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Abstract
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1 Introduction

In this paper we are concerned with the existence of periodic, in particular subhar-
monic, solutions of the quasilinear ordinary differential equation

(V1 +u’2)/ — f(t,u). (1)

This equation, together with its N-dimensional counterpart

—diV(Vu/\/l + |Vu\2) =

plays a relevant role in various physical and geometrical questions, such as capillarity-
type problems, flux limited diffusion phenomena, prescribed mean curvature prob-
lems (see, e.g., [16, 22} [19]). The question of the existence of periodic solutions of
has received considerable attention in recent years: the existence of classical solu-
tions has been addressed in [2, 5], 13, 6] [7, 4], 23] by using topological methods, whereas
the existence of bounded variation solutions has been discussed in [26, 25, 27] by
using non-smooth critical point theory. The advisability of considering bounded
variation solutions, besides classical solutions, in order to have a complete picture
of the solvability patterns of , is already evident for the autonomous equation

(V1 ?) = )

Indeed, elementary phase-plane analysis and energy arguments, as in [20} 24} 28] [13],
show that any solution u, for which fou(t) f(&)d¢ exceeds somewhere the threshold
1, exhibits discontinuities and therefore cannot be a solution of in the classical
sense. The coexistence of classical and non-classical solutions of , according to the
terminology introduced in [9] 10, 24] 13} 29], is determined by the specific structure
of the curvature operator (u'/v/1+ u’Q)/, which behaves like the 2-Laplacian u”
near zero and like the 1-Laplacian (sgn(u’ )),at infinity. These considerations lead
us to introduce the following concept of periodic solution for equation that will
be considered throughout this paper.

Definition 1.1. Let 7 > 0 be fized. We say that a function u € BVio(R) is a
T-periodic solution of if u is T-periodic, f(-,u) € L*(0,7) and

)a T <DLL> D¢ s
/ H,Du ozt f E \pul ) Dl 1P?

T sgn(u(0h) — u(r)) ($(0Y) — p(r)) = /0 " f(t wypdt
(2)

holds for every ¢ € BVioc(R) such that |D¢|® is absolutely continuous with respect
to |Dul®.



As usual, for any v € BV (a,b), Dv = (Dv)*dt + (Dv)® is the Lebesgue decom-
position of the measure Dv in its absolutely continuous part (Dv)%dt, with density
function (Dv)®, and its singular part (Dv)® with respect to the Lebesgue measure
in R, |Dv| denotes the total variation of the measure Dv, |Dv| = |Dv|*dt + |Dv|*

is the Lebesgue decomposition of |Dv|, and |g”| is the density function of Dv with

respect to its total variation |Dv|.

It is immediate to verify that if u is a 7-periodic solution of ( . ) such that v €
I/Vl1 1(R) then it is a weak 7-periodic solution of ( . in the sense that

/O\/%dt /ftugbdt

for every ¢ € WH(0,7) with ¢(0) = ¢(r). This implies that u//\/1+u/? €

loc u'//1+4 w? is T-periodic and — (u//v/1 + u’2)l = f(t,u) a.e. in]0, 7[. Note
that a Weak T-periodic solution u of . is continuous, but may present a derivative
blow up. However, we have u' € C°([0, 7], [~00, +00]). Hence v’ satisfies the peri-
odicity conditions in an extended sense, i.e., with possibly u/(0) = /(1) = 400 or
v/ (0) = v/(7) = —oo. It is clear that, if u € C*(R), then u is a 7-periodic solution
of in the Carathéodory sense; if, in addition, f : R x R — R is continuous and
T-periodic in ¢, then w is a classical T-periodic solution of .

There exists a huge literature concerning the existence of periodic, specifically
subharmonic, solutions of the semilinear equation

—u = f(ta ’LL), (3)

where f : R x R — R is, say, Lipschitz continuous and T-periodic in t, for some
T > 0. We refer, e.g., to [11] for a rather exhaustive and updated bibliography on
this subject. Although various definitions exist, a subharmonic solution of is
usually intended to be a periodic solution of the equation having minimum period
m1 for some integer m > 2. If this last information is missing, a subharmonic
solution is at least required to be mT-periodic, but not T-periodic. In case the
solution is mT-periodic, but not jT-periodic, for any j = 1,2,...,m — 1, then it is
referred to as a subharmonic solution of order m. As a general rule in this context,
one tries to get as much information as possible about the minimality of the period.
In particular, in [I2] the existence of subharmonic solutions of has been proved
assuming that either f is superlinear at 0, i.e.,

t
lim flt,s) _ 0, (4)
s—0*% S
uniformly in ¢, or sublinear at infinity
t
im 8% (5)

s—+too S



uniformly in ¢. More precisely, it is shown in [I2] that condition , even assumed
only at 07, or at 0~, implies the existence of two sequences of arbitrarily small
subharmonic solutions having a prescribed number of zeroes and condition ({5)), even
assumed only at 400, or at —oo, implies the existence of two sequences of arbitrarily
large subharmonic solutions having a prescribed number of zeroes. The proof is
performed by a phase-plane analysis and relies on the Poincaré-Birkhoff fixed point
theorem; the nodal properties of the solutions are obtained by using the rotation
number which counts the number of turns of the solutions around the origin in the
phase-plane.

