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Vacuum Einstein Equations

Rij = 0

I cosmological constant Λ = 0
I System of nonlinear wave equations
I 10 equations for 10 unknowns gij

I 4 relations between equations ∇αRαβ = 0 =⇒
6 independent equations

I 4 degrees of (gauge) freedom = choice of coordinates
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The Minkowski space-time (1907)

-mathematical setting of
special relativity

M = R ×R3

ds2 = −dt2 + dx2
1 + dx2

2 + dx2
3



The Schwarzschild space time (1915)

I spherically symmetric
stationary black hole

I parametrized by the
mass M

I event horizon at r = 2M.
I image by Penrose

(Scientific American)

ds2 = −
(
1 −

2M
r

)
dt2 +

(
1 −

2M
r

)−1
dr2 + r2dω2



The Kerr space time (1963)

I rotating axisymmetric black hole
I parametrized by mass M and angular momentum aM
I Kerr(M,a=0) = Schwarzschild(M)

In polar Boyer-Lindquist coordinates

ds2 = −
∆ − a2 sin2 θ

ρ2 dt2 + −
4aMr sin2 θ

ρ2 dtdφ +
ρ2

∆
dr2

+
(r2 + a2)2

− a2∆ sin2 θ

ρ2 sin2 θdφ2 + ρ2dθ2

with
∆ = r2

− 2Mr + a2, ρ2 = r2 + a2 cos2 θ.



The stability question

Theorem (Christodoulou-Klainerman ’90)
The Minkowski space-time is nonlinearly stable as a solution to the
vacuum Einstein equation.

Open Problem
Are the Schwarzschild/Kerr solutions stable ?
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Are the Schwarzschild/Kerr solutions linearly stable ?
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A hierarchy of equations:
1. Scalar waves: ... this talk ...

gαβ∇α∇βφ = 0

2. Maxwell’s equations (spin 1) ... work in progress ...

gαβ∇α∇βVγ = 0, ∇
γVγ = 0

I 4 equations for 4 unknowns (electromagnetic potential),
I one relation between equations =⇒ 3 independent

equations + 1 degree of freedom (gauge choice)

3. Linearized gravity (spin 2)... not too distant future ...

gαβ∇α∇βhγδ = 2gαβgµνRγµδαhνβ ∇
γhγδ −

1
2

gαβ∇δhαβ = 0

I 10 equations for 10 unknowns
I 4 relations between equations =⇒ 6 independent

equations + 4 degrees of freedom (gauge choice)
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I Separation of variables for scalar waves in Kerr: Carter ’67
I Maxwell/linearized gravity: partial uncoupling/separation

of variables in Kerr: Teukolsky ’73

S.Chandraseckar
The Mathematical Theory of Black Holes ’85, p.497:

“The analysis is addressed to the problem of [linearized]
gravitational perturbations of the Kerr space-time .... In the
Newman-Penrose formalism ... we have to solve for ... fifty real
quantities. For the solution we have .... seventy-six real
equations. The solutions must be consistent with ten degrees of
gauge freedom ...”
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Linear wave decay in flat space

�u(t, x) = 0, u(0, x) = u0(x), ∂tu(0, x) = u1(x), � = ∂2
t −∆x

nice localized initial data (u0,u1)

Conserved energy: E(u) =

∫ 3

R
|∇u(t, x)|2 + |∂tu(t, x)|2dx



Flat space with localized potential

�u(t, x) = V(x)u(t, x), u(0, x) = u0(x), ∂tu(0, x) = u1(x)

with nice, small, compactly supported V.
Local exponential decay (Morawetz, Lax 70’s):



Flat space with polynomial potential

�u(t, x) = V(x)u(t, x), u(0, x) = u0(x), ∂tu(0, x) = u1(x)

|V(x)| . ε〈r〉−3

Direct iteration:



Linear wave decay in Kerr/Schwarzschild

Near infinity: g = m + Orad(1/r) + O(1/r2), V ∼ r−3.

