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Abstract

We develop a formal framework to deal
with code constructions in a fuzzy set-
ting. Strings are modeled as fuzzy
sets and an adequate concept of dis-
tance is defined. Moreover, we study
fuzzy codebooks from the point of
view of their minimum distance. This
fuzzy framework is then used to model
the DNA word design problem, i.e.
the construction of particular codes of
DNA strings that are used in molecular
computation.

Keywords: Fuzzy codebooks, fuzzy
strings, DNA word design.

1 Introduction

In the last ten years, a new computational para-
digm emerged from a very uncommon place, i.e.
wet labs of biologists. The fact that DNA con-
tains all the basic information necessary to build
very complex living organisms convinced Adle-
mann that it could also be used as a computational
entity. In his milestone paper of 1994 [1], he pro-
posed a computational model based on very sim-
ple manipulations of DNA that can be performed
in a wet lab. This model is Turing-complete and
bases its power on the massive parallelism achiev-
able by using DNA. Moreover, one of the ba-
sic operations performed is the hybridization of
complementary DNA strings. Specifically, DNA
strings are oriented strings over the alphabetΣ =
{a, c, g, t}, wherea-t andc-g are complementary
letters. Two such strings are said to be comple-
mentary if they have the same length and if one

can be generated by reversing the other and com-
plementing each of its letters. Physically, comple-
mentary DNA strings can hybridize, i.e. they can
attach one to the other, forming the famous dou-
ble helix. Actually, hybridization can occur also
between strings that are not perfect complements,
but close to it. In DNA computations, data is
coded by short strings of DNA in such a way that
hybridizations occurring determine the output of
the “algorithm” [8]. Therefore, one of the main
concerns is to avoid that “spurious” hybridiza-
tions occur, leading straight to the so-calledDNA
word designproblem.

DNA word design (cf. [7, 3]) consists of identi-
fying sets of DNA strings of a given length, typi-
cally in a range from 10 to 20, calledDNA codes,
satisfying some constraints, usually related to dis-
tances between codewords, cf. next Section. In
particular, the main concern of DNA word design
is to identify maximal set of strings satisfying the
above mentioned constraints.

All the current approaches to DNA word design
deal with DNA strings as crisp objects. However,
from the point of view of the applications, DNA
computing above all, this assumption seems too
strong. In fact, computation with DNA, from a
coarse point of view, proceeds by creating many
copies of the designed strands, putting them in
a test tube, and letting them interact with each
other (essentially, hybridize). Then the result is
extracted by means of wet lab techniques. The
process of creating many copies of a DNA string
is not an error-free mechanism. Therefore, in the
test tube, we do not have thousands copies of the
same string, but actually a cloud of strands, (hope-
fully) close to the original one. As the error rate is



not so high, we do not expect to find strings very
different from the original one, and that is why
this fuzzy property of DNA words is always for-
got, as long as designed strings are far away from
each other. In our approach, instead, we want to
encapsulate this information in the code construc-
tion procedure, by relaxing the crisp requirement
on strings, and modeling them as fuzzy sets.

The first steps in this direction are presented here,
and consist in defining in a sound way the concept
of distance between fuzzy strings, the concept of
fuzzy codebook and its characterizing property,
i.e. minimum distance. We stress that the theo-
retic framework below applies to any codebook
and any string distance, but it is precisely a bi-
ological context which makes a “vague” (fuzzy)
description of codewords especially appropriate.

The paper is organized as follows. In Section 2
classical DNA word design is presented in more
detail. In Section 3 we introduce the desired no-
tion of fuzzy distance between strings, while in
Section 4 we comment on the concept of mini-
mum distance. Finally, in Section 5 we go back
to DNA word design, to see how it fits in our new
framework.

2 Crisp DNA Word Design: a Reminder

DNA word design focuses on the construction of
sets, or codes, of DNA strings satisfying certain
constraints. A detailed description, with emphasis
on the biological point of view, can be found in [3,
7].

We consider oriented strings built from DNA al-
phabet,Σ = {a, c, g, t}, of a fixed lengthn. Our
task is to identify a codeC ⊆ Σn such that all the
strings ofC are sufficiently “far away” from each
other. Here been distant means that the reverse
complementxRC of one stringx ∈ C hybridizes
just withx and not with other strings of the code.
In addition, we don’t want that different strings of
the code hybridize between themselves, and that
a string self-hybridizes.

