Università di Trieste, Facoltà di Scienze M. F. N.

Esame di Analisi Matematica 1 (LT in Fisica e LT in Matematica)

Trieste, 16 settembre 2010

Esercizio 1. Si calcolino i seguenti limiti

$$\lim_{n} n(\log(n+2) - \log(n-2)), \qquad \lim_{x \to 0} \frac{\sin x \cos x - x}{\tan x^3}, \qquad \lim_{x \to +\infty} x(e^{\frac{1}{x}} - e^{\frac{1}{x+1}}).$$

Esercizio 2.

- i) Si studi la funzione $f(x) = x^2 e^x$.
- ii) Per la f del punto precedente si scriva l'approssimante lineare nel punto $x_0=1$.
- iii) Per la f del punto i) si scriva la formula di Taylor con il resto di Lagrange, fino all'ordine 3, nel punto $x_0 = 0$.

Esercizio 3. Sia $f:[0,+\infty[\to\mathbb{R},$ continua. Si supponga che, per ogni $x\in[1,+\infty[$ si abbia

$$|f(x) - \sin x| \le \frac{1}{x}.$$

- i) Si provi che f è limitata.
- ii) Si provi che non esiste $\lim_{x\to+\infty} f(x)$.
- iii) Si provi che l'equazione f(x) = 0 ha infinite soluzioni.

Esercizio 4. (LT in Fisica) Si determini il comportamento delle seguenti serie

$$\sum_{n=2}^{\infty} \frac{1}{n \log^2 n}, \qquad \sum_{n=0}^{\infty} \int_n^{n+\frac{1}{n}} \frac{1}{\sqrt{x+1}} \ dx, \qquad \sum_{n=1}^{\infty} \cos(n\pi) \sin(\frac{1}{n}).$$

Esercizio 4. (LT in Matematica) Sia $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ così definita:

$$d(x,y) = \sqrt{2|x-y|}$$
 per ogni $x, y \in \mathbb{R}$.

- i) Stabilire se d è una distanza su \mathbb{R} .
- ii) Stabilire se esistono due costanti positive A e B tali che

$$A|x-y| \le d(x,y) \le B|x-y|$$
 per ogni $x,y \in \mathbb{R}$.