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Abstract

In this paper we analyze, mainly in a �nitary setting, the consis-
tency properties of fuzzy possibilities, interpreting them as instances
of upper previsions and applying the basic notions of avoiding sure
loss and coherence from the theory of imprecise probabilities. It en-
sues that fuzzy possibilities always avoid sure loss, but satisfy the
stronger coherence condition only in a special case. Their natural
extension, i.e. their least�committal correction to a coherent upper
prevision, is determined. The same analysis is then performed when
min is replaced by a T�norm (or seminorm) in the de�nition of fuzzy
possibility, showing that the consistency properties and also the nat-
ural extension remain the same. Some �closure� properties are also
discussed, which are guaranteed to hold if the T�norm is continuous,
and are satis�ed by (ordinary) possibilities too.

Keywords: fuzzy events, fuzzy possibilities, upper previsions, impre-
cise probabilities.

1 Introduction

Real world decisions often happen to be taken about facts which are not
quite well speci�ed. Consider, for instance, an investor who decides to buy
(or to sell) a �nancial asset at a certain price because he is told that, very
likely, the asset will guarantee (or will not guarantee) a good yield in one
year's time.

We pinpoint three facts about this example:

(a) the sentence S, �the asset will guarantee a good yield in one year's
time�, does not represent an event, because of its linguistic indetermi-
nacy, due to the word �good �;
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(b) the uncertainty evaluation of S is quite rough: S appears to be very
likely ;

(c) in spite of the intrinsic vagueness of points (a) and (b), the investor
may be willing to pay a (non vague, but) certain price to buy the
asset.

Since decisional situations similar to the investor example do occur in
practice, it is important to study some modelisation which may reasonably
closely interpret them.

Fuzzy set theory provides a conceptual framework for (a): given a par-
tition (or universe of discourse) Ω (i.e. a set of pairwise disjoint events,
whose union is the sure event), a map F : Ω→[0, 1] measures the degree
of compatibility of each element of Ω with the concept represented by S.
Clearly Ω should be related to S, usually because its elements are described
by propositions of (classical) logic which solve in alternative ways the inde-
terminacy in S. In our example, one such proposition could be �the asset
guarantees an annual gain strictly between 3% and 4% of its buying price�.
The map F identi�es the fuzzy event S, and is also commonly called fuzzy
event. We shall often follow this convention too.

If further a (normal) possibility distribution π is given on Ω, a way of
tackling (b) is to measure the uncertainty of S (or F ) by the fuzzy possibility
Πf de�ned, following Zadeh [24], as

Πf (F ) = sup
ω∈Ω

{
min{π(ω), F (ω)}

}
. (1.1)

As for point (c), fuzzy set theory does not relate Πf (F ) with the asset
buying or selling price, not explaining if and how a given value of Πf (F )
determines it, or more generally the investor's behavior.

Behavioral interpretations of uncertainty evaluations are on the con-
trary well-developed in the theory of imprecise probabilities [16], where the
consistency notions of avoiding sure loss (weaker) and coherence (stronger)
are applied to upper (and lower) previsions. We shall say more about this
approach in section 2.

One link between the two theories is the fact that when F ∈ {0, 1},
F is the membership function (or indicator) of an (ordinary) event in the
powerset P(Ω) of Ω, and Πf (F ) = Π(F ) is a possibility � mathematically, a
supremum preserving function. A possibility Π is a special instance of upper
prevision, and is coherent if and only if its restriction on Ω, the possibility
distribution π = Π|Ω, is normal, which means supω∈Ω{π(ω)} = 1 [4, 17].
Normal possibilities have several interesting properties within the theory of
imprecise probabilities [17, 19, 10]; in particular we shall be concerned in
section 3 with some less known closure properties of theirs, i.e. such that
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they are obtained from properties of coherent upper previsions replacing
�coherent upper prevision� with �possibility� in their statement.

In this paper we analyze the behavioral interpretation of fuzzy possi-
bilities as upper previsions in a �nitary setting, i.e. referring to a �nite
partition Ω, showing that they avoid sure loss but are not coherent, apart
from a special case, and determining their natural extension, i.e. their least�
committal correction to a coherent upper prevision. This is done in section
4, while in section 5 we answer the same questions for a generalization of
(1.1), called fuzzy T�possibility, where min is replaced by a T�norm (or
more generally by a seminorm). Interestingly, it turns out that the gen-
eralization does not a�ect the natural extension, which remains the same
(cf. theorem 5.1 (c)). Also, fuzzy possibilities have the closure properties
of possibilities, and this fact seems to depend on the continuity of min. In
fact, we show that fuzzy T�possibilities have these properties when T is a
continuous norm, not necessarily otherwise.

The following interpretation of fuzzy possibilities and T�possibilities is
also relevant and will be exploited in the paper: since a map F : Ω→[0, 1]
corresponds, in probabilistic language, to a random variable (or gamble,
according to [16]), given a possibility Π on P(Ω) and considering the set F =
F(Ω) of all random variables in [0, 1], (1.1) or also any fuzzy T�possibility
are special types of extensions of Π onto F. More speci�cally, they are
extensions by means of fuzzy integrals. The question of extending coherent
upper probabilities using fuzzy integrals was tackled also in [2, 3]. We say
more on this in the later section 5.1. Section 6 contains concluding remarks.

2 Preliminaries

This section is mainly a concise presentation of some aspects of the theory
of imprecise probabilities. A much more extended discussion is in [16]; see
also [18] for a shorter on�line presentation.