To formalize the above intuitions, first we de-
fine the reverse complement operation. Given a
string x = x1 . . . xn, its reverse complement is
xRC = xC

n . . . xC
1 , where()̇C is the Watson Crick

complement, defined asaC = t, cC = g, gC = c

and tC = a. Note that this function is an invo-
lution. TheHamming distancedH(x, y) between
two stringsx andy is defined in the usual way as
the number of positions in whichx andy differ,
while thereverse complement Hamming distance
betweenx andy is dRC

H (x, y) = dH(x, yRC), i.e.
the Hamming distance betweenx and the reverse
complement ofy.

On a codebookC we impose that two different
strings must have Hamming distance and reverse
complement Hamming distance greater than a
certain threshold. The constraint on the Hamming
distance guarantees that the reverse complement
xRC of the stringx hybridized just withx (the
reverse complement operation is an isometry in
the spaceΣn, hencedH(xRC , yRC) = dH(x, y)).
The other constraint, instead, accounts for the
property that two strings of the code do not hy-
bridize between themselves. Self-hybridization is
avoided by puttingdRC

H (x, x) ≥ D, for a thresh-
old D, i.e. by restricting the choice ofx from a set
of strings sufficiently “non-palindromic”.

The constraints introduced give a combinatorial
formulation of the DNA code construction prob-
lem, which is very similar to the code construc-
tion of coding theory. In this light, there is some
theoretical work [4] that gives upper and lower
bounds to the dimensions of such codes. There
are also some algorithms for constructing these
codes, that are either based on stochastic local
search [12], or on a branch and bound method [2].

Several other constraints for DNA word design
can be found in literature, coming from thermo-
dynamical and biological considerations, cf. [3].
However, without loss of generality, we deal here
with a simplified version, using only the combi-
natorial constraints introduced above. Extensions
to more general settings are straightforward.

Incidentally, we observe that the parallel between
DNA code construction and coding theory gives
rise to interesting questions related to information
transmission and code corrections capabilities in
the contest od DNA computing. Considerations
in this sense can be found in [11].



3 Distances for Fuzzy Strings

Let a crisp distanced(x, y) ∈ {0, 1, . . . , n} be
given forn-length strings, e.g. quaternary strings
as needed in DNA word design. By theexten-
sion principle[5], the fuzzy extension ofd(x, y)
to fuzzy sequencesX andY (i.e. to fuzzy sets of
crisp sequences) is the fuzzy distanced(X, Y ),
which is a fuzzy quantity (a fuzzy integer). It is
defined by the corresponding degrees of member-
ship:

〈m ∈ d(X, Y )〉 =
maxx,y: d(x,y)=m 〈x, y ∈ X × Y 〉 (1)

Here and below angular brackets denote degree
of memberships, and so〈m ∈ d(X, Y )〉 is the
degree of membership of the integerm to the
fuzzy quantityd(X, Y ) seen as a fuzzy set over
{0, 1, . . . , n}; it answers the question: up to what
degree the distanced is equal tom? Recall that,
by interactivity, the degree of membership of a
couple to the corresponding Cartesian set, i.e.
〈x, y ∈ X × Y 〉, is the minimum of the degrees
of membership of the two coordinates, and so is
equal to 〈x ∈ X〉 ∧ 〈y ∈ Y 〉 (the wedge stands
for a minimum). A degree of membership is0 if
the corresponding maximization set is void.

After choosing a thresholdε, 0 ≤ ε ≤ 1, one
may give the following “conservative” definition1

so as to defuzzify the fuzzy quantityd(X, Y ):

d∗ε (X, Y ) = min [d(X, Y )]ε
= min {m : 〈m ∈ d(X, Y )〉 ≥ ε} (2)

with [d(X, Y )]ε equal to theε-cutof d(X, Y ).

Example 1. We take two binary triplesX
and Y , which are fuzzy, and taked equal
to the usual Hamming distance. Choose e.g.
X = (000, 1; 111, 1/2; 001, 1/3) and Y =
(001, 1; 101, 1/2), with self-explaining notation
(the triple000 crisply belongs toX, the triple111
belongs toX up to degree1/2, and so on). One
has:

〈0 ∈ d(X, Y )〉 = 1/3, 〈1 ∈ d(X, Y )〉 = 1, 〈2 ∈
d(X, Y )〉 = 1/2, 〈3 ∈ d(X, Y )〉 = 0,

1If the minimization set is void, which never happens if
the two fuzzy strings involved are constrained to benor-
mal [5], the minimum is set equal to the largest distance,
which in our case will ben.

and so d∗1/3(X, Y ) = 0, d∗1/2(X, Y ) = 1,
d∗1(X, Y ) = 1.

