Price’s law on Black Hole Spacetimes

Daniel Tataru

University of California, Berkeley

Bertinoro, September 2011



» Daniel Tataru. Local decay of waves on asymptotically flat
stationary space-times. arXiv:0910.5290., to appear,
American Journal of Mathematics

» Jason Metcalfe, Daniel Tataru and Mihai Tohaneanu Price’s
Law on Nonstationary Spacetimes arXiv:1104.5437

» Jason Metcalfe, Jacob Sterbenz, Daniel Tataru and Mihai
Tohaneanu Local decay of electromagnetic waves on
asymptotically flat space-times. in preparation






Vacuum Einstein Equations

Rij=0

» cosmological constant A = 0
» System of nonlinear wave equations

> 10 equations for 10 unknowns g;;



Vacuum Einstein Equations

R;j =0

» cosmological constant A = 0

\4

System of nonlinear wave equations

v

10 equations for 10 unknowns g;;

v

4 relations between equations ViR =0 =
6 independent equations

v

4 degrees of (gauge) freedom = choice of coordinates



The Minkowski space-time (1907)

-mathematical setting of
special relativity

M=RxR3

ds® = —dr* + dx% + dx% + dxg



The Schwarzschild space time (1915)
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The Kerr space time (1963)

» rotating axisymmetric black hole
» parametrized by mass M and angular momentum aM
» Kerr(M,a=0) = Schwarzschild(M)

In polar Boyer-Lindquist coordinates

Je = _A—azsinzﬂdt2+ 4aMr sin? 6dtd<p+—dr
p? p?
2 4 42\2 _ g2A gin2
+ " +a) Za Asin”0 sin® 0d¢?* + p>d6?
p
with

A =7*=2Mr +a?, p2=r2+a2c0526.



The stability question

Theorem (Christodoulou-Klainerman "90)

The Minkowski space-time is nonlinearly stable as a solution to the
vacuum Einstein equation.

Open Problem
Are the Schwarzschild/Kerr solutions stable ?



The stability question

Theorem (Christodoulou-Klainerman "90)
The Minkowski space-time is nonlinearly stable as a solution to the
vacuum Einstein equation.

Open Problem
Are the Schwarzschild/Kerr solutions stable ?

Open Problem
Are the Schwarzschild/Kerr solutions linearly stable ?



A hierarchy of equations:
1. Scalar waves:

§PVaVgp =0
2. Maxwell’s equations (spin 1)

gV, VgV, =0,

» 4 equations for 4 unknowns (electromagnetic potential),
> one relation between equations = 3 independent
equations + 1 degree of freedom

3. Linearized gravity (spin 2)
8P VaVphys = 288" Ryoaltug
» 10 equations for 10 unknowns

> 4 relations between equations = 6 independent
equations + 4 degrees of freedom



A hierarchy of equations:
1. Scalar waves: ... this talk ...

PV, Vg =0
2. Maxwell’s equations (spin 1) ... work in progress ...
gV, VgV, =0,

» 4 equations for 4 unknowns (electromagnetic potential),
> one relation between equations = 3 independent
equations + 1 degree of freedom

3. Linearized gravity (spin 2)... not too distant future ...
8P VaVphys = 288" Ryoaltug
» 10 equations for 10 unknowns

» 4 relations between equations = 6 independent
equations + 4 degrees of freedom



» Separation of variables for scalar waves in Kerr: Carter '67

» Maxwell/linearized gravity: partial uncoupling/separation
of variables in Kerr: Teukolsky 73
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» Separation of variables for scalar waves in Kerr: Carter '67

» Maxwell/linearized gravity: partial uncoupling/separation
of variables in Kerr: Teukolsky 73

S.Chandraseckar
The Mathematical Theory of Black Holes "85, p.497:

“The analysis is addressed to the problem of [linearized]
gravitational perturbations of the Kerr space-time .... In the
Newman-Penrose formalism ... we have to solve for ... fifty real
quantities. For the solution we have .... seventy-six real
equations. The solutions must be consistent with ten degrees of
gauge freedom ...”



Linear wave decay in flat space

Du(t/ x) = OI u(OI x) = MO(X)/ atu(ol X) = ul(x)l o= a%_Ax

nice localized initial data (ug, u1)

3
Conserved energy: E(u) = f IVu(t, x)[> + [du(t, x)*dx
R

u=0
finite zpeed of propagation



Flat space with localized potential

ou(t, x) = V(x)u(t, x),

u(0,x) = up(x), Ju(0,x) = uy(x)

with nice, small, compactly supported V.
Local exponential decay (Morawetz, Lax 70’s):

=0
finite speed of propagation



Flat space with polynomial potential

ou(t, x) = V(x)u(t, x), u(0,x) = up(x), (0, x) = uq(x)

