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Introduction. We deal with DNA word design problem, i.e. the construc-
tion of codes of DNA strings under some biological combinatorial constraints.
The point of view taken here is that of channel coding theory, meaning that
we try to explain DNA coding by identifying a suitable channel and a suit-
able decoding mechanism. The coding theoretic framework used is based on
the rather general concept of distinguishability, as developed in [4]. In the
following, we fist give a brief overview of DNA word design and of the distin-
guishability framework, and then we focus on the definition and the analysis
of DNA channels. A provably equivalent point of view, based on possibilistic
channel, is underpinned in [1].

A short reminder on DNA word design. In the last ten years, a new
computational paradigm emerged from a very uncommon place, i.e. wet labs
of biologists. The fact that DNA contains all the basic information necessary
to build very complex living organisms convinced Adlemann that it could
also be used as a computational entity. In 1994 he proposed a computational
model based on very simple manipulations of DNA that can be performed in
a wet lab. This model is Turing-complete and bases its power on the massive
parallelism achievable by using DNA. Moreover, one of the basic operations
performed is the hybridization of complementary DNA strings. Specifically,
DNA strings are oriented strings over the alphabet Σ = {a, c, g, t}, where
a-t and c-g are complementary letters. Two such strings are said to be
complementary if they have the same length and if one can be generated
by reversing the other and complementing each of its letters. Physically,
complementary DNA strings can hybridize, i.e. they can attach one to the
other, forming the famous double helix. Actually, hybridization can occur
also between strings that are not perfect complements, but close to it. In
DNA computations, data is coded by short strings of DNA in such a way that
hybridizations occurring determine the output of the “algorithm”. Therefore,
one of the main concerns is to avoid that “spurious” hybridizations occur,
leading straight to the so-called DNA word design problem.
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DNA word design (cf. [2]) consists of identifying maximal sets of DNA
strings of a given length, called DNA codes, satisfying some constraints, usu-
ally related to distances between codewords.

A Framework for Channel Coding. We shortly revise the material of [4]
(which is actually rather more general). One considers n-length sequences
over the alphabet A = {a1, a2, . . . , aK}. To each ordered couple of sequences
x, y a non-negative number d(x, y) is assigned called their diversity. One
chooses a subset C ⊂ An called the code, whose sequences are called code-
words. One sends one such sequence through a noisy channel. The received
n-length sequence z ∈ An is decoded by minimum diversity, i.e. the decoder
gives back a codeword c such that d(c, z) be minimum; the underlying as-
sumption is that the higher the diversity, the less “likely” it is to occur (in a
very broad sense of the word “likely”, cf [4]). The distinguishability between
two sequences is defined as:

δ(x, y) = min
z

d(x, z) ∨ d(y, z)

(By the way, the distinguishability δ is always symmetric, even if the di-
versity d is not). The minimum distinguishability δC of the code C is the
minimum distinguishability between any two distinct codewords. The oper-
ational meaning of δC is given by the following reliability criterion:

Theorem 1 The minimum distinguishability δC is the lowest diversity which
is not always corrected when decoding by minimum diversity; diversities < δC
are always corrected.

The classical optimization problem of channel coding is maximizing its
size (which is the same as maximizing its transmission rate) subject to a
specified reliability constraint. In the case when the diversity is Hamming
distance the distinguishability is soon found to be [4]:

δH(x, y) =
⌈dH(x, y)