Although the term �imprecise probabilities� is currently prevailing, the
theory in [16] actually deals with imprecise (upper or lower) previsions,
which are (imprecise) uncertainty evaluations for bounded random vari-
ables. An imprecise probability for an event A is a special case of upper
prevision where the random variable is the indicator of A, I(A), i.e. the
random variable which is 1 when A is true, 0 when A is false.

In [16], following and extending an approach which goes back to [7],
imprecise previsions are given a behavioral interpretation in terms of betting
schemes. The upper (lower) prevision P (X) (P (X)) an agent assigns to a
(bounded) random number X is his/her in�mum selling price (supremum
buying price) for X. Since selling X is equivalent to buying −X, we may
focus on upper previsions only (P (X) = −P (−X)).
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In other words, given P (X), the agent is willing to accept the bet which
(as he receives at least P (X) for selling X) guarantees him the uncertain
gain G(X) = P (X)−X, which might possibly be negative for some values
of X. It is however unreasonable that supG < 0, because this would cause
a sure loss to the agent, if the selling price is su�ciently close to P (X).
Further, if the agent �nds P (X) − X acceptable, and has a linear utility
scale, he should �nd s(P (X)−X) acceptable too, ∀ s ≥ 0.

A generalization of this idea leads to the consistency notion of avoiding
sure loss for an upper prevision P : D→R, where D is an arbitrary set of
bounded random numbers.

De�nition 2.1. Given P : D→R, P is an upper prevision that avoids sure
loss if and only if ∀ n ∈ N+, ∀ s1, . . . , sn ≥ 0, ∀ X1, . . . , Xn ∈ D, de�ning
G =

∑n
i=1 si(P (Xi)−Xi), supG ≥ 0.

De�nition 2.1 is a natural consistency requirement: if P does not avoid
sure loss, there exists a �nite set of bets, all individually acceptable, giving
an overall sure loss.

However, avoiding sure loss is too mild a consistency notion. For in-
stance, it does not necessarily require P (X) ≤ supX, nor does it require
monotonicity. Although special cases of previsions that avoid sure loss, with
certain additional properties, may correspond to interesting models [11], the
stronger coherence condition is usually preferable.

De�nition 2.2. Given P : D→R, P is a coherent upper prevision if
and only if ∀ n ∈ N, ∀ s0, . . . , sn ≥ 0, ∀ X0, . . . , Xn ∈ D, de�ning
G =

∑n
i=1 si(P (Xi)−Xi)− s0(P (X0)−X0), supG ≥ 0.

We refer to [16] for a behavioral interpretation of coherence. Possibility
measures, plausibility functions, 2-alternating probabilities are special cases
of coherent upper (probabilities, and hence) previsions [16, 17].

A coherent precise prevision P on D is a map P : D→R that satis�es
the modi�ed version of de�nition 2.1 where �s1, . . . , sn ≥ 0� is replaced by
�s1, . . . , sn ∈ R� [7], and is a special case of both upper and lower coherent
prevision [16].

Remark 2.1. Although its de�nition does not involve any probability dis-
tribution, the notion of precise prevision is equivalent to that of expectation
(a proof may be found in [6]).

In particular, we shall be concerned in theorem 4.1 with precise previ-
sions on the set F of all mappings from Ω = {ω1, . . . , ωk} into [0, 1]. Since,
for i = 1, . . . , k, the indicator function I(ωi) of ωi belongs to F, and its pre-
vision P (I(ωi)) is simply the probability of ωi, any precise prevision P on F

uniquely determines a probability on Ω, i.e. a probability vector (p1, . . . , pk)
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such that pi = P (I(ωi)) is the probability of ωi. Conversely, given a prob-
ability vector (p1, . . . , pk) on Ω, a coherent precise prevision P on F is de-
termined by computing, ∀ F ∈ F, its expectation E(F ) =

∑k
i=1 piF (ωi) and

putting P (F ) = E(F ). Clearly, P extends (p1, . . . , pk) on F, and is further
its unique extension on F to a coherent precise prevision.

Previsions that avoid sure loss and coherent previsions are characterized
indirectly using precise previsions:

Theorem 2.1. Given P : D→R,

(a) P is an upper prevision that avoids sure loss if and only if P dominates
a coherent precise prevision P on D, i.e. i� P (X) ≥ P (X), ∀ X ∈ D;

(b) (Upper envelope theorem) P is a coherent upper prevision if and only
if P (X) = supP∈M{P (X)}, ∀ X ∈ D, where M is some non-empty set of
coherent precise previsions (sup is attained). P is called the upper envelope
of M.

Another fundamental concept in the theory is that of natural extension,
de�ned in [16]. In our framework, it is su�cient to recall that the natural
extension E on D of an upper prevision which avoids sure loss on D (is
always �nite and) is its least-committal correction to a coherent upper pre-
vision on D. This follows from (c) in the next theorem, which collects some
properties of the natural extension to be used later.

Theorem 2.2. Given P : D→R, suppose that P avoids sure loss and let
M∗ be the set of all coherent precise probabilities dominated by P on D.
Then

(a) the natural extension E of P is given by E(X) = maxP∈M∗{P (X)},
∀ X ∈ D, and M∗(P ) = M∗(E);
(b) P is coherent if and only if P = E;

(c) if P
∗
is a coherent upper prevision dominated by P , then P

∗(X) ≤
E(X), ∀ X ∈ D.

Note in particular that (a) is a characterization of the natural extension
in [16], but can be taken as its de�nition in our framework.