Choose Z quaternary, e.g. Z =
(atga, 1; atgt, 1/2), with reverse complement
Hamming distance. One has:

〈0, 1 ∈ d(Z,Z)〉 = 0, 〈2, 3 ∈ d(Z,Z)〉 = 1/2,
〈4 ∈ d(Z,Z)〉 = 1,

and sod∗1/2(Z,Z) = 2, d∗1(Z,Z) = 4.

Alternatively, to defuzzifyd(X, Y ) we may give
another equally conservative definition, recalling
how a distance2 between crisp sets is usually de-
fined, when a distance between its elements is
given. Now,ε-cuts [X × Y ]ε are crisp sets of
couplesx, y:

dε(X, Y ) = minx,y ∈ [X×Y ]ε
d(x, y) =

min〈x∈X〉∧〈y∈Y 〉≥ε d(x, y)
(3)

For computations Definition (3) is more con-
venient than the starred Definition (2). As
soon checked, in the example above one has
dε(X, Y ) = d∗ε (X, Y ) and dε(Z,Z) =
d∗ε (Z,Z): fortunately, this is no coincidence, as
follows from the Proposition below, which by the
way makes the starred notation useless:

Proposition 1.

dε(X, Y ) = d∗ε (X, Y )

Proof. Straightforward consequence of the
lemma in the section below, withd(X, Y ) instead
of f(X), and choosing min as an operator. �

Actually, given the generality of the lemma, one
might have “aggregated”m-values by any oper-
ator, e.g. an arithmetic average, rather than the
minimum. Our choice is just a first try, suggested
by the biological applications we have in mind.

3.1 Side Note: An “Abstract” Lemma

However obvious, the lemma below is quite con-
venient in many situations. In it we consider only

2Our “distances” are not necessarilymetric distances;
e.g. in the case of sets, as well known, the triangle inequality
fails to hold.



functionsf betweenfinitesets; however, general-
izations would be straightforward. Let

〈y ∈ f(X)〉 = max
x: f(x)=y

〈x ∈ X〉

define the fuzzy extensionY = f(X) of the
crisp functiony = f(x). Think of theε-cut:

[f(X)]ε = {y : 〈y ∈ f(X)〉 ≥ ε}

which of course is a crisp set ofy’s. Since requir-
ing max〈x ∈ X〉 ≥ ε is the same as requiring
that anx exists with 〈x ∈ X〉 ≥ ε, one has also:

[f(X)]ε = {y : ∃x ∈ Xε s.t. f(x) = y}

Let � be any operator, i.e. any function�, what-
ever its range, whose domain is made up of sets of
y’s (or multisets, i.e. sets with repeated elements,
or K-tuples). The two expressions for anε-cut
soon imply the equality below:

Lemma 1. ⊙
[f(X)]ε =

⊙
x∈Xε

f(x)

4 Minimum Distance for Fuzzy
Codebooks

Let a fuzzy codebookC be assigned through itsK
fuzzy codewordsC1, . . . , CK , in this order. In
the following c will denote a genericK-tuple of
(not necessarily distinct) crisp stringsc1, . . . , cK .
The (crisp) minimum distanceδ(c) for such aK-
tuple δ(c) is then well defined as the minimum
distance between codewordsci with distinct in-
dices:

δ(c) = mini6=j d(ci, cj) (4)

Of course, this quantity is zero whenever one has
ci = cj for i 6= j. Cf. e.g. [6] for basics on coding
theory and on the coding-theoretic significance of
the minimum distance.

Equally well defined is the degree of membership
〈c ∈ C〉 of the K-tuple c to the fuzzy code-
book C: actually, by just recalling the definition
of a fuzzy Cartesian power,〈c ∈ C〉 is equal to
mini 〈ci ∈ Ci〉. By the extension principle the

fuzzy minimum distance of the fuzzy codebookC
is then defined by:

〈m ∈ δ(C)〉 = max
c: δ(c)=m

〈c ∈ C〉

To defuzzify this (rather inconvenient) expres-
sion, once more we choose a thresholdε and once
more we aggregate crisp minimum distances in
the ε-cut δ(C)ε by a minimum; by so doing we
obtain theminimal minimum distanceof the fuzzy
codebookC, δ(C). The choice of the minimum
as an aggregator is the most conservative one: in
practice,whatever crisp codebook which is ex-
tracted from the fuzzy codebookC cut at levelε
has a (crisp) minimum distance≥ δε(C).

