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Abstract. We explore the possibility of designing a constraint-based
algorithm for constructing subsets of DNA words satisfying given con-
straints (the so-called DNA word design problem). In this direction, we
use symbolic representation of sets of strings, and define a propagation
algorithm on these representations. Some preliminary results are pre-
sented, together with several open problems.
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1 Introduction

In the last ten years, a new computational paradigm emerged from a very un-
common place, i.e. wet labs of biologists. The fact that DNA contains all the
basic information necessary to build very complex living organisms convinced
Adlemann that it could also be used as a computational entity. In his milestone
paper of 1994 [1], he proposed a computational model based on very simple ma-
nipulations of DNA that can be performed in a wet lab. This model is Turing-
complete and bases its power on the massive parallelism achievable by using
DNA. Moreover, one of the basic operations performed is the hybridization of
complementary DNA strings. Specifically, DNA strings are oriented strings over
the alphabet Σ = {a, c, g, t}, where a-t and c-g are complementary letters. Two
of such strings are said to be complementary if they have the same length and if
one can be generated by reversing the other and complementing each of its let-
ters. Physically, complementary DNA strings can hybridize, i.e. they can attach
one to the other, forming the famous double helix. Actually, hybridization can
occur also between strings that are not perfect complements, but close to it. In
DNA computations, data is coded by short strings of DNA in such a way that
hybridizations occurring determine the output of the “algorithm” [8]. Therefore,
one of the main concerns is to avoid that “spurious” hybridizations occur, leading
straight to the so-called DNA word design problem.

DNA word design (cf. [7]) consists of identifying sets of DNA strings of a
given length, called DNA codes, satisfying some constraints, usually that two
of them have Hamming distance and reverse complement Hamming distance



greater than a certain threshold. Formally, given x, y ∈ Σn and letting yRC be
the reverse complement of y, the reverse complement Hamming distance between
x and y, dRC

H (x, y), is defined as the Hamming distance between x and yRC ,
dRC

H (x, y) = dH(x, yRC), where the Hamming distance is the usual one, counting
the number of positions where the two strings differ.

In particular, the main concern of DNA word design is to identify maximal set
of strings satisfying the above mentioned constraints. There is some theoretical
work [5] that gives upper and lower bounds to the dimensions of such codes, and
also some algorithms constructing such codes [10], that are based on stochastic
local search.

The aim of the ongoing work we are presenting here is to give a constraint-
based algorithm to build such sets of strings. We will tackle two different versions,
both the optimization problem, i.e. find the maximal code, and the constraint
satisfaction problem (CSP), i.e. find a set of a given size satisfying the con-
straints. At this stage of the work, we have made some working hypothesis that
simplify the problem. The main one replaces the reverse complement Hamming
distance by the simpler reverse Hamming distance. Given two strings x, y ∈ Σn

and indicating by yR the reverse of y, this new distance is simply defined as
dR

H(x, y) = dH(x, yR). A more detailed discussion of the properties of such dis-
tance can be found in [9]. Actually, this assumption is painless, as in [5] it is
showed that there is a (constructive) one to one correspondence between these
codes and the ones making use of the reverse complement distance.

The main problem we have to face, however, is related to the huge dimen-
sion of the search space into play. In fact, reasoning for simplicity with the
CSP version of the problem, if we are looking for a code of size m, then we
have m variables, whose domain is the space of all strings of length n, of size
|Σ|n = 4n. Therefore, not only the space of possible solutions has a dimension
of the order of 4nm (which for the reasonable values of n = 10 and m = 50 is
around 10300, a gigantic size!), but also there is the problem of finding a way
to (over)represent the feasible domains of the variables during the computation,
as direct memorization is out of discussion. To tackle this problem we use a
symbolic representation of these feasible sets of strings, pretty much in the line
of how boolean functions are represented in symbolic model checking. Though
these representations, which make use of direct acyclic graphs, can be expo-
nentially large, they seem to perform quite well in practice. In addition, they
automatically allow for an effective propagation algorithm that achieves global
consistency. In Section 2 we introduce in more detail such mechanisms.