Our aim here is to investigate the existence of subharmonic solutions for ,
taking inspiration from these results, but keeping in mind the behaviour of the cur-
vature operator at 0 and at infinity. The following notions of subharmonic solution
of are used in this paper.

Definition 1.2. We say that u is a subharmonic solution of if it is a periodic
solution of having minimum period T = T for some r € Q with r > 1.

Definition 1.3. We say that u is a subharmonic solution of order m of if it is
a mI -periodic solution of for some m € N with m > 2, but it is not jT-periodic,
forany 7 =1,2,...,m—1.

It is easily seen that a subharmonic solution of having minimum period
T= gT , for some p, q € Ny, with p, g coprime and p > ¢, is a subharmonic solution
of order p of .

Assuming that f is superlinear at 0, we prove in Theorem the existence of
small classical subharmonic solutions having suitable nodal properties; in this case
the proof, which borrows some arguments from [I2], is based on the use of the
rotation number and on a version of the Poincaré-Birkhoff theorem given in [I8|
Theorem 8.2] and not requiring uniqueness of solutions for the Cauchy problems
associated with . In particular, the following result holds.

Theorem 1.1. Assume that

(So) f:R xR — R is T-periodic in t, for some T > 0, and continuous,
t
(S1) lin% f(878> =0, uniformly in t € [0,T],
(S2) there exists 6 > 0 such that f(t,s)s > 0, for all t € [0,T] and for all s €
[6,6]\ {0}

Then there exists a sequence (uy)x of classical subharmonic solutions of such
that
lim |ju =0
i e

and whose minimum periods diverge.



A parallel result concerning the existence of subharmonic solutions of hav-
ing large oscillations is obtained supposing that the potential F' of f is sublinear
and coercive at infinity; in this case bounded variation non-classical solutions are
expected. The proof makes use of some tools of non-smooth critical point theory,
namely a version of the mountain pass lemma in the space of bounded variation
functions given in [25, Lemma 2.13], combined with suitable critical value estimates
as introduced for the semilinear problem in [17].

Theorem 1.2. Assume that

(s0) f : R xR — R is T-periodic in t, for some T > 0, and satisfies the L'-
Carathéodory conditions in [0,T] x R,

(s1) lim f(t,s) =0 uniformly a.e. int € [0,T],

|s|—+o00
T s
(s2) lim F(t,s)dt = +oo, where F(t,s) = / f(t, &) d¢E,
0

|s|—-+oo Jo

(s3) there exists R > 0 such that f(t,s)s > 0 for a.e. t € [0,T] and every s with
|s| > R.

Then there exists a sequence (ug)r of subharmonic solutions of such that

lim (esssupuy — essinfuy) = 400
k—+oo R R

and whose minimum periods diverge.

Notations For any given a,b € R, with a < b, and each v € BV (a,b) we set, as
usual,
b b
/ |Dv| = sup {/ vw' dt - w € Cj(]a, b)), [wll oo (q,5) < 1}
a a

and

b b
/ V14 |Dv]?2 = sup{/ (vw] 4 wy) dt : w1, wy € C¢(Ja, b))
and [|w? + w3 o (ap) <1}
Clearly, we have
b b
/ | Do S/ 1+ |Dv|%

The norm in BV (a,b) is defined by

b b
lollpvian = | loldt+ [ Dol

We also denote by v(t]) the right trace of v at ¢y € [a,b[ and by v(t,) the left trace
of v at ty € ]a,b]. Finally, we write Ng = {n € N:n > 1} and Rf = {z € R: = > 0}.



2 The autonomous equation

In this section we discuss the existence of periodic solutions of the autonomous

equation
(VT ?) = fw), (6)

by performing an elementary analysis in the phase-plane. We assume that f : R — R
is odd and continuous. We also suppose that f(s) > 0 forall s > 0and lim F(s) =

s§——+400

“+oo, with F(s / f(&) d¢. Let us define the functions

S

V1+ 82
s

V1—s2
S

and set U(s) = / Y(€)dé =1—+/1—s? for every s € ] — 1,1[. Then equation ()
0

is equivalent to the planar system
u' = —1p(v)
{ . (8)

The energy function associated with is given by

p:R—=]-1,1], ¢(s) =

Y] =L =R, (s) =

(7)

E(u,v) = ¥(v) + F(u).