Using the abstract lemma and the definition of
crisp minimum distance, and observing that

Cε = [C1]ε × . . .× [CK ]ε
one has:

Proposition 2.

δε(C) =def min [δ(C)]ε = min
c: c∈Cε

δ(c)

With our conservative choice, an alternative and
meaningful expression is available forδε(C),
which usesdε(Ci, Cj) as defined in Section 2.
We recall that thelevelof a fuzzy set is the great-
est degree of membership of its elements; if the
codewords are allnormal, i.e. if their level is one,
the constraint in Proposition 3 is certainly met.

Proposition 3. Assume that all the fuzzy code-
wordsCi have level≥ ε. Then:

δε(C) = min
i6=j

dε(Ci, Cj)

Proof. Recalling (3) and the definition of the crisp
minimum distance (4), it will be enough to prove
that:

min
i6=j

min
ci,cj∈[Ci×Cj]ε

d(ci, cj) = min
c∈Cε

min
i6=j

d(ci, cj)

Just observe that, if the constraint is met (and
only in this case), one can “prolong” any couple
ci, cj in [Ci × Cj ]ε to a wholeK-tuple c such
that its degree of membership toC is still ≥ ε.
Consequently, the second of the four minima in
the equality can be replaced by a minimum over
c ∈ Cε; then just swap the first two minima. �



Example 2. Consider the following (rather
simple) fuzzy codebookC, made up of three fuzzy
binary strings of length 4:C = {C1, C2, C3},
with C1 = {0000, 1; 0001, 1/3; 0100, 1/2},
C2 = {1111, 1; 1011, 1/2; 1001, 1/6},
C3 = {0101, 1; 0111, 1/3; 0100, 1/3}. If
we use the Hamming distance, then the fuzzy
distances between these strings are:d(C1, C2) =
{0, 0; 1, 1/6; 2, 1/3; 3, 1/2; 4, 1}, d(C1, C3) =
{0, 1/3; 1, 1/2; 2, 1; 3, 1/3; 4, 0} and
d(C2, C3) = {0, 0; 1, 1/3; 2, 1; 3, 1/2; 4, 1/3}.
Starting from theε-cuts of these sets, using
Proposition 3, we can easily computeδ(C):
δ1/3(C) = 0, δ1/2(C) = 1 andδ1(C) = 2.

The constraint in the last proposition is unavoid-
able, else the first side can be strictly smaller
than the second side (or it they can be both un-
defined, if one chooses to leave undefined min-
ima over void sets). To see this, take e.g. three
codewords of length 1,X = (a, 1), Y = (b, 1),
Z = (c, 1/2), and chooseε = 1.

5 Fuzzy DNA Word Design:
Perspectives

In the introduction we noted that in real appli-
cations of DNA word design all the strings of a
DNA code are duplicated in several copies (on the
order of billions), and put in a test tube to per-
form the intended operations. As the duplication
process is error prone, we do not expect to have
just exact copies of the designed strings, but rather
a “cloud” of strings centered around the original
one. Therefore, a more realistic model can be ob-
tained by considering the DNA strings as fuzzy
rather than crisp. This decision implies that DNA
word design should be tackled by constructing a
fuzzy codebook.

In the following, we provide the details of a first
attempt in this direction, just after making explicit
some working hypothesis. The process of DNA
strand synthesis is usually described by means of
the observed frequency of errors, interpreted as a
probability. In particular, assumptions are made
on the independence of the occurrence of a tran-
scription error, hence we can assume that the de-
gree of membership depends only on the distance
from the central string. Formally, ifx ∈ Σn is
a DNA string, then we denote byF (x) the fuzzy

string defined by〈x ∈ F (x)〉 = 1 = µ0 and
〈y ∈ F (x)〉 = µk, with k = dH(x, y). Moreover,
theµi satisfy the relation1 = µ0 ≥ µ1 ≥ . . . ≥
µn ≥ 0. The concrete value of thoseµi may de-
pend on the particular synthesis mechanism used,
but we will comment more on this at the end of
the section.

The simple form of the fuzzy strings under con-
sideration allows us to give a close form for the
fuzzy distance and for its aggregatedε-cuts.

Proposition 4. Let x, y ∈ Σn, with dH(x, y) =
k. For eachi ∈ [0, n], let ki = d |k−i|

2 e. Then:

1. 〈i ∈ dH(F (x), F (y))〉 = µki
;

2. (dH)µi(F (x), F (y)) = max{k − 2i, 0}.

