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Consider the following very familiar decision-theoretic situation: a listL is chosen
out of a (finite) input setX , and is communicated to an observer. Further, an input
objectx, sometimes called astate of nature, is chosen insideL . The observer cannot
observe directlyx, but only a “corrupted version” thereof,y say. He/she makes the
following decision: decide for the objectsd(y) in the listL which are “most similar” to
what he/she could observe, i.e. toy. Clearly, all this assumes thatsimilarity measures
σ(x,y) are given between input and output objects (between the states of nature and
the observables): we shall arrange these measures into asimilarity matrixΣ with rows
headed toX and columns headed to the (finite) output setY . The entries ofΣ are non-
negative real numbers; to avoid trivial situations, at least one entry is strictly positive.

In a coding-theoretic approach, as pursued in [3], the listL is called thecodebook,
andx andy are theinput codewordand theoutput word, respectively3; then the similar-
ity matrix would describe thenoisewhich affects the communication channel. It is in
coding theory, and more precisely in possibilistic coding theory and its application to
DNA word design [1], that the motivation for this work4 resides.

Some cases of special matrices follow, which fit into this general frame:

– Stochastic matrix: the sum of each row is equal to 1.
– Joint probability matrix: the sum of all entries is 1.
– Possibilistic transition matrix, or simplypossibility matrix: the maximum entry in

each row is 1.
– Joint possibility matrix: the maximum entry in the matrix is 1.

WhenΣ is a stochastic matrix (then similarities are conditional probabilities), the
decision-theoretic principle above is simplymaximum likelihood, while it is the bayesian

3 In coding theory, when|d(y)| ≥ 2 the decoder may either try to guess a single codeword inside
d(y), and by so doing increase the probability/possibility of anundetected error, or keepd(y)
as it is and declare adetected error.

4 What we need in [1] is a communication model which is as unassuming as possible, as we are
interested in “negative” results of the type: no noisy channel exists which would justify such
and such combinatorial DNA code construction. Since in the sequel we shall concentrate on
“singleton events” (elementary events, individual words), rather than compound events (sets
of words), we do not even have to specify how we should “aggregate” similarities to obtain
similarities between sets of input words and sets of output words. Cf. also the remarks on
compound events which conclude this extended abstract.



principle ofmaximum posterior probabilityin the case of joint probabilities. As for pos-
sibility matrices, whose entries are transition possibilities (conditional possibilities), the
reader is referred to [4] which deals with a coding-theoretic frame. One may envisage
also a “bayesian” possibilistic case, with matrices of joint possibilities whose overall
maximum is 1: in this case, each matrix entry is a joint possibility obtained by taking
the minimum of the “prior” possibility of the input and the conditional possibility of the
output given that input; cf. [2] where the underlying notion ofinteractivityis illustrated.

Assume thatΣ is altered toΣ′ without changing the orderings between entries. Op-
erationally, nothing would change from the point of view of the decisiond(y) made by
the observer, whatever the listL , whatever the input objectx ∈ L , and whatever the
output object observedy. We shall say in such a case thatΣ andΣ′ areequivalent; an
obvious and “limit” case of equivalence is when the two matrices areproportional. We
shall investigate properties which arestablewith respect to equivalences. We stress that
equivalence concerns only singletons (elementary events) and not an algebra of sets (of
compound events).

A problem arises, that of comparing therepresentational capacityor expressive
powerof these approaches, in the sense that on may or may not find equivalent matri-
ces. By just fitting in the suitable proportionality constant, one can prove the following
obvious facts: a criterion for a similarity matrix to be equivalent to a possibility matrix
is that the maximum similarity in each row is the same; a sufficient but not necessary
condition for a similarity matrix to be equivalent to a stochastic matrix is that each row
of the similarity matrix sums to the same number. However trivial, we shall stress these
facts in the theorem below; in particular, the theorem explains why in the sequel we
shall forget about joint probabilities or joint possibilities, and stick instead to similari-
ties: whenever one deals with a similarity matrix, one may well as well think that one is
dealing with joint possibilities or joint probabilities, after fitting in the suitable propor-
tionality constant. (Exhibiting possibility matrices which cannot be simulated by means
of equivalent stochastic matrices is quite easy; in the lemma below we state a necessary
condition.)

Theorem 1. The representational capacity of similarities, joint possibilities and joint
probabilities is the same. The representational capacity of conditional probabilities and
transition possibilities are incomparable; both are strictly less than the representational
capacity of similarities.

One may have “odd” similarity matrices, indeed. For example the minimum in rowa
might be strictly greater than the maximum in rowb, which would make the input object
b totally “useless”. In the sequel, we shall add constraints to the definition of similarity
matrices, so as to get rid of “strange” situations, and check how all this shrinks the
corresponding representational capacity.