3 Closure properties of possibilities

We recall that given a (not necessarily �nite) partition Ω, Π : P(Ω)→[0, 1]
is a possibility (measure) if there exists a function π : Ω→[0, 1] (called
possibility distribution) such that

Π(A) = sup
ω∈A

{π(ω)}, ∀A ∈ P(Ω) (3.1)
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(assuming Π(∅) = 0); hence Π is a supremum preserving function. Further,
Π is normal if and only if supω∈Ω{π(ω)} = 1. In the sequel we shall consider
normal possibilities only.

Possibility measures have been studied in a number of di�erent theories,
in particular fuzzy set theory (some general references include [8] and [20]),
and, more recently, imprecise probability theory.

Within the theory of imprecise probabilities, a possibility is viewed as
an instance of upper prevision, and is coherent if and only if it is normal
[4, 17]; non�normal possibilities incur sure loss, as is easy to verify.

Although a possibility is a rather special case of upper prevision, when
viewed as upper previsions possibilities have several interesting features,
investigated in [2, 3, 4, 10, 17, 19].

In particular, we shall be concerned in this section with a further aspect
of possibilities, that is their complying with a certain number of �closure�
properties. This means properties of coherent upper previsions which hold
also when replacing �coherent upper prevision� with �possibility� in their
statement. For instance, an upper envelope of possibilities is a coherent
upper prevision, by a general result in [16] about upper envelopes of coher-
ent upper previsions (and hence of possibilities), but it is also a possibil-
ity by the next proposition. The subsequent propositions concern uniform
and pointwise convergence of sequences of possibilities. One motivation for
studying such properties is that, as we shall see in later sections, they are to
a large extent preserved when extending possibilities to fuzzy possibilities
and fuzzy T�possibilities.

Proposition 3.1. Let {Πγ}γ∈Γ be a set of possibility measures on P(Ω).
Its upper envelope Π∗, de�ned by Π∗(A) = supγ∈Γ{Πγ(A)},∀ A ∈ P(Ω), is
a possibility measure on P(Ω).

Proof. Follows easily from supremum preserving properties of possibility
measures, cf. (3.1). �

Proposition 3.2. Let {Πn}n∈N+ be a sequence of possibility measures on
P(Ω), where Ω is not necessarily �nite, that converges uniformly to a func-
tion Π. Then Π is a possibility measure.

Proof. We prove �rst that the limit function π of the sequence {πn} (πn

is the possibility distribution of Πn) is a possibility distribution. In fact,
since 0 ≤ πn(ω) ≤ 1, ∀ n ∈ N+, π is non�negative and supω∈Ω{π(ω)} ≤ 1.
We show that actually supω∈Ω{π(ω)} = 1. Since the convergence of {πn}
is uniform,

∀ ε > 0,∃ n such that ∀ n ≥ n, sup
ω∈Ω

∣∣πn(ω)− π(ω)
∣∣ < ε (3.2)
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Therefore the following inequalities hold for n ≥ n (suprema are performed
over all ω ∈ Ω)

ε > sup
∣∣πn(ω)− π(ω)

∣∣ ≥ sup
{
πn(ω)− π(ω)

}
≥ sup{πn(ω)} − sup{π(ω)},

from which sup{π(ω)} ≥ sup{πn(ω)} − ε = 1− ε. Summing up,

∀ε > 0, 1− ε < sup{π(ω)} ≤ 1, i.e. sup{π(ω)} = 1.

To complete the proof, we have to show that (3.1) holds. In fact,
Πn(A)→ supω∈A{π(ω)} and its convergence is uniform, because

sup
A∈P(Ω)

∣∣Πn(A)− sup
ω∈A

{π(ω)}
∣∣ = sup

A∈P(Ω)

∣∣ sup
ω∈A

{πn(ω)} − sup
ω∈A

{π(ω)}
∣∣

≤ sup
A∈P(Ω)

∣∣ sup
ω∈A

{πn(ω)− π(ω)}
∣∣ ≤ sup

A∈P(Ω)
sup
ω∈A

∣∣πn(ω)− π(ω)
∣∣

≤ sup
A∈P(Ω)

sup
ω∈Ω

∣∣πn(ω)− π(ω)
∣∣ ≤n≥n sup

A∈P(Ω)
ε = ε

where the last inequality follows from the uniform convergence of {πn} to
π, that is from (3.2).

On the other hand, from the theorem assumptions Πn(A)→ Π(A), ∀ A ∈
P(Ω). Hence, (3.1) follows from uniqueness of the limit. �

Proposition 3.3. (Pointwise convergence) Let {Πn}n∈N+ be a sequence of
possibility measures on P(Ω) which converges pointwise to a function Π on
P(Ω), i.e. Πn(A)→Π(A), ∀ A ∈ P(Ω).
Then Π is a possibility measure if Ω is �nite, while this is not necessarily
true when Ω is in�nite.

Proof. If Ω is �nite, the assumption follows from proposition 3.2, recalling
that uniform and pointwise convergence are then equivalent.

We give now an example where Ω is in�nite and Π is no possibility: let
Ω = {ω1, . . . , ωj , . . .} and consider the sequence of 0�1 valued possibility
distributions {πn}n∈N+ , where πn(ωj) = 1 if j = n, πn(ωj) = 0 if j 6= n.