Clearly, the solutions (u,v) of parametrize the level curves of £. Let us fix
r > 0. We know by [30] that there is a unique non-extendible solution u of the
Cauchy problem

— ()" = f(u)
0)=r 9)
u'(0) =0,

e

which satisfies
U(p(u' (1)) + F(u(t) = F(r)
for all ¢ belonging to its domain. Let us define

Cr = {(z,y) € R?: U(p(y)) + F(x) = F(r)}.

1 1 . . . ..
Note that ¥(p(y)) =1 i The curve C, is symmetric with respect to the origin

and its topology depends on the value F(r). Indeed, since C, can be represented in
the form

C’T:{(x,y)eR?:y::t



with
1-—s

V2 =5’

we see that C is connected if and only if F'(r) < 1; indeed, under this assumption, C,
is homeomorphic to the circle S'. Otherwise C, is disconnected and unbounded in
the y-component; namely, setting ro, = F~1(1) € ]0,7], we have that, if (z,y) € C,
and  — £rZ, then |y| — +o0.

If C} is connected and u is a non-extendible solution of @D such that the tra-
jectory (u,u’) parametrizes C,, then u € C?*(R) and is periodic with minimum
period 47(r), where T'(r) € Rg’ is the first positive zero of w, i.e., u is a classical
4T (r)-periodic solution of ().

If C, is disconnected and w is a non-extendible solution of @ such that the
trajectory (u,u') parametrizes Cy N (]R(J{ X R), then there exists S(r) € R such that

X [01] =R, x(s) =

lim wu(t) =r. and lim /(t) = —o00
t—S(r)~ t—S(r)~
and, by symmetry,
lim wu(t) =r. and lim  /(t) = +o0.
t——S(r)* t——S(r)t

Clearly, u € WH1(=S(r), S(r)). Since, by symmetry, (—u, —u’) parametrizes C,. N
(Ry x R), we can extend u to the interval | — S(r),35(r)[, by setting u(t) = —u(t —
2S5(r)) for all t € |S(r),35(r)[, and then by 4S(r)-periodicity all over R. It is clear
that u € BVjoc(R) and is periodic, with minimum period 45(r). Let us show that u
is a 45(r)-periodic solution of @ according to . Without restriction we can also
replace u with u(- 4+ S(r)).

Let ¢ € BVioc(R) be such that |D¢|® is absolutely continuous with respect to
|Du|®. Denote by ¢ and ¢2 the restrictions of ¢ to |0, 25(r)[ and to ]25(r), 4S(r)], re-
spectively. By the regularity of v in |0,2S5(r)[ and in |25(r), 45(r)[, we have | D¢ |* =
|Dpo|® = 0: this implies that ¢; € W11(0,25(r)) and ¢o € WHE(2S5(r),45(r)).
Hence, multiplying (6)) by ¢;, j = 1,2, and integrating by parts in |0, 25(r)[ and in
125(r),45(r)], respectively, we obtain

25(r) , . 25(r) . 25(r)
- [ ) ot == [t O+ [ pwidhar= [ fwende,
0 0 0

45(r) , - 45(r) Ny 45(r)
- [ e ende = = o)) (500 + [ et = [ s
2 2

S(r) 25(r) S(r)

By the properties of u, we have

(o)1 ] 2 = — g1 (07) — 1 ((25(r)) ),
[p(u)62] (o = 62((25(r)F) + 62 ((45(r)) ).



Therefore summing up we get

25(r) 45(r)
/ o(u')¢' dt + / p(u')' dt
0 2

5(r)

45(r)
+ [6(07) = o((4S(r) )] + [6((25(r))7) — &((28(r))T)] :/0 f(u)gdt.
(10)

Notice that

25(r) 45(r) 45(r)
/ o) dt + / () dt = / o((Dw)*) (D) dt
0 2 0

S(r)

_ 45(r) (Du)a(D¢)a "

o V1+[(Du)f
#(07) — ¢((45(r)) ") = sgn(u(07) — u((45(r)) 7)) (4(07) — B((45(r) 7)),

45(r) 45(r) s
o((250))7) = (2561 ) == [ e == [T T Dol

45(r) qu 45(r) Du Dd)
— 22 1 Dols = 28 9 pgls.
L mgteer= Sgn<|Du\>D¢|' i

Substituting in (L0)), we obtain with 7 = S(r), that is, u is a 45(r)-periodic
solution of (6.