Needless to say, the enormous dimension of the search space pushes for a
theoretical analysis of the problem in order to introduce as many constraints as
possible. Moreover, an efficient strategy is also needed to choose the branches of
the search tree during its exploration. The solution found so far are presented
in Section 3. Finally, in Section 4 we present some results and we discuss the
current weak points of this approach, outlining some possible solutions.



2 Symbolic Propagation

There are two versions of the DNA code design problem for strings of length
n: the optimization one, looking for maximal size codes, and the CSP, looking
for a code of fixed dimension m. Both these problems are parametrical w.r.t.
the minimum distance D we impose between two strings belonging to it. This
distance is

d(x, y) = min{dH(x, y), dR
H(x, y)}, (1)

i.e. the minimum between Hamming and reverse Hamming distance. In partic-
ular, in the CSP, we have m variables whose starting domain is the set Σn.

In the Introduction we mentioned that one of the main problems in attempt-
ing to use constraint-based methods for DNA code construction is the huge size
of the domain of each variable. Therefore, there is the problem of storing some-
how the feasible values that can be assigned to variables at every point of the
search tree. Moreover, we need a way to perform efficiently the propagation of
constraints introduced whenever a variable gets instantiated to an element of its
domain. These constraints are of the form d(X, s) ≥ D, where s is the value of
the newly instantiated variable.

The techniques we use to tackle both these problems are taken from sym-
bolic model checking [4]. In particular, we use a compact representation of set
of strings by means of a particular kind of direct acyclic graphs (DAG) that
resembles closely OBDD [3], and that will be called Generalized Decision Di-
agram (GDD). The very basic idea is that we can identify a set of strings S
with its characteristic function S = χS : Σn → {0, 1}. Then we build a rooted
DAG representing this function, where nodes are divided into two categories,
terminal and non-terminal. There are just two terminal nodes, one labeled with
0 and one labeled with 1. Every non-terminal, or internal, node is labeled by a
number from 1 to n. Every internal node has |Σ| = K edges, labeled by the K
different letters of the alphabet (K = 4 for DNA, but the following description
is general). Edges always go from nodes with label i to nodes with label j > i
or to terminal nodes. Moreover, there is only one node with label one, and it is
the root.
The main property of these graphs is that the concatenation of edge labels of a
path from the root to the terminal node 1 represent a string belonging to the set
S, i.e. evaluating its characteristic function to 1. Concatenating the label a ∈ Σ
of an edge exiting from a node with label i, correspond to assign a to the ith
letter of the string being constructed.3 On the other side, the labels of all paths
leading to node zero correspond exactly to strings not belonging to S.
A necessary request in order to make sense out of the previous definition is that
these GDD graphs must be in canonical form, where there are no redundant
nodes (with all edges pointing to the same node) and no duplicated nodes (two

3 We adopt the convention that if an edge goes from a node i to a node j > i, with
j− i > 1, all position in the string between i+1 and j−1 are set to a wild character
∗, so that a path corresponds more precisely to a string in the augmented alphabet
Σ ∪ {∗}.



nodes with the same label and with edges pointing to the same nodes). This form
is unique and can be computed efficiently. Proof and algorithm are a straight-
forward adaption of the classical ones in [3].
The crucial feature of these representations is that, though containing an ex-
ponential number of nodes in the worst case (w.r.t. the number of levels or of
different labels of internal nodes), they usually behave well, and have a small
and tractable size. Moreover, there exists an efficient algorithm for constructing
the GDD G representing the intersection of the sets accepted by two GDD G1

and G2, whose complexity is bounded by the product of the dimension of G1

and G2 (but can be made more efficient in practice by implementation tricks,
cf. [2]). This algorithm is also a straightforward adaption of that presented by
Bryant in [3] in the context of boolean functions.
In Figure 1 we show such a GDD for the set of binary strings of length 6 at
Hamming distance d ≥ 3 from the string 000000. In general, all GDD represent-
ing set of strings at distance (either Hamming or reverse Hamming) D or more
from a given string s have a shape similar to this GDD.