The sequence of possibility measures {Πn} induced by {πn} converges
pointwise to a limit function Π which is no possibility, because (3.1) does
not hold. In fact 1 = Π(Ω) > supj∈N+{π(ωj)} = 0, where π = limn→∞ πn.�

To end this section, we note that possibilities are not closed with respect
to some other properties of coherent upper previsions. For instance, while a
convex combination of coherent upper previsions is a coherent upper previ-
sion [16], it is easy to �nd examples of convex combinations of possibilities
which are not possibilities.
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4 Fuzzy possibilities as upper previsions

In this section we investigate the consistency properties of fuzzy possibilities
as imprecise previsions. Recall from section 1 that F is the set of all maps
F from a given partition Ω into [0, 1]. Moreover, whenever F ∈ {0, 1}, F
is the indicator function of some event A in the power set of Ω, and (1.1)
reduces to the possibility of A, Π(A), hence to a coherent upper prevision
(probability) for A. It ensues that a fuzzy possibility may be interpreted
as (an extension of) an upper prevision. Its consistency properties are
investigated in section 4.1, where Ω is a �nite partition. This assumption
does not necessarily hold in section 4.2, where we study closure properties
of fuzzy possibilities.

4.1 Fuzzy possibilities, coherence, and natural extension

Since Ω = {ω1, . . . , ωk} in this section, (1.1) reduces to

Πf (F ) = max
ω∈Ω

{
min{π(ω), F (ω)}

}
. (4.1)

The basic result for analyzing consistency of Πf is the following theorem,
which characterizes the set of (coherent) precise previsions dominated by
Πf .

Theorem 4.1. Let Πf be a fuzzy possibility, de�ned by (4.1). De�ne

IΠ = {i ∈ {1, . . . , k} | πi = 1}. (4.2)

The set M(Πf ) of coherent precise previsions dominated by Πf on F is
characterized as follows:

M(Πf ) =
{
P | P (I(ωi)) > 0 ⇔ i ∈ IΠ

}
. (4.3)

Proof. We preliminarily recall (cf. Remark 2.1) that a (coherent) precise
prevision P on F is uniquely identi�ed by a probability vector (p1, . . . , pk)
on Ω, so that we can write pi = P (I(ωi)).

Given this, consider P such that pi = P (I(ωi)) > 0 if and only if i ∈ IΠ

(there are such precise previsions, because normality of π guarantees that
there exists j ∈ {1, . . . , k} such that π(ωj) = 1, i.e. IΠ is non-empty).

We show that P is dominated by Πf (F ), and therefore belongs to
M(Πf ). In fact, ∀ i ∈ IΠ, min{πi, F (ωi)} = F (ωi), hence Πf (F ) ≥
maxIΠ{F (ωi)}. It ensues that, ∀ F ∈ F,

P (F ) =
k∑

i=1

piF (ωi) =
∑
IΠ

piF (ωi) ≤
∑
IΠ

piΠf (F ) = Πf (F ).
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Conversely, let P be a precise prevision such that, for some j, pj = P (I(ωj)) >
0 and j /∈ IΠ. Then P does not belong to M(Πf ).

To see this, suppose for notational ease that π(ω1) = 1, π(ω2) = π2 <
1, and p2 > 0. Consider F ∈ F such that F (ω2) = 1 and F (ωi) =
π2 for i 6= 2. Since min{π(ω1), F (ω1)} = min{π(ω2), F (ω2)} = π2 and
min{π(ωi), F (ωi)} ≤ π2 for i > 2, we obtain Πf (F ) = π2. Then

P (F ) =
k∑

i=1

piF (ωi) = p2 +
∑
i6=2

piπ2 = p2 + π2(1− p2)

= p2(1− π2) + π2 > π2 = Πf (F ).

We may thus state that the set M(Πf ) is characterized by (4.3). �

Corollary 4.2. If π is unimodal, the cardinality of M(Πf ) is one.

We shall also need the following de�nition, before turning to consistency
properties of Πf .

De�nition 4.1. A fuzzy possibility Πf is termed non�comparative if and
only if it is generated by a {0, 1}�valued possibility distribution, is termed
comparative otherwise.

Proposition 4.3. Let Πf be a fuzzy possibility. Then Πf avoids sure loss.
Moreover, Πf is coherent if and only if it is non�comparative.

Proof. It was shown in the proof of Theorem 4.1 that M(Πf ) is non�empty.
Therefore Πf avoids sure loss by theorem 2.1 (a).

To prove the remaining part of the theorem, we prove (equivalently, by
theorem 2.1 (b)) that Πf is the upper envelope of the set M(Πf ) if and only
if it is non�comparative.

Let Πf be non�comparative. Then Πf (F ) = maxi∈IΠ{F (ωi)}.
Now let F ∈ F, and suppose that Πf (F ) = F (ωj). The precise prevision

P ∗ generated by the probability vector (p1, . . . , pk) with pj = 1, pi = 0 for
i 6= j (belongs to M(Πf ) and) is such that P ∗(F ) = F (ωj) = Πf (F ).
Clearly, any other prevision in M(Πf ) is dominated by Πf by theorem 4.1.
Therefore Πf is the upper envelope of M(Πf ).

Vice versa, let Πf be a comparative fuzzy possibility. Hence there exists
πj = π(ωj) such that 0 < πj < 1. Let 0 ≤ f < πj , and consider the
following F ∗ ∈ F:

F ∗(ωi) =


f if i ∈ IΠ

πj if i = j
0 otherwise
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Then Πf (F ∗) = πj > f , but if P is any precise prevision in M(Πf ),

P (F ∗) =
∑
i∈IΠ

piF
∗(ωi) =

∑
i∈IΠ

pif = f < πj = Πf (F ∗),

from which follows that Πf is not the upper envelope of M(Πf ) on F, hence
it is not coherent. �

Proposition 4.4. (Natural extension theorem) Let Πf : F→[0, 1] be a fuzzy
possibility on Ω. The natural extension of Πf on F is

EΠf
(F ) = max

i∈IΠ
{F (ωi)}, ∀ F ∈ F (4.4)

Proof. By theorem 2.2 (a) it is su�cient to show that EΠf
(F ) is the

upper envelope of the set M(Πf ). To do that, choose F ∈ F. Whatever is
P ∈ M(Πf ),

P (F ) =
∑
i∈IΠ

piF (ωi) ≤
∑
i∈IΠ

pi max
i∈IΠ

{F (ωi)} = max
i∈IΠ

{F (ωi)}.