We conclude this section by discussing the existence of periodic solutions of the
autonomous equation @ with reference to two model examples for f = F”, at 0 or
at +oo, respectively. Namely we suppose that

(a) F(s)=|s[P™, for some p > 1, in a neighbourhood of 0,
or
(b) F(s) =|s|"™, for some ¢ € ] —1,0[, in a neighbourhood of +co.

Assume that (a) holds: the expression of the classical time-map 7" : |0, ro][ —
10, +-00[, with 7o, = F~1(1) =1, is

B T X(F(T) _ F(s)) B rl%p 1 X(’I"p+1(1 _ Spﬂ))
) _/0 AOERCE /0 Nip=ra

The concavity of the function x implies that

ds.

(1—s) <x(s) < in [0, 1]. (11)

Sl

1
V2



Hence we obtain

1-p 1 1-p 1 3+p

ro2 1 rz2 1
ds — \/ 1 —srtlds
V2 Jo V1—sptl \f

ds >T(r) >
V2 Jo VI—sptl T )2
for all » € ]0,1[. Then we conclude

lim T'(r) = +oo.

r—0t

This implies that in case (a) there exists a family of classical periodic solutions of

@, approaching 0 in the C''-norm and having arbitrarily large minimum periods.
Assume that (b) holds: the expression of the non-classical time-map S : |roo, +00[ —

10, +oo[, with 7o, = F71(1) =1, is

FX(F(r) - F(s) i /1 X(raTL(1 — s7+1))
F(T) - F Too /T m

By using , we have

S.

S
\/§ Too /T \/1—3qJrl a \f Too /T 1—Sq+1
1/7‘qul . ,r.qulS

:(q+1)\/§/o Vs

(1-— S)_#l ds,

for all r > ro. Taking r > ro sufficiently large, we have (1 — 3)7# >

s €0, q+1] and then
P Urtth ) patlg p 2
)

TR Yo TR

Hence we conclude that
lim S(r) = 4o0.
r—+00
This implies that in case (b) there exists a family of periodic solutions of (6] ac-
cording to , having arbitrarily large oscillations and arbitrarily large minimum
periods.

These simple observations are the starting point of our study of the general
non-autonomous equation . In particular, the estimates we have produced on
T(r) and on S(r) in the model cases (a) and (b) motivate the introduction of the
assumptions of superlinearity of f at 0 and of sublinearity of F' at infinity.
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3 Small classical subharmonic solutions

We start this section with an elementary result concerning a property of the solutions
of the first order system in R

2 =Lt 2). (12)

We recall that a continuous function  : Rj — ]R(J)r is an Osgood function if

_ 7 dg
o) = | R(E)

it is immediate to see that H : Rar — R is an increasing diffeomorphism. Then the
following conclusion is a consequence of a classical result of 1. Bihari [§].

Let us set, for each s > 0,

Lemma 3.1. Assume that £ : I x RN — RN is continuous, with I C R an interval,
and suppose that there exists an Osgood function k such that

(2, ¢) - ¢l < w(I¢)

forallt € I and ¢ € RYN. Then, any non-trivial solution z of 1s globally defined
and satisfies

HH (=20t = to] + H(|2(to)[*) < [z < H 2|t — to] + H(|2(t0)[*)),
for all t,ty € I. In particular, z never vanishes.

Throughout this section we suppose that f: R xR — R satisfies assumptions
(So), (S1), (S2). Let us define f: [0,7] x R — R by setting, for any ¢,

Ft,—8) if s < —4,
ft,s) =4 flt,s) if |s| <6,
Ft,8) ifs> 6.

The function f satisfies the same assumptions as f does, in particular, (§2) holds,
with f replaced by f, for allt € [0,7] and s € R\ {0}. Let us also define ¢y : R — R
by

—1(0) +4'(0)(s +0), if s <=0,

¥(s) = P(s) if [s| <6,

Y(6) + ¢ (6)(s —0)  if s>,
where ¢(s) = s/v/1 — s? has been defined in (7). It is easily checked that the vector
field ¢(t,¢) = (—¥(y), f(t,z)) satisfies the assumptions of Lemma where the
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Osgood function x can be taken to be a non-zero linear function, say, k(s) = ks
and thus H(s) = +1In(s). Hence Lemma guarantees that any Cauchy problem

associated with thg system
v = f(t,u)

has a global solution z = (u,v) € C*(R), which, if non-trivial, never vanishes, since
it satisfies