Trapped light rays in a compact set:

I Along the event horizon
I red shift =⇒ exponential decay
I Along the photon sphere
I Uncertainty principle +

hyperbolic instability
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R. Price ’74 Heuristics for t−3 local decay for scalar waves in
Schwarzschild. (Price’s Law)

Further work:

I Schwarzschild/Kerr heuristics: Ching-Leung-Suen-Young
I Schwarzschild uniform boundedness: Wald, Kay-Wald
I Schwarzschild t−1 decay, Blue-Sterbenz and

Dafermos-Rodnianski t−3/2 decay Luk
I Schwarzschild: t−3−2l for spherical modes,

Kronthaler(radial l = 0), Donninger-Schlag-Soffer (all
modes l > 0)

I Kerr: first decay results by Finster-Kamran-Smoller-Yau
I Kerr: t−1 decay, Dafermos-Rodnianski and Andersson-Blue
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The main result: Take 1

Theorem (T. ’09, Metcalfe-T.-Tohaneanu ’11)
t−1(|t − r| + 1)−2 local decay for scalar waves in Schwarzschild, Kerr
with small angular momentum, and small perturbations thereof:

g − gK = εO(〈r〉−2), g − gK = εO(t−1−) near photon sphere



Set-up, the geometry at infinity
Equation:

(CP) (�g + V)u = 0, u|Σ0 = u0,
∂u
∂ν |Σ0

= u1

where g has smooth coefficients and geometry at infinity:

g = m + gsr + glr,

where m is the Minkowski metric, glr is a long range spherically
symmetric component, with SZ

rad(r−1) coefficients,

glr = glr,tt(r)dt2 + glr,tr(r)dtdr + glr,rr(r)dr2 + glr,ωω(r)r2dω2

and gsr is a short range component, with SZ(r−2) coefficients,

gsr = gsr,ttdt2 + 2gsr,tidtdxi + gsr,ijdxidxj

while V has the form

V = Vlr + Vsr, Vlr ∈ SZ(r−3)

Vector fields Z = (∂α,Ω = xi∂j − xj∂i,S = t∂t + x∂x).



Set-up: the local geometry

Case A: Minkowski-like.
Domain D = R3

×R+, foliation Σt = R3
× {t},

(i) The surfaces Σt are space-like.

Case B: Black hole. (e.g. Schwarzschild with R0 < 2M
Domain D = R3/B(0,R0) ×R+, foliation Σt = R3/B(0,R0) × {t},

(i) The surfaces Σt are space-like.
(ii) The lateral boundary S(0,R0) ×R+ is outgoing space-like.
(e.g. Schwarzschild with R0 < 2M, small perturbations thereof)

Case C: Exterior problem.
Domain D = R3/B(0,R0) ×R+, foliation Σt = R3/B(0,R0) × {t},

(i) The surfaces Σt are space-like.
(iii) The lateral boundary S(0,R0) ×R+ is time-like, with

Dirichlet or Neuman boundary condition.



The main result: Take 2

Theorem (T’09)
Assume Case A, Case B or Case C. Suppose that the evolution (CP)
has the following properties:
I uniform forward energy bounds.
I weak local energy decay estimates.
I stationary local energy decay estimates.

Then in normalized coordinates the solution u satisfies the bounds

|u(t, x)| .
1

〈t〉〈t − |x|〉2
‖∇u(0)‖Hm

|∂tu(t, x)| .
1

〈t〉〈t − |x|〉3
‖∇u(0)‖Hm

|∂xu(t, x)| .
1

〈r〉〈t − |x|〉3
‖∇u(0)‖Hm



Normalized coordinates
Motivation: Fix the geometry of null cones.
General form of the metric g:

g = m + glr + gsr,

glr = long range spherically symmetric, with Srad(r−1)
coefficients,

glr = glr,tt(r)dt2 + glr,tr(r)dtdr + glr,rr(r)dr2 + glr,ωω(r)r2dω2

Normal form:
glr = glr,ωω(r)r2dω2

Tools:
I Conformal transformations.
I Changes of coordinates t→ t + O(log r), r→ r + O(log r).

Example: the Regge-Wheeler coordinates in
Schwarzschild/Kerr space-times



Energy bounds
Definition: The evolution (CP) is forward bounded if the
following estimates hold:

‖∇u(t1)‖Hk ≤ ck‖∇u(t0)‖Hk , t1 > t0 ≥ 0, k ≥ 0

Difficulty in Kerr: The positivity of the conserved ∂t energy
fails near the event horizon (ergosphere).
Redeeming feature = red shift: exponential energy decay near
bicharacteristics along the event horizon.