Further, equality is achieved above for some P ∈ M(Πf ). In fact, let
maxi∈IΠ{F (ωi)} = F (ωj) and consider the precise prevision P ∗ generated
by the probability vector (p1, . . . , pk), where pj = 1, pi = 0 for i 6= j.

Then P ∗ belongs to M(Πf ), and P ∗(F ) =
∑

i∈IΠ
piF (ωi) = F (ωj). �

Comment. A fuzzy possibility is generally not coherent, but avoids sure
loss. Its natural extension E has a rather simple expression. Loosely speak-
ing, E is a sort of �defuzzi�cation�, as it takes account only of those events
in Ω which have possibility one (i.e., the most likely ones), and among them
chooses the one(s) most compatible with F (having the maximum F (·)).

4.2 Some properties of fuzzy possibilities

Fuzzy possibilities, although being generally not coherent, preserve however
some closure properties of possibilities, as shown in the following proposi-
tion.

Proposition 4.5. (a) Let PΓ = {Πf γ}γ∈Γ be a family of fuzzy possibili-

ties on F = F(Ω), where Ω is arbitrary. The upper envelope Πf
∗ of PΓ,

Πf
∗(F ) = supγ∈Γ{Πf γ(F )}, ∀ F ∈ F, is a fuzzy possibility.

(b) Let Ω be �nite and let {Πn
f}n∈N+ be a sequence of fuzzy possibilities on

F(Ω) which converges pointwise to Πf on F, i.e. Πn
f (F )→Πf (F ), ∀ F ∈ F.

Then Πf is a fuzzy possibility.
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Proof. We preliminarily observe that the restriction Πf |F0,1 of a fuzzy
possibility Πf to the set F0,1 of all binary (0�1 valued) F ∈ F is an ordinary
possibility on P(Ω).

Proof of (a). Since {Πf γ |F0,1}γ∈Γ is a family of ordinary possibility
measures, its upper envelope is a possibility by proposition 3.1. In particular
Πf

∗(ω) = π∗(ω) is a possibility distribution on Ω. Hence we have to prove
that

Πf
∗(F ) = sup

ω∈Ω

{
min{π∗(ω), F (ω)}

}
,∀ F ∈ F. (4.5)

We prove �rst that

sup
γ∈Γ

{
min{πγ(ω), F (ω)}

}
= min

{
sup
γ∈Γ

{πγ(ω)}, F (ω)
}
. (4.6)

To obtain (4.6), consider a monotone sequence πγn(ω) ↑ supγ∈Γ{πγ(ω)}.
Then we get, using the sequence's monotonicity at the second equality and
continuity of f(x, y) = min(x, y), f : R2→R, a well known real analysis
result (see, for instance, [12]), at the third equality:

sup
γ∈Γ

{
min{πγ(ω), F (ω)}

}
= sup

γn∈Γ

{
min{πγn(ω), F (ω)}

}
= lim

n→∞

{
min{πγn(ω), F (ω)}

}
= min

{
lim

n→∞
πγn(ω), F (ω)

}
= min

{
sup
γ∈Γ

{πγ(ω)}, F (ω)
}
.

Using also (4.6), we obtain then (4.5) as follows:

Πf
∗(F ) = sup

γ∈Γ
{Πf γ(F )} = sup

γ∈Γ
sup
ω∈Ω

{
min{πγ(ω), F (ω)}

}
= sup

ω∈Ω
sup
γ∈Γ

{
min{πγ(ω), F (ω)}

}
= sup

ω∈Ω

{
min{sup

γ∈Γ
{πγ(ω)}, F (ω)}

}
= sup

ω∈Ω

{
min{π∗(ω), F (ω)}

}
.

Proof of (b). Proposition 3.3 guarantees that, ∀ F ∈ F0,1, Πf |F0,1 =
limn→∞Πn

f |F0,1 is an ordinary possibility measure. Hence π = limn→∞ πn

is a possibility distribution on Ω. We have to show now that (4.1) holds for
Πf .

From continuity of minimum and the convergence assumption we get,
∀ ω ∈ Ω, min{πn(ω), F (ω)}→min{π(ω), F (ω)}, and using also continuity
of maximum

max
ω∈Ω

{
min{πn(ω), F (ω)}

}
→max

ω∈Ω

{
min{π(ω), F (ω)}

}
.
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It follows that:

Πn
f (F ) = maxω∈Ω

{
min{πn(ω), F (ω)}

}
↓ ↓

Πf (F ) maxω∈Ω

{
min{π(ω), F (ω)}

}
and uniqueness of the limit gives then (4.1). �

5 A generalization of fuzzy possibilities

It is natural in fuzzy set theory to replace the minimum operator with a
more general one, often a T-norm (see for instance [9, 22]). We shall do
that too, considering now a fuzzy T-possibility, de�ned by

ΠT (F ) = sup
ω∈Ω

{T (π(ω), F (ω))}, (5.1)

where T is a T-norm, and answering the same questions raised in section 4.
Again, we call non-comparative a fuzzy T-possibility generated by a {0, 1}
valued possibility distribution.

De�nition 5.1. We recall that a triangular norm or T�norm is a mapping
T : [0, 1]2→[0, 1] such that:
(a) ∀ x ∈ [0, 1], T (x, 1) = x (identity)
(b) ∀ x, y ∈ [0, 1], T (x, y) = T (y, x) (commutativity)
(c) ∀ x, y, z ∈ [0, 1], T (x, T (y, z)) = T (T (x, y), z) (associativity)
(d) ∀ x, y, z, w ∈ [0, 1], such that x ≤ z and y ≤ w, T (x, y) ≤ T (z, w)
(isotonicity or monotonicity),
while a T-seminorm [1] is a mapping S : [0, 1]2→[0, 1] satisfying (d) and
(a') ∀ x ∈ [0, 1], S(x, 1) = S(1, x) = x.
Clearly, every T�norm is also a T�seminorm. Further, it is easy to verify
that properties (a'), (d) imply
(e) ∀ x ∈ [0, 1], S(0, x) = S(x, 0) = 0.

Theorem 5.1. Let ΠT : F→[0, 1] be a fuzzy T-possibility on F = F(Ω),
where Ω = {ω1, . . . , ωk}. If ΠT is comparative, then:

(a) ΠT is not coherent
(b) ΠT avoids sure loss
(c) the natural extension EΠT

of ΠT is, ∀ F ∈ F,

EΠT
(F ) = max

i∈IΠ
{F (ωi)} = EΠf

(F ), (5.2)

where IΠ is de�ned in (4.2) and EΠf
is the natural extension of Πf , the

fuzzy T-possibility with T = min.
Further, if ΠT is non�comparative it is coherent.
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Proof. To prove (a), recall that the set T of all T-norms has a maxi-
mal and a minimal element, which means in our framework that ∀ T ∈
T,∀ω,∀(π(ω), F (ω)),

Z(π(ω), F (ω)) ≤ T (π(ω), F (ω)) ≤ min(π(ω), F (ω)), (5.3)

where Z is the drastic product de�ned by

Z(π(ω), F (ω)) =
{

min(π(ω), F (ω)) if max(π(ω), F (ω)) = 1
0 otherwise

(5.4)

We prove now that

EΠf
(F ) ≤ ΠZ(F ), (5.5)

whatever is the given possibility distribution π (ΠZ is the fuzzy T-possibility
where T is the drastic product Z).

In fact, putting IF =
{
i ∈ {1, . . . , k} | F (ωi) = 1

}
,

ΠZ(F ) = max
ω∈Ω

{
Z

(
π(ω), F (ω)

)}
= max

i∈IΠ∪IF

{
min

{
πi, F (ωi)

}}
. (5.6)

Using also proposition 4.4, we obtain now (5.5), ∀ F ∈ F:

EΠf
(F ) = max

i∈IΠ
{F (ωi)} = max

i∈IΠ

{
min{π(ωi), F (ωi)}

}
≤ max

i∈IΠ∪IF

{
min{π(ωi), F (ωi)}

}
= ΠZ(F ).

There exists F ∈ F which makes the inequality strict in (5.5). In fact, since
ΠZ is comparative there is ωj ∈ Ω such that 0 < π(ωj) < 1. Let F ∈ F

be de�ned by F (ωj) = 1, F (ωi) = 0, ∀ i 6= j. It is immediate to see that
ΠZ(F ) = π(ωj) > 0 = EΠf

(F ).
Apply now the maximum operator in (5.3) and use (5.5) to get

EΠf
(F ) ≤ ΠZ(F ) ≤ ΠT (F ) ≤ Πf (F ). (5.7)

These inequalities tell us that ΠT is dominated by Πf (F ), but domi-
nates � strictly at least for one F , as seen above � the natural extension of
Πf (F ). Therefore ΠT cannot be coherent: if it were so, this would contra-
dict theorem 2.2 (c), applied to the natural extension EΠf

(F ).

Proof of (b): ΠT dominates EΠf
, which (being coherent) avoids sure

loss and therefore dominates some coherent precise prevision P by theorem
2.1 (a); ΠT then dominates P and hence avoids sure loss, again by theorem
2.1 (a).
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Proof of (c): let M(ΠT ) (M(EΠf
), M(Πf )) be the set of coherent precise

previsions dominated by ΠT (by EΠf
, by Πf ). From (5.7) and theorem 2.2,

M(Πf ) = M(EΠf
) ⊆ M(ΠT ) ⊆ M(Πf ),

hence M(ΠT ) = M(Πf ), which means, applying again theorem 2.2, that
EΠT

(F ) = EΠf
(F ).

To complete the proof of the theorem, let now ΠT be non�comparative.
It is easy to see then that ΠZ(F ) = Πf (F ), ∀F ∈ F (for instance, using
(5.6)). Since applying the maximum operator over all ω ∈ Ω to the members
of (5.3) we get, ∀ F ∈ F,

ΠZ(F ) ≤ ΠT (F ) ≤ Πf (F ) (5.8)

(incidentally, note that (5.8) holds also for a comparative ΠT ), all T�norms
are equal to Πf in the non�comparative case. Coherence of ΠT follows then
from proposition 4.3. �

5.1 Discussion

There are several points which deserve some discussion at this stage.

(a) Generalization to fuzzy T�seminorms. Although we presented the
generalization (5.1) of (1.1) where min is replaced by a T�norm, theorem
5.1 still holds if min is more generally replaced by a T�seminorm (de�nition
5.1). In fact, the key inequalities (5.3) apply also when T (π(ω), F (ω)) is a
T�seminorm, as is easily veri�ed using (a') and (e) of de�nition 5.1.

Further, the inequalities (5.8) hold too, ∀ F ∈ F and for a given π. This
means that replacing min with a T�seminorm in (5.1) provides us with a
better (while still not coherent, in the comparative case) evaluation, in the
sense that it is closer to its least�committal coherent correction, the natural
extension (5.2). In this view, the drastic product is preferable among all
T�seminorms.