We use GDD for keeping track of the feasible domain of each non-instantiated
variable at each level of the search tree. Every time we choose a branch in the
search tree we instantiate a variable, that is to say, we add a string s to the
current code. For that string, we construct the GDD for the set of strings at
distance d(X, s) ≥ D. This GDD is constructed by intersecting the two GDD
representing the set of strings at Hamming distance at least D from s, and the
set of strings at reverse Hamming distance dR

H(X, s) ≥ D. Then this resulting
GDD is intersected with the GDD representing the feasible domain before the
branching. The outcome of this computation is a GDD representing exactly
the domain of the non-instantiated variables, given all the constraints (we have
constraints of the form d(X, Y ) ≥ D, for every variable X < Y ). Therefore, the
use of symbolic graphical representations for the the variable domains not only
allow a compact representation of exponentially big sets, but also, through the
intersection algorithm, achieves a propagation which is globally consistent.

The problem with GDD is that there is no guarantee that their size stays
small. In theory, some of them can have size exponential in n. Luckily, the ex-
perimental results run by combining together GDD representing constraints of
the form d(X, s) ≥ D show that these intersections behave well, and never ex-
plode combinatorially. In particular, the GDD corresponding to the constraints
introduced by the addition of a single string to the code all have the same, fixed,
size and shape.4 When we start combining these GDD together, to represent
the intersection of the corresponding sets, the size of the GDD product rises,
while the number of strings belonging to the intersection decreases. After com-
bining a certain number of basic GDD, dependant on the length of the strings,
the dimension of the intersection becomes sufficiently small in order to have a
compact representation. In every case, the dimension of the bigger GDD in this
process remain quite small. We conjecture that this depends on the fact that the

4 The complementary sets of Hamming spheres, for a fixed threshold, are all isomor-
phic.



intersection of complementary sets of Hamming spheres, all with same radius,
has a sufficiently high internal structure, and thus can be compressed efficiently.

Fig. 1. A generalized OBDD representing the set of binary strings at Hamming distance
d ≥ 3, from the string 000000. Note that or the binary alphabet, GDD are exactly
OBDD.

3 More Constraints and Heuristics

The code construction problem has many symmetries and, due to the big size of
the search space, we have to break as many as we can. First of all, each set S
can appear in all its |S|! permutations. To avoid this, we have to introduce the
lexicographical order between strings, and to impose the constraints Xi < Xj

for i < j.
In addition, given a code C, there are a lot of equivalent codes obtained by trans-
forming C using isometries of the string space, i.e. functions that are distance-
preserving. In the case of our distance (1), these transformations must preserve
the relation between conjugate indexes, i.e. couple of indexes whose sum is n+1
(for strings of length n). This is due to the fact that these couples of indexes are
connected by the reverse transformation.
To break these symmetries, we should introduce constraints guaranteeing that a
code C appears in just one possible way, i.e. forbidding all subsets C′ isometric to
C. However, the identification of such set of constraints is still an open problem.
What we do for now is fixing the minimum reverse Hamming distance of a word
in the code from itself, and then set the value of the first variable to the smallest
string in the lexicographical order with such a property. Moreover, if this mini-
mal distance is 2K (reverse Hamming distance is always even5), then we impose
5 This is very easy to see: consider, for simplicity, a string of even length, say 2n,

and write it uv, with |u| = |v|. Then dR
H(uv, uv) = dH(uv, vRuR) = dH(u, vR) +

dH(v, uR) = dH(u, vR) + dH(vR, u) = 2dH(u, vR).



the additional constraints dR
H(X, X) ≥ 2K, for all variables X. In this direction,

another interesting open question is if every maximal code C contains a palin-
dromic word, i.e. if the minimum self-reverse distance has to be always zero.
This seems plausible, as these strings are the less committing in terms of the
constraints they impose. In fact, for a palindromic word x, dH(x, y) = dR

H(x, y),
for each y ∈ Σn, hence the sets dH(x, y) ≥ D and dR

H(x, y) ≥ D coincide, and
their intersection has the biggest possible cardinality.
At the moment, we do not use a symbolic representation of these added con-
straints, so our propagation algorithm achieves only a local consistency w.r.t. all
constraints into play. Despite this, these constraints are exploited in the algo-
rithmic procedure used to select the next string in a branching point. In fact, to
choose a new word, we have to look at the paths terminating to node 1 in the
current GDD. This can be done efficiently by doing a depth-first-search traver-
sal of the tree that is the unfolding of the portion of the GDD containing these
paths. Essentially, these new constraints become heuristics to prune parts of this
tree during its exploration.