Certain input objects (codewords, states of nature) in a similarity matrix may be
“redundant” in the sense of row domination: rowa is dominatedby rowb whenai ≤ bi .
General similarity matrices or even possibility matrices may freely have domination
between their rows, while stochastic matrices have it only in a limit case, since they
verify the obvious property: if rowa is dominated by rowb, then a = b. Actually,
stochastic matrices verify a stronger ordinal property, which involves domination for



rows afterre-ordering the row entries: in two rows of a similarity matrix there is an
inversionwhen, after re-ordering the rows with respect to the non-decreasing order,
say, there are two positionsi and j with ai < bi , while a j > b j . Now, two rows exhibit
no inversion iff a permutation of one of the two is dominated by the other.

Lemma 1. For a similarity matrix to be equivalent to a stochastic matrix, there must
be at least one inversion in each couple of rows, apart from couples of rows which are
equal up to a permutation of their entries. This condition is also sufficient for two-row
matrices.

(Proof omitted in this extended abstract.) When a matrix satisfies the condition as in
the lemma, for convenience’ sake we shall say that the matrix isregular; we stress that
regularity is a topological property which isstablewith respect to matrix equivalence.
The following three-line counter-example shows that this condition isnot sufficient to
have stochasticity up to an equivalence. Take the three-row similarity matrix

a a d d
b c c c
a c c d

with a < b < c < d; the three rows are already properly ordered. In rows 1 and 2 there
is an inversion in positions (columns) 1 and 3, in rows 1 and 3 there is an inversion
in positions 2 and 3, while in rows 2 and 3 there is an inversion in positions 1 and 4.
However, the linear programming problem which one has to solve (details omitted in
this extended abstract) is

a < b < c < d , 2a+2d = 1 , b+3c = 1 , a+2c+d = 1 ,

whose solution set is empty: actually, the last two equations (after replacinga+ d by
1/2, cf. the first equation) giveb = c = 1/4, while one should haveb < c. Assuming
d < 1 and adding an all-1 column shows that one can as well start from a possibility
matrix.

Theorem 2. The representational capacity of regular similarities (and so of regular
joint possibilities) strictly exceeds that of stochastic matrices. The representational ca-
pacity of regular transition possibilities and that of stochastic matrices are not compa-
rable; however, they are the same for two-row matrices.

All this leaves open the followingopen problem, at least when the number of states
of nature is at least 3:find a simple criterion to ensure that a similarity matrix is equiv-
alent to a stochastic matrix. Unfortunately, at this point we are only able to provide a
sufficient condition which ensures the equivalence, based on a suitable “geometry” of
inversions, as will be given in the final version.

Compound events.If one moves from singletons (individual words) to compound events
(sets of words), one would have to specify a suitableaggregator, which is the sum
in the case of probabilities and the maximum for possibilities, and would presumably
be an “abstract” aggregator in the general case of similarities. By the way, restricting



ourselves to singletons, as we do below, makes it difficult to re-cycle classical results
on qualitative probabilities [3], which e.g. require that the intersection of conditioning
events is not void, unlike what happens when intersecting distinct singletons. Consid-
ering only singletons (elementary events, be they states of nature or codewords), is of
no consequence as far asdecoding(decision making) is concerned, since this depends
only on how similarities are ordered in the similarity matrix; however, it does matter
when it comes to evaluate theerror that the decoder might make, which is an additive
error of the form Prob(E|x) in the case of probabilities and a maxitive error of the form
Poss(E|x) in the case of possibilities, withE made up of several5 output objects (more
general aggregators might be used to evaluate the error in the case of similarities). In
other words, our concern here is only how decisions aremade, and not also how deci-
sions should beevaluated. If one wants a notion of equivalence such as to be significant
also for error evaluation, one should require that the ordering is preserved also for com-
pound events. This is definitely more assuming than above; e.g., it is quite easy to give
two-rows examples where an inversion is not enough to have equivalence in this strong
sense between a possibilistic and a stochastic matrix. Take the joint possibilities

a b b c
a a d d

with 0 < a < b < c < d = 1; there is an inversion e.g. in columns 2 and 3. ¿From the
second row one has 2a+ 2d = 1, and sob < d < 1/2; instead, from the first row one
hasa+ 2b+ c = 1 and so, after subtractingb, a+ b+ c = Prob(a,b,c) > 1/2 > d,
while max(a,b,c) = Poss(a,b,c) < d. Add an all-1 column if you want to start from a
possibilistic matrix.
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5 By the way, it is a moot point how to define terms of the form Poss(y|E) in the case of possi-
bilities, let alone in the “abstract” case of similarities.