(b) Fuzzy T�possibilities as fuzzy integrals. A fuzzy T�possibility is a
way of extending a possibility (a special case of coherent upper probability)
from P(Ω) to F(Ω). A fuzzy T�possibility is also an instance of fuzzy
integral, as de�ned in [3] (generalizing Sugeno's original de�nition [15]; other
generalizations include those in [14] and [21]). According to this de�nition,
given a bounded measurable non-negative map X, X : Ω→R+, a map
T : R+ × R+→R+ satisfying (d) and (e) of de�nition 5.1 and a possibility
measure Π on P(Ω), the fuzzy integral of X with respect to Π is

(f)
∫

XdΠ = (f)
∫

Ω
XdΠ = sup

x≥0
{T (x,Π(X ≥ x))}. (5.9)
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When T is the algebraic product, (5.9) reduces to the Shilkret integral [13].
Under the assumptions of theorem 5.1,

(f)
∫

FdΠ = max
ω∈Ω

{T (π(ω), F (ω))}, (5.10)

as follows from results in [5] or, more directly, from [3], proof of eq. (10),
recalling that any T�norm on a �nite set is completely distributive with
respect to supremum. Extensions of coherent upper probabilities and of
possibilities using the fuzzy integral (5.9) are investigated in [2, 3], and
our work therefore relates closely to these papers. In particular, part (a)
of theorem 5.1 follows from general results in [2, 3]; however, our proof is
di�erent and is instrumental for determining the natural extension EΠT

, a
question which is not tackled in [2, 3].

We incidentally note also that the fact that when the given Π is non�
comparative all T�seminorms coincide is again in accordance with a more
general result in [2, 3], stating that when a fuzzy integral is coherent, it is
equal to the Shilkret integral.

(c) Properties of fuzzy T�possibilities. An arbitrary upper prevision
P which avoids sure loss but is not coherent may have some unpleasant
features, like lack of internality or of monotonicity. Fuzzy T�possibilities
avoid some of these shortcomings, in particular it is easy to verify that
∀ F ∈ F, ΠT (F ) ∈ [minF,max F ] (internality) and, using isotonicity of
T�(semi)norms, that if F1 ≤ F2 then ΠT (F1) ≤ ΠT (F2) (monotonicity).

As for the closure properties of fuzzy T�possibilities, they are not guar-
anteed for every T�norm, but continuity of T is a su�cient condition for
them to hold. This ensues from the next proposition and the subsequent
example.

Proposition 5.2. (a) Let PΓ = {ΠTγ}γ∈Γ be a given family of fuzzy T�
possibilities on F(Ω), where Ω is arbitrary. If T is continuous, the upper
envelope Π∗T of PΓ, Π∗T (F ) = supγ∈Γ{ΠTγ(F )},∀ F ∈ F, is a fuzzy T-
possibility.

(b) Let Ω be �nite and let {Πn
T }n∈N+ be a sequence of fuzzy T-possibilities on

F(Ω), which converges pointwise to a function ΠT on F, i.e. Πn
T (F )→ΠT (F ),

∀ F ∈ F. If T is continuous, ΠT is a fuzzy T-possibility.

Proof. The restriction ΠT |F0,1 of a fuzzy T�possibility ΠT to the set F0,1

of all 0-1 valued F ∈ F is just an ordinary possibility. In fact, let F ∈
F0,1. When F (ω) = 0, T (π(ω), F (ω)) = 0 by (e) in de�nition 5.1, when
F (ω) = 1, T (π(ω), F (ω)) = 1 by (a') in de�nition 5.1. Therefore ΠT (F ) =
maxω∈Ω{T (π(ω), F (ω))} = maxω∈A{π(ω)}, where A is the event in P(Ω)
made up of those ω such that F (ω) = 1 (if F ≡ 0, A = ∅ and ΠT (∅) = 0 is
assumed).
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Proof of (a). From what just noted above and proposition 3.1, π∗(ω) =
Π∗T |F0,1(ω), ∀ ω ∈ Ω, is a possibility (Π∗T |F0,1 = supγ∈Γ{ΠTγ |F0,1}). The
proof is then analogous to that of proposition 4.5 (a), using continuity of T
instead of continuity of min.

Proof of (b). Similarly to (a), note �rst that Πn
T |F0,1 is a possibility, hence

π(ω) = limn→∞Πn
T |F0,1(ω), ∀ ω ∈ Ω, is a possibility distribution by propo-

sition 3.3. The proof continues like that of proposition 4.5 (b) (min is
replaced by T ). �

Example 5.1. The T�norm Z (drastic product) recalled in (5.4) is clearly
not continuous. Let now Ω = {ω1, . . . , ωk}, and {ΠZn} be a sequence of
fuzzy Z�possibilities, generated by the following distributions:

πn(ωi) =
{

1, if i = 1
1− 1

n otherwise

Choose F ∈ F such that 0 < F (ω1) < maxi=1,...,k{F (ωi)} < 1. Then

ΠZn(F ) = max
ωi∈Ω

{
Z(πn(ωi), F (ωi))

}
= F (ω1),

and consequently ΠZ(F ) = limn→∞ΠZn(F ) = F (ω1).
From this, and since limn→∞ πn(ωi) = 1, ∀ ωi ∈ X,

ΠZ(F ) = F (ω1) < max
ωi∈Ω

{F (ωi)} = max
ωi∈Ω

{Z(π(ωi), F (ωi))}.