Theorem (Dafermos-Rodnianski ’07)
Uniform energy bounds for Schwarzchild and Kerr with small
angular momentum (and a larger class of small perturbations of
Schwarzschild).
Alternate view: Uniform energy bounds are a side effect of
local energy decay.
Earlier work by Laba-Soffer, Blue-Soffer, Twainy,
Finster-Smoller, Finster-Kamran-Smoller-Yau



The linear wave equation:local energy decay

�φ = 0 in Rn+1

Local energy decay (also known as Morawetz estimates):

‖∇x,tφ(x, t)‖L2(R×BR) . R
1
2 ‖∇x,tφ(x, 0)‖L2

Heuristics: A speed 1 wave spends at most O(R) time inside BR.
Morawetz’s proof uses the positive commutator method. If P
and Q are selfadjoint, respectively skewadjoint operators then

2<〈Pφ,Qφ〉 = 〈[Q,P]φ,φ〉

Apply this with

P = �, Q = ∂r +
n − 1

2r
.

to obtain

‖r−
1
2 /∇φ(x, t)‖L2 + ‖φ(0, t)‖L2 . ‖∇x,tφ(x, 0)‖L2 , n = 3



The local energy norms
At the L2 level we set

‖u‖LE = sup
k
‖〈r〉−

1
2 u‖L2(R×Ak), Ak = {|x| ≈ 2k

} ×R

We also define its H1 counterpart, as well as the dual norm

‖u‖LE1 = ‖∇u‖LE + ‖〈r〉−1u‖LE ‖f ‖LE∗ =
∑

k

‖〈r〉
1
2 f ‖L2(R×Ak)

Sharp formulation of local energy decay:

(LE) ‖u‖LE1 . ‖�u‖LE∗ + ‖∇u(0)‖L2

Theorem (Metcalfe-T 07)
(LE) holds for small S(r−ε) perturbations of the Minkowski metric.
Extensive work on this, e.g by Strauss, Keel-Smith-Sogge,
Burq-Planchon-Stalker-Tahvildar-Zadeh, Metcalfe-Sogge, etc.



Local energy decay in geometries with trapping
Example: Schwarzschild space-time, with trapped set = all null
geodesics tangent to the photon sphere r = 3M.

Redeeming feature: hyperbolic flow around trapped null
geodesics.

Heuristics: frequency λ waves will stay localized up to time
logλ (Ehrenfest time) near the trapped set, then disperse.

Consequence: | logλ|
1
2 loss in (LE) at frequency λ on trapped

set.

Theorem
Weak local energy decay holds for Schwarzschild, also for Kerr with
small angular momentum.
Schwarzschild space-time: work by Laba-Soffer, Blue-Soffer,
Blue-Sterbenz, Dafermos-Rodnianski and
Marzuola-Metcalfe-T.-Tohaneanu.
Kerr space time: T.-Tohaneanu (also related work by
Dafermos-Rodnianski and Andersson-Blue)



Stationary local energy decay

Definition:

(SLE) ‖u‖LE1[t0,t1] . ‖�u‖LE∗+‖∇u(t0)‖L2 +‖∇u(t1)‖L2 +‖∂tu‖LE

(LE) =⇒ (SLE), but (WLE) 6=⇒ (SLE)

Example: Kerr waves with ∂tu = 0. Then (SLE) is elliptic
outside the ergosphere but not inside !

Theorem (Metcalfe-T.-Tohaneanu ’11)
Weak local energy decay holds for small perturbations of
Schwarzschild, g = gS + εO(r−1).



Proof of the main theorem

Klainerman’s vector field method, vector fields:

Z = (∂α,Ω = xi∂j − xj∂i,S = t∂t + x∂x)

Weak local energy decay + commuting with vector fields:

‖Zαu‖LE1 . ‖∇u(0)‖Hm , |α| � m

It remains to show that

|u(t, x)| .
1

〈t〉〈t − |x|〉2
‖u.m‖LE1

where
u.m = {uα}|α≤m



Two step iteration
Step 1: Improved bounds in region U.

�uα = Qsru≤α+2

I Use fundamental solution for �
I Use Cauchy-Schwarz
I Elliptic estimate for ∇uα in terms

of uα and Suα.
Step 2: Improved bounds in region R.
I Stationary local energy decay
I Sobolev embeddings
I Elliptic estimate for ∇uα in terms

of uα and Suα.



Maxwell equations
A - electromagnetic potential, F = dA -electromagnetic field

dF = 0, ∇
iFij = 0

Kerr space-time and perturbations thereof:
Energy estimate:

‖F(t)‖L2 . ‖F(0)‖L2

Local energy decay:

‖F‖LEK . ‖F(0)‖L2

Pointwise decay (conjectured by Penrose)[peeling estimates]:

|F(L̄, e)| .
1

〈t〉〈t − |x|〉2

|F(L̄,L)| + |F(e, e)| .
1

〈t〉2〈t − |x|〉

|F(L, e)| .
1
〈t〉3


	Local energy decay