V(x)| < e(r)™

Direct iteration:

-t Tl ki Ry

=0
finite speed of propagation




Linear wave decay in Kerr/Schwarzschild

Near infinity: g = m + Oyq(1/7) + O(1/7?), V ~ 173,

Q><

=30

photon sphere

%

7

Trapped light rays in a compact set:

» Along the event horizon

» Along the photon sphere



Linear wave decay in Kerr/Schwarzschild

Near infinity: g = m + Oyq(1/7) + O(1/7?), V ~ 173,
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Trapped light rays in a compact set:
» Along the event horizon
» red shift = exponential decay

» Along the photon sphere



Linear wave decay in Kerr/Schwarzschild

Near infinity: g = m + Oyq(1/7) + O(1/7?), V ~ 173,

Q><
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Trapped light rays in a compact set:

\4

\4

\4

v

Along the event horizon
red shift = exponential decay
Along the photon sphere

Uncertainty principle +
hyperbolic instability



R. Price '74 Heuristics for =3 local decay for scalar waves in
Schwarzschild. (Price’s Law)

Further work:



R. Price '74 Heuristics for =3 local decay for scalar waves in
Schwarzschild. (Price’s Law)

Further work:

>

>

»

Schwarzschild/Kerr heuristics: Ching-Leung-Suen-Young
Schwarzschild uniform boundedness: Wald, Kay-Wald

Schwarzschild +~! decay, Blue-Sterbenz and
Dafermos-Rodnianski =%/ decay Luk

Schwarzschild: 32 for spherical modes,
Kronthaler(radial / = 0), Donninger-Schlag-Soffer (all
modes [ > 0)

Kerr: first decay results by Finster-Kamran-Smoller-Yau

Kerr: +~! decay, Dafermos-Rodnianski and Andersson-Blue



The main result: Take 1

Theorem (T. ’09, Metcalfe-T.-Tohaneanu "11)
t=(It — r| + 1)72 local decay for scalar waves in Schwarzschild, Kerr
with small angular momentum, and small perturbations thereof:

g — gk = €O((N73), g — gk = €O(t™ ') near photon sphere

=0
finite apeed of propagation

event horizon




Set-up, the geometry at infinity
Equation:
(CpP) (@g + V)u =0, Uz, = U, 8_u =1
oz,

where ¢ has smooth coefficients and geometry at infinity:

g=m+ Qs + &lrs

where m is the Minkowski metric, g, is a long range spherically
symmetric component, with Si d(r‘l) coefficients,

S = glr,tt(r)dt2 + glr,tr(r)dtdr + glr,rr(r)dr2 + glr,ww(r)erwz
and g, is a short range component, with S%(r2) coefficients,

Qor = gsr,ttdtz + 28 1dtdx; + gop ijdxidx;
while V has the form
V=V,+ Vs, V€ S2(r7?)
Vector fields Z = (dy, Q = x;0; — xj0;, S = td; + x0y),



Set-up: the local geometry

Case A: Minkowski-like.
Domain D = R3 x R*, foliation X; = R3 x {f},

(i) The surfaces X; are space-like.

Case B: Black hole. (e.g. Schwarzschild with Ry < 2M

Domain D = R3/B(0, Ry) x R*, foliation ¥; = IR3/B(0, Ro) X {t},
(i) The surfaces X; are space-like.

(ii) The lateral boundary S(0, Ro) X R* is outgoing space-like.

(e.g. Schwarzschild with Ry < 2M, small perturbations thereof)

Case C: Exterior problem.
Domain D = IR3/B(0, Ry) x R*, foliation ¥; = IR3/B(0, Ro) X {t},
(i) The surfaces X; are space-like.
(iii) The lateral boundary S(0, Ro) X R™ is time-like, with
Dirichlet or Neuman boundary condition.



The main result: Take 2

Theorem (T°09)
Assume Case A, Case B or Case C. Suppose that the evolution (CP)
has the following properties:
» uniform forward enerqy bounds.
» weak local enerqy decay estimates.
> stationary local enerqy decay estimates.
Then in normalized coordinates the solution u satisfies the bounds

lu(t, x)| < IVu(0)|

_
(Xt = 1x)?

|0su(t, x)| < IVu(O)l[

__1
(£t = )3

|9xu(t, x)| < V(O

__1
(Xt = Ixl)®



Normalized coordinates

Motivation: Fix the geometry of null cones.
General form of the metric g:

§=m+ gy + &srs

g1 = long range spherically symmetric, with Sraa(r™)
coefficients,

8y = glr,tt(r)dtz + glr,tr(r)dtdr + glr,rr(r)dr2 + glr,ww(r)rzda)z

Normal form:
Q= glr,a,a,(r)VZda)2
Tools:
» Conformal transformations.
» Changes of coordinates t — t + O(logr), r — r + O(logr).

