7 which has a g^1_4. We assume that C is neither hyperelliptic nor trigonal. Let ξ be a g^1_4 and $\eta = \omega_C \xi^{-1}$ its Serre adjoint. By the Riemann-Roch theorem η is a g^3_5. The complete linear system $|\eta|$ has no fixed points since C has no g^2_3. Let $\pi: C \rightarrow \mathbf{P}^1$ and $\tau: C \rightarrow \mathbf{P}^3$ be the morphisms associated to $|\xi|$ and $|\eta|$, respectively.

We first consider the case in which C has no g^2_3. If two points p and q lay in the same fibre of τ, then $\eta(-p-q)$ would be a g^2_6. Hence τ is an embedding. By the genus formula, the image of τ is not contained in a quadric. In particular, η is not a product of two g^1_4's and we have $\dim H^0(\xi^{-1}\eta) \leq 1$. Therefore, by the exact sequence

$$[0 \rightarrow \xi^{-1} \rightarrow \mathcal{O}^{\oplus 2} \rightarrow \xi \rightarrow 0] \otimes \eta,$$
We have

Lemma 6.1. The map \(\mu: H^0(\xi) \otimes H^0(\eta) \to H^0(\omega_C) \) induced by multiplication is surjective.

The map \(\mu \) induces the linear embedding

\[\mu^*: \mathbb{P}^6 = \mathbb{P}^*(H^0(\omega_C)) \to \mathbb{P}^*(H^0(\xi) \otimes H^0(\eta)) = \mathbb{P}^7 \]

and we have the following commutative diagram:

\[
\begin{array}{ccc}
C & \xrightarrow{\mu^*} & \mathbb{P}^1 \times \mathbb{P}^3 \\
\text{canonical} \cap & \subset & \text{Segre} \\
\mathbb{P}^6 & \xrightarrow{\pi, \tau} & \mathbb{P}^7 \\
\end{array}
\]

(6.2)

The morphism \((\pi, \tau)\) is an embedding and its image \(\tilde{C}\) is contained in the intersection \(W\) of \(\mu^*(\mathbb{P}^6)\) and \(\mathbb{P}^1 \times \mathbb{P}^3\). \(W\) is an irreducible divisor of bidegree \((1,1)\) in \(\mathbb{P}^1 \times \mathbb{P}^3\). Consider the restriction map

\[H^0(W, O_W(1, 2)) \to H^0(C, \xi \eta^2). \]

The source is of dimension 16 and the target of dimension 14. Hence there exists a pencil of divisors \(D_t \subset W, t \in \mathbb{P}^1\), of bidegree \((1,2)\) which contain \(\tilde{C}\). By the surjectivity of \(\mu\), \(\tilde{C}\) is not contained in a divisor of bidegree \((1,1)\). Since \(\tau(C)\) is not contained in a quadric, \(\tilde{C}\) is not contained in a divisor of bidegree \((0,2)\), either. Therefore, every divisor \(D_t, t \in \mathbb{P}^1\), is irreducible and the intersection \(D_0 \cap D_\infty\) is of dimension 1. Since the degree of \(D_0 \cap D_\infty \subset W \subset \mathbb{P}^6\) is equal to

\[(a + 2b)^2(a + b)^2 = (a^2 + 3ab + 2b^2)^2 = 12 = \deg C, \]

we have \(C = D_0 \cap D_\infty\). So we have proved

Proposition 6.3. If \(C\) is tetragonal and has no \(g^2_6\), then \(C\) is isomorphic to a complete intersection of a divisor \(W\) of bidegree \((1,1)\) and two divisors of bidegree \((1,2)\) in \(\mathbb{P}^1 \times \mathbb{P}^3\).

Every member of \(|\xi|\) spans a 4-secant plane in the canonical model \(C_{12} \subset \mathbb{P}^6\). The divisor \(W\), which is a \(\mathbb{P}^2\)-bundle over \(\mathbb{P}^1\), is the union of these 4-secant planes.

Now we consider the case in which \(C\) has a \(g^2_6\). Let \(\alpha\) be a \(g^2_6\) of \(C\) and \(f: C \to \mathbb{P}^2\) the morphism associated to \(|\alpha|\). Since \(C\) is neither hyperelliptic nor trigonal, we have either

(a) \(f\) is a degree two morphism onto a smooth cubic \(E: f_3(x_0, x_1, x_2) = 0\), or
(b) \(f\) is birational onto its image.
Table 1. Canonical models of curves of genus 7.