2

⌉
Since the distinguishability is a non-decreasing function f of the Hamming
distance, one can construct reliable codes with respect to reliability con-
straints dC ≥ λ expressed in terms of the minimum Hamming distance be-
tween distinct codewords dC (as one usually does in the Hamming case),
rather than constraints on distinguishability δC ≥ τ , as one may do in in full
generality; cf. again [4]. Actually, the constraints δC ≥ τ and dC ≥ f−1(τ)
are equivalent, with f−1(τ) equal to the smallest diversity λ for which
f(λ) = τ .
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The inverse problem of channel noise in DNA word design. DNA
word design is an “odd” form of coding used in molecular computation,
where, based on biological facts, one exhibits maximum-size code construc-
tions relative to constraints of the form ξ(x, y) ≥ λ for a suitable DNA string
distance ξ. An information-theoretic problem arises: what is the nature of
the biological channel one is implicitly envisaging, or, equivalently: what sort
of biological “noise” are we fighting against when we use these code construc-
tions? Thinking of the above arguments, we can re-formulate the question
as follows: can ξ(x, y) be interpreted as a “pseudo-distinguishability”, i.e.:
can one exhibit a distortion measure d(x, y) between inputs and outputs such
that the corresponding distinguishability function δ(x, y) is a non-trivial and
non-decreasing function of ξ(x, y)? We shall discuss two types of code con-
structions found in the literature: the answer will be positive in one case,
which is better justified also from the biological point of view, and negative
in the other.

We shall deal only with two DNA “distortions”1, which however are very
representative, the reverse Hamming distance and a variation thereof:

dR(x, y) and dH∧R(x, y) = dH(x, y) ∧ dR(x, y)

Here dH(x, y) is the usual Hamming distance, while the reverse Hamming
distance is dR(x, y) = dH(x, y∗), with y∗ mirror image of y. In practice, in the
case of dR, codewords in a good code should have a large reverse Hamming
distance, while they should have both a large Hamming distance and a large
reverse Hamming distance in the case of dH∧R. We recall that dH∧R(x, y)
is a pseudometric; one has dH∧R(x, y) = 0 when x = y or when x and y
are mirror images of each other. Nothing so tame happens in the case of dR,
which violates the triangle inequality.

Below we shall try to “explain” the corresponding DNA code construc-
tions by exhibiting a suitable possibilistic noisy channel and a suitable noise-
fighting decoder. To achieve this, let us begin by the “friendlier case”, and
let us compute the distinguishability δH∧R corresponding to the string dis-
tance dH∧R taken as the distortion between inputs and outputs. We decode
the output z by minimum distortion, and so we are implicitly assuming that
it is “unlikely” (i.e. possible only to a small degree) that z has both a large
Hamming distance and a large reverse Hamming distance from the codeword
c actually sent over the channel.

1DNA complementarity has been forgotten out of simplicity, since it does not really
change the problem, but makes notations and formulations heavier; cf. also [3]. In addition,
the constraint about self-hybridization can be easily dealt with by restricting the input
space to those sequences satisfying it.
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Theorem 2 Decode the output z by minimizing dH∧R(c, z), c ∈ C; the cor-

responding distinguishability function is: δH∧R(x, y) =
⌈

dH∧R(x,y)
2

⌉
.

This is exactly the same situation as found with usual Hamming distances
and the codes of algebraic coding. In practice, this means that a channel
based on the distortion dH∧R(x, z) and the corresponding “noise” quite ade-
quately “explain” the code constructions based on checking the pseudometric
dH∧R, as are those found in the literature.

Now, let us think of a DNA word design construction where one controls
only the minimum reverse Hamming distance between codewords. The sit-
uation is less friendly, because if we decide to decode by minimum reverse
Hamming distance, the corresponding distinguishability function turns out to
be a non-decreasing function of the usual Hamming distance, and not of the
reverse Hamming distance, as a simple computation shows. In other words,
against this sort of noise one would need the usual codes of coding theory,
and not the codes of DNA word design which we are trying to “explain”. So,
the following problem is relevant:
Problem: Exhibit a non-trivial distortion η(x, z) with distinguishability func-
tion Ξ(x, y) such as to be a non-decreasing function of the reverse Hamming
distance.
Unfortunately this problem has a negative answer (cf. [1]), meaning that,
at least within the distinguishability framework, ample as it may be, code
constructions based on checking reverse Hamming distances have no counter-
parts in terms of noisy channels and channel decoders; no distortion η(x, z)
exists which would adequately support those constructions.
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