Another crucial point is the strategy used in the choice of the next word in
a branching point. In fact, we want to find quickly a good solution, in order to
make pruning effective. The pruning is executed if the size of the biggest code
found is greater than the sum of the dimension of the constructed partial code
and the dimension of the set of feasible strings (i.e. the dimension of the set
accepted by the GDD, which can be counted simply by traversing it).
The strategy we use for the selection of the next string is based on the observation
that in a code with minimum distance D, the minimum distance relative to most
of its words is also D. Therefore, we select new words first from the subset of
feasible strings at minimum distance from the partial code. Another interesting
open question is if limiting the branching to this subset still guarantees that an
optimal code will be eventually found.

4 Results and Future Work

We implemented our algorithm in C, and consequently run several tests. In par-
ticular, we tried to look for maximal codes of words of length between 4 and 10
in DNA alphabet, setting a time limit of one hour.
In all these cases, the algorithm finds very quickly a good solution, i.e. a code
of pretty high size. Unfortunately, in one hour it never finishes the exploration
of the search tree, even for strings of length 4. Moreover, it never finds a better
solution than the initial one, even if it discovers other codes of the same size.
Some results can be found in Table 1. Unfortunately, there is no literature about
code construction w.r.t. distance 1, so we cannot compare easily our method
with other approaches.

We also compared our program with CLP (FD) of SICStus Prolog for the
easier task of constructing Hamming codes. The results of the SICStus compu-
tations are taken from Dovier et alt. [6], and some comparisons can be found in



string length dist. threshold size of the solution found time

4 2 40 0,18 sec

4 3 7 0,03 sec

6 3 59 99,00 sec

6 4 19 0,12 sec

6 5 6 0,03 sec

8 4 113 16,19 sec

8 5 30 4,57 sec

8 6 10 2,47 sec

10 6 58 35,10 sec

10 7 19 52,20 sec

10 8 9 105,18 sec

Table 1. Size of the best code found and time needed to find it, for different string
lengths and thresholds for the simplified DNA word design problem.

Table 2. Here we can see that our engine runs around 50 times faster than the one
of SICStus Prolog, though it preserves the same pattern of performance: where
SICStus fails to find an answer in reasonable time, also our program suffers the
same problem.

Taking a closer look to the behaviour of the search, we discovered that the
main problem is that the pruning is not very effective. This means that the
algorithm has to go very deeply in the tree to realize that a branch cannot
contribute with a bigger code than the one found so far. Therefore, to create a
more powerful pruning procedure, we need to work out a more clever estimate
of the maximum code size, given a partial one.
In addition, the size of the actual search tree is too big to have any hope of
exploring it all. The only chance to reduce its size is to find other constraints
imposing the uniqueness of the maximal code. The combination of these new
constraints and of more powerful pruning heuristics may be able to shrink the

string distance size of existence of time in time in
length threshold the code a solution SICStus our engine

6 3 8 Y 0,0 0,0

6 3 9 N 562,49 0,5

8 5 4 Y 0,0 0,0

8 5 5 N 3,85 0,03

10 3 64 Y 5,71 0,22

10 5 8 Y 0,05 0,01

10 5 9 Y 668,00 14,40

Table 2. Comparison of the performances between SICStus Prolog and out engine for
the construction of Hamming codes.



portion of the tree to be visited to a small enough size. It is not clear, however,
if, even with such additions, the algorithm would finish the exploration in a
reasonable running time or if simply the task of using enumeration procedures
for solving code construction problems is hopeless.

Nevertheless, there is a different and promising direction which we are cur-
rently beginning to explore: we are abandoning the target of a complete explo-
ration of the search tree, and trying to integrate some stochastic ingredients
allowing to visit just a small portion of the space, characterized by having an
high probability of containing the optimal solution. Similarly, we could try to
mix the branch and bound schema with local probabilistic search procedures. In
this way, we may be able to create an algorithm giving good codes (even if not
necessarily the optimal ones) in a reasonable time.
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