[2(to)| exp(=klt —to]) < |2(t)] < [2(to)] exp(st — to) (14)

for all ¢,tg € R. This allows, in particular, to represent such a solution in polar
coordinates as

u(t) = p(t)cosb(t), wv(t) = p(t)sinb(t).
Note that the couple (p, ) satisfies

p'(t) = f(t, p(t) cosb(t)) sin(t) — (e( ) sin 6(t)) cos 6(t),

¥(p(t
Y(p(t)sind(t))p(t)sind(t) + f(t, p(t) cos O(t))p(t) cos H(t)
p(t)? ’

0'(t) =

or equivalently
Ft,u(®))v(t) =P (v(t))u(t)
u(t)? + v(t)?
&(U(t))v(t) + f(t,u(t))u(t)
u(t)? +v(t)? ’
for all ¢ € R. For any fixed tp,t; € R, with ty < 1, and assuming that z(ty) = 2o

for some zp € R?\ {0}, we define the rotation number of z in [to,#;] by

0(t1) —0(to)) _ 1 /tl D (v(t)v(t) + ft,ult))u(t)
27 C 2y, u(t)? + v(t)?

)

pt) =

0'(t) =

dt.

ROt(Z; [to, tl]) =

The rotation number counts the counterclockwise turns of the function z around
the origin in the time interval [to, t1].

We notice that the sign conditions satisfied by f and 1, namely f(t,s)s > 0
and (s)s > 0, for all t € R and s € R\ {0}, imply that the function 6 is strictly
increasing, or equivalently that the rotation number is positive for any non-trivial
solution z in any compact time interval.

Lemma 3.2. Assume (Sy), (S1), (S2). For any k € Ny, there exist 7;; > 0 and
ri €10, min{}, 8}[, such that, for any interval J = [to, t1], with [ty —t1| > 77, and
any solution z of (L3)), with z(ty) = zy for some |z| = r}, we have

Rot(z;J) > k. (15)
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Proof. By condition (S2) there exist two continuous functions g,h : [—0,0] — R

such that

0<g(s)s <h(s)s, forallsel[-654\{0},
and
g(s)s < f(t,s)s < h(s)s, forallte[0,T],s € [—d,d].
Indeed, it suffices to define, for all s € [, ¢],

o(s) = min (F(t. ) sn(s)). h(s) = ma (F(t.5) san(s).

(16)

Throughout this section we will refer to g, h as some continuous extensions onto R

of the previously defined functions, which satisfy
g(s)s >0, h(s)s >0,
for all s € R\ {0}, and

lim G(s)= lim H(s)= +o0,

|s| =00 |s|—=+o00

where

G(s) = /0 Tg(e)de, H(s) = /0 " he) de.

Let us introduce the planar autonomous systems

and -
u' = —y(v)
v = h(u).
The energy functions associated with and are, respectively,
Ea(z,y) =T(y) +G(z),  En(z,y) =TV(y) + H(z),

with

B(s) = /0 (e de,

(17)

(18)

(19)

(20)

for any s € R. By definition of ¥ and from conditions and , it follows that
the only equilibrium point of and is (0,0) and all level curves of £ and £y
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are closed curves around (0,0). Hence global existence and uniqueness of solution
hold for every Cauchy problem associated with and .
Let us introduce two auxiliary functions Mz : R? \ {0} — R, defined by

M_(gj y) _ ) g(@)z+o(y)y’ if zy > 0,
; ha)y—dly)z ¢ oy <0

h(z)z+y(y)y’
and i
g@y—yyz .
My (z,y) = { J@etv@my’ if oy <0,
+5Y My=vW)r ¢ 00 s
h(z)z+1(y)y’ =
and consider the equations
% =rM_(rcosf,rsin) (21)
and
dr .
0= rM,(rcos,rsind). (22)

Trajectories associated with non-trivial solutions of and parametrize spi-
rals, surrounding the origin, obtained by alternating the level curves of &5 and .
We see that, for all (6y, pg) with 6y € R and py > 0, uniqueness and global con-
tinuability of solutions hold for any Cauchy problem associated with and with
([22). Let r—(-;60, p0),7+(-; 00, po) (sometimes denoted by r+ for simplicity) be the
solutions of and , respectively, satisfying r+(6y) = po. Note, in particular,
that any non-trivial solution r of and satisfies r-(0) > 0 for all § € R.
Let us fix k € Ny. For any pg > 0, set

H = inf _(0; 6y, >0
my(po) 00611[%’2”] r—(6; 60, po)
0€[00,00+2k]

and

M (po) = sup  74(6; 60, po)-
00€[0,27]
96[90,90+2k7r}

As lim+ M;:(po) = 0, there exists r} > 0 such that

po—0
0 < mj(rp) <7 < Mi(