Proof. Point1. follows easily from the triangular
inequality of the metricdH . Supposei < k
(the casei > k is specular), and letxi, yi

be a pair of strings at distancei, then k =
dH(x, y) ≤ dH(x, xi) + dH(xi, yi) + dH(yi, y)
and sodH(x, xi) + dH(yi, y) ≥ k − i. To
maximize 〈xi ∈ F (x)〉 ∧ 〈yi ∈ F (y)〉, we
have to minimize the maximum ofdH(x, xi)
and dH(yi, y) (it follows from the monotonic
property of µi), and this is done by splitting
evenly the distance between two strings realizing
dH(x, xi) + dH(yi, y) = k − i. The value
obtained iski. Point 2. is soon derived from
1., observing that the minimum indexj, if any,
with degree of membership at leastµi is given by
k−j
2 = i. �

Now we have to introduce the reverse comple-
ment Hamming distance, and integrate it with the
Hamming distance. The first point is easily tack-
led by extending the reverse complement oper-
ation to fuzzy sets of the formF (x), using its
isometric property with respect to the Hamming
distance (dH(xRC , yRC) = dH(x, y)). Con-
cretely, we set[F (x)]RC = F (xRC), so that
dRC

H (F (x), F (y)) = dH(F (x), [F (y)]RC) =
dH(F (x), F (yRC)), reducing the computation of
the fuzzy reverse complement Hamming distance
to the computation of the Hamming one.

On the other hand, the simplest way to
combine together those two metrics is by
taking their minimum, i.e. by defining



d(x, y) = dH(x, y) ∧ dRC
H (x, y), and then

by computing the minimum distance of the
codebook with respect to this new distance
d. A simple manipulation of minima shows
that dε(F (x), F (y)) = (dH)ε(F (x), F (y)) ∧
(dH)ε(F (x), F (yRC)), which for ε = µi be-
comesdµi(F (x), F (y)) = max{d(x, y)− 2i, 0}.
Now we are ready to state the following lemma,
giving a simple expression for the minimum
distance of a fuzzy codebookC.

Lemma 2. Let C = {F (c1), . . . F (cm)} be a
fuzzy codebook w.r.t. distanced. Then:

δµk
(C) = min

i6=j
max{d(ci, cj)− 2k, 0}.

Consider the case where we fix a threshold,
and build a codeC such that the distance be-
tween crisp strings is above a thresholdD, i.e.
d(ci, cj) ≥ D for all ci 6= cj in C. It is not
restrictive to ask that such threshold is reached
by some pairs of strings, and under this hypoth-
esis, we have thatδµk

(C) = max{D − 2k, 0}.
This means that, if we fix as reliability threshold
any number greater thanµ1, than the fuzzy con-
struction coincides with the crisp one, but this is
no more true whenever the reliability threshold is
less or equal toµ1.

A little care must be taken in this approach, be-
cause we are not taking into account the self-
distance constraint. The distanced, in fact, is such
that d(x, x) = 0. However, self-distance is in a
way “crisp”: that’s why the corresponding con-
straint can be dealt considering as an input space
only sequences which are sufficiently “non palin-
dromic”, exactly as happens in the crisp case.

Let’s try now to give a numerical expression for
theµi that can be significative from a biological
point of view. In general, error frequencies in the
creation of DNA strands varies from105 to 108,
depending on the particular molecular machinery
used to do the job. If we assume that the error
level is105, than we have a probability of1/105

of committing a transcription error, and the proba-
bility of having committed exactly one error while
coping a string of lengthn can be approximated
by n/105. Hence, we can model theµ parameters
by settingµi = n/105i. For a string of length 20,
this means thatµ1 = 0.0005, hence the reliability
threshold above which classical and fuzzy code

construction coincide is very small. This fact, by
the way, confirms theoretically that the simplifi-
cations induced by the crisp constructions are safe
enough.

Finally, we note that implicitly, by talking only
about minimum distances, we have covered just
reliability andnotoptimal transmission speed, i.e.
optimalcode-rate. Clearly, in absence of further
constraints, optimal code constructions lead nec-
essarily tocrisp codebooks; not so, however, if
one has to require that codewords should have a
certain “degree of fuzziness” (cf. also [9]), which
might make sense from a biological point of view.
However, the first step in this direction is reason-
ing about the meaning of transmission and error
correction, in the biological context, and a soft
approach seems more adequate (cf. [11, 10]).
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