This implies that proposition 5.2 (b) does not hold for the T�norm Z.
Nor does 5.2 (a) hold for Z, as follows from

Π∗Z(F ) = sup
n∈N

max
ωi∈Ω

{
Z(πn(ωi), F (ωi))

}
= F (ω1)

< max
ωi∈Ω

{F (ωi)} = max
ωi∈Ω

{
Z(π(ωi), F (ωi))

}
.

6 Conclusions

Fuzzy possibilities may be seen as a way of extending ordinary possibilities
to upper previsions, and may therefore be interpreted as upper previsions
themselves. From this, it is natural to investigate their consistency prop-
erties within the well�established theory of imprecise probabilities (previ-
sions). This kind of analysis seems necessary if we wish to give a behavioural
explanation to the usage of tools from fuzzy set theory in a number of prac-
tical decision problems, like the one mentioned in the Introduction.

It turns out that fuzzy possibilities satisfy the weaker consistency re-
quirement of avoiding sure loss, but generally not the stronger coherence
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condition, hence they are a weakly consistent model in this framework.
However they preserve some closure properties of ordinary possibilities, and
it is possible to correct them to coherent evaluations using the natural ex-
tension, which we determine explicitly.

It is also natural to generalize fuzzy possibilities replacing min with a
T�(semi)norm in their de�nition. This does not alter the consistency prop-
erties, and the natural extension remains the same too, while it appears
that the closure properties hold when T is continuous, not necessarily oth-
erwise. Among all T�(semi)norms, the drastic product Z is the closest to
the natural extension, while min behaves in the opposite way. However we
saw that the closure properties do not hold for Z. Hence no T�(semi)norm
appears to be uniformly preferable, but any continuous one performs at
least as well as min.

Finally, when viewing fuzzy T�possibilities as instances of fuzzy inte-
grals, this paper may be seen as a further contribution to prior work on the
consistency of fuzzy integrals as imprecise previsions.

References

[1] G. de Cooman (1997), Possibility theory I: the measure� and integral�
theoretic groundwork, International Journal of General Systems 25, 291�323.

[2] G. de Cooman (2000), Integration in possibility theory, in Fuzzy Measures

and Integrals: Theory and Applications (M. Grabisch, T. Murofushi and M.
Sugeno eds.), 124�160, Physica�Verlag.

[3] G. de Cooman (2001), Integration and conditioning in numerical possibility
theory, Annals of Mathematics and Arti�cial Intelligence 32, 87�123.

[4] G. de Cooman, D. Aeyels (1999), Supremum preserving upper probabilities,
Information Sciences 118, 173�219.

[5] G. de Cooman, E. E. Kerre (1996), Possibility and necessity integrals, Fuzzy
Sets ans Systems 77, 207�227.

[6] L. Crisma (1990), Un approccio alla descrizione e valutazione dei numeri
aleatori, in Scritti in omaggio a Luciano Daboni, Pubbl. n. 2 del Dip. Mat.

Appl. �B. de Finetti�, Edizioni Lint, Trieste.

[7] B. de Finetti (1974), Theory of Probability, vol. I, Wiley, London.

[8] D. Dubois, H. Prade (1988), Possibility Theory, Plenum Press, NY, USA.

[9] Nguyen H. T., Walker E. A. (1998), A First Course in Fuzzy Logic, 2nd ed.,
Chapman & Hall.

[10] E. Miranda, G. de Cooman (2003), Epistemic indipendence in numerical pos-
sibility theory, International Journal of Approximate Reasoning 32, 23�42.

[11] R. Pelessoni, P. Vicig (2003), Convex imprecise previsions, Reliable Comput-

ing 9 (6), 465�485.



Fuzzy Possibilities as Upper Previsions 18

[12] W. Rudin (1976), Principles of Mathematical Analysis, 3rd ed., Mc-Graw�
Hill.

[13] N. Shilkret (1971), Maxitive measures and integration, Indag. Math., 33, 109-
116.

[14] F. Suarez Garcia, P. Gil Alvarez (1986), Two families of fuzzy integrals, Fuzzy
Sets and Systems 18, 67�81.

[15] M. Sugeno (1974), Theory of fuzzy integrals and its applications, Ph.D. Thesis,
Tokyo Institute of Technology, Japan.

[16] P. Walley (1991), Statistical Reasoning with Imprecise Probabilities, Chapman
and Hall, London.

[17] P. Walley (1996), Measures of uncertainty in expert systems, Arti�cial Intel-
ligence 83, 1�58.

[18] P. Walley (1997), Coherent upper and lower previsions, The Imprecise Prob-

abilities Project, available at http://www.sipta.org/ documentation/ up-
per_lower_prev/ upper_lower_prev.html.

[19] P. Walley, G. de Cooman (1999), Coherence of rules for de�ning conditional
possibility, International Journal of Approximate Reasoning 21, 63�107.

[20] Z. Wang, G. J. Klir (1992), Fuzzy Measure Theory, Plenum Press, NY, USA.

[21] S. Weber (1986), Two integrals and some modi�ed versions � critical remarks,
Fuzzy Sets and Systems 20, 97�105

[22] R. R. Yager, J. Fodor (1999), Fuzzy set�theoretic operators and quanti�ers, in
Fundamentals of Fuzzy Sets (D. Dubois and H. Prade eds.), Kluwer Academic
Publishers, 125�193.

[23] L. A. Zadeh (1968), Probability measures of fuzzy events, J. Math. Anal.

Appl. 23, 421�427.

[24] L. A. Zadeh (1978), Fuzzy sets as a basis for a theory of possibility, Fuzzy
Sets and Systems 1, 3�28.