<table>
<thead>
<tr>
<th></th>
<th># of g_1^1's</th>
<th># of g_2^1's</th>
<th># of g_4^1's</th>
<th># of moduli</th>
<th>Complete intersection</th>
<th>Canonical model $C_{12} \subset \mathbb{P}^6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>non-tetragonal</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>Linear section of the 10-dim. spinor variety $X_{12}^{10} \subset \mathbb{P}^{15}$</td>
<td></td>
</tr>
<tr>
<td>2)</td>
<td>tetragonal</td>
<td>2</td>
<td>1</td>
<td>17</td>
<td>$(1, 1) \cap (1, 2) \cap (1, 2)$ in $\mathbb{P}^1 \times \mathbb{P}^3$</td>
<td>The union of 4-secant planes is a 3-fold of degree 4 in \mathbb{P}^6</td>
</tr>
<tr>
<td>3)</td>
<td>1, 2 or 3</td>
<td>1</td>
<td>16</td>
<td>Hyperquadric section of a sextic del Pezzo surface $S_6 \subset \mathbb{P}^6$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4)</td>
<td>1</td>
<td>∞</td>
<td>15</td>
<td>Hyperquadric section of the cone of a sextic elliptic curve $E_6 \subset \mathbb{P}^5$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5)</td>
<td>∞</td>
<td>∞</td>
<td>12</td>
<td>The union of trisecant lines is a surface of degree 5 in \mathbb{P}^6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6)</td>
<td>trigonal</td>
<td>2</td>
<td>∞</td>
<td>15</td>
<td>$(1, 1) \cap (3, 3)$ in $\mathbb{P}^1 \times \mathbb{P}^2$</td>
<td></td>
</tr>
<tr>
<td>7)</td>
<td>1</td>
<td>∞</td>
<td>13</td>
<td>$(9) \subset \mathbb{P}(1 : 1 : 3) \subset \mathbb{P}^6$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8)</td>
<td>hyperelliptic</td>
<td>∞</td>
<td>∞</td>
<td>13</td>
<td>$(16) \subset \mathbb{P}(1 : 1 : 8)$</td>
<td></td>
</tr>
</tbody>
</table>
In the former case, C is bielliptic. The canonical line bundle ω_C is the pull-back of a line bundle ζ of degree 6 on E. Choose a g_6^2 ξ of C so that $\xi^2 \cong \omega_C$. Then the branch locus of $C \to E$ is cut out by a quartic $g_4(x_0,x_1,x_2) = 0$. Hence C is defined by the two equations $f_3(x) = 0$ and $y^2 = g_4(x)$. Therefore, we have

Proposition 6.4. A bielliptic curve of genus 7 is a complete intersection of two surfaces of degree 3 and 4 in the weighted projective space $\mathbf{P}(1:1:1:2)$.

In the latter case, the image of f is a sextic curve without triple points. Since the arithmetic genus of $f(C)$ is equal to 10, C is contained in the blow-up S of \mathbf{P}^2 at three points p, q and r. Moreover, C belongs to the anti-bicanonical linear system $|-2K_S|$ of S and the canonical linear system $|K_C|$ is the trace of $|-K_S|$. The blowing-up $\tilde{f}: S \to \mathbf{P}^2$ is an extension of $f: C \to \mathbf{P}^2$. Let β be the Serre adjoint of α. β is also a g_6^2. Let $g: C \to \mathbf{P}^2$ be the morphism associated to $|\beta|$. By the adjunction formula, $|\beta|$ is induced from the net of conics passing through the center $\{p, q, r\}$ of the blowing-up \tilde{f}. Hence g extends to a morphism $\tilde{g}: S \to \mathbf{P}^2$, which is also a blowing-up at three points. β is isomorphic to α if and only if the three points p, q and r are collinear. If $\alpha \not\cong \beta$, then the image of $(\tilde{f}, \tilde{g}): S \to \mathbf{P}^2 \times \mathbf{P}^2$ is a complete intersection of two divisors of bidegree $(1, 1)$. In the case $\alpha \cong \beta$, take a system of homogeneous coordinate $(x_0 : x_1 : x_2)$ of \mathbf{P}^2 so that $\{p, q, r\}$ is defined by $x_0 = f_3(x_1, x_2) = 0$. Then the anti-canonical morphism $S \to \mathbf{P}^6$ factors through the map

$$\mathbf{P}^2 \longrightarrow S \longrightarrow \mathbf{P}(1 : 1 : 1 : 2)$$

$$(x_0 : x_1 : x_2) \longmapsto (x_0 : x_1 : x_2 : y)$$

with $y = f_3(x_1, x_2)/x_0$. The image of S in $\mathbf{P}(1 : 1 : 1 : 2)$ is a cubic surface

$$x_0 y + f_3(x_1, x_2) = 0.$$

Hence we have proved

Proposition 6.5. Assume that C is neither hyperelliptic, trigonal, nor bielliptic, and that C has a g_6^2, which we denote by α. Then C is isomorphic to a complete intersection of three divisors of bidegree $(1,1), (1,1) \text{ and } (2,2)$ in $\mathbf{P}^2 \times \mathbf{P}^2$ if $\alpha^2 \not\cong \omega_C$, and of two surfaces of degree 3 and 4 in the weighted projective space $\mathbf{P}(1 : 1 : 1 : 2)$ if $\alpha^2 \cong \omega_C$.

The canonical model $C_{12} \subset \mathbf{P}^6$ is a hyperquadric section of a sextic surface $S_6 \subset \mathbf{P}^6$, which is the cone of an elliptic curve if C is bielliptic and the anti-canonical model of a rational surface otherwise.

Department of Mathematics, School of Science, Nagoya University, Chikusa-Ku, Nagoya 464-01 Japan
REFERENCES