Example: the Regge-Wheeler coordinates in
Schwarzschild/Kerr space-times



Energy bounds

Definition: The evolution (CP) is forward bounded if the
following estimates hold:

IVut)llge < cillVu(to)llg, t1>t>20, k=0

Difficulty in Kerr: The positivity of the conserved d; energy
fails near the event horizon (ergosphere).

Redeeming feature = red shift: exponential energy decay near
bicharacteristics along the event horizon.

Theorem (Dafermos-Rodnianski "07)

Uniform energy bounds for Schwarzchild and Kerr with small
angular momentum (and a larger class of small perturbations of
Schwarzschild).

Alternate view: Uniform energy bounds are a side effect of
local energy decay.

Earlier work by Laba-Soffer, Blue-Soffer, Twainy,
Finster-Smoller, Finster-Kamran-Smoller-Yau



The linear wave equation:local energy decay

op=0  inR™!

Local energy decay (also known as Morawetz estimates):

1
Vit (x, Dllr2(rup) S R2IVaep(x, O)ll12

Heuristics: A speed 1 wave spends at most O(R) time inside Bg.
Morawetz'’s proof uses the positive commutator method. If P
and Q are selfadjoint, respectively skewadjoint operators then

2R(Pp, Q) = ([Q, Plp, )
Apply this with

n—1

P=n0, =0
a Q=0+ P

to obtain

12V, Dz + 160, D2 < Ve, Oll2,  n=3



The local energy norms
At the L? level we set

1
lullee = sup [Kr) " 2ullzresy,  Ax = (Il ~ 2 X R
k

We also define its H! counterpart, as well as the dual norm

- 1
lullppr = IVulle + I ulie Wfllee = Z K2 fllr2 R
k

Sharp formulation of local energy decay:

(LE)  llullger < [1Bullee: + [[Vu(O)ll2

Theorem (Metcalfe-T 07)
(LE) holds for small S(r~¢) perturbations of the Minkowski metric.

Extensive work on this, e.g by Strauss, Keel-Smith-Sogge,
Burg-Planchon-Stalker-Tahvildar-Zadeh, Metcalfe-Sogge, etc.



Local energy decay in geometries with trapping
Example: Schwarzschild space-time, with trapped set = all null
geodesics tangent to the photon sphere r = 3M.

Redeeming feature: hyperbolic flow around trapped null
geodesics.

Heuristics: frequency A waves will stay localized up to time
log A (Ehrenfest time) near the trapped set, then disperse.

Consequence: |log Al loss in (LE) at frequency A on trapped
set.

Theorem
Weak local energy decay holds for Schwarzschild, also for Kerr with
small angular momentum.

Schwarzschild space-time: work by Laba-Soffer, Blue-Soffer,
Blue-Sterbenz, Dafermos-Rodnianski and
Marzuola-Metcalfe-T.-Tohaneanu.

Kerr space time: T.-Tohaneanu (also related work by
Dafermos-Rodnianski and Andersson-Blue)



Stationary local energy decay

Definition:
(SLE) el ey b S NIOUllLE +IIVu(to)ll2 + I V(i) +ll0sullLe

(LE) = (SLE), but (WLE) == (SLE)

Example: Kerr waves with dyu = 0. Then (SLE) is elliptic
outside the ergosphere but not inside !

Theorem (Metcalfe-T.-Tohaneanu "11)
Weak local energy decay holds for small perturbations of
Schwarzschild, g = gs + €eO(r™Y).



Proof of the main theorem

Klainerman’s vector field method, vector fields:
Z = (da, Q = xi0j — xj0;, S = td; + xy)
Weak local energy decay + commuting with vector fields:
1Z%ullppr < [IVuO)lle, ol <m

It remains to show that

1
lu(t, x)| < m”usm”wl

where

Usm = {ua}lszm



Two step iteration

T

Step 1: Improved bounds in region U.

Ouy = eruSa+2

» Use fundamental solution for O
» Use Cauchy-Schwarz

» Elliptic estimate for Vu, in terms
of u, and Su,.

Step 2: Improved bounds in region R.
» Stationary local energy decay
» Sobolev embeddings

» Elliptic estimate for Vu, in terms
of u, and Su,.



Maxwell equations
A - electromagnetic potential, F = dA -electromagnetic field
dF=0, VF;=0

Kerr space-time and perturbations thereof:
Energy estimate:

IE@llz2 < IF(0)Ir2
Local energy decay:
IFllEc < [IF(O)l]r2
Pointwise decay (conjectured by Penrose)[peeling estimates]:
1
(Bt = Ixl)?
1
(Ot~ 1)

IF(L, )l <
IF(L, L)l + |F(e, e)l <

1



	Local energy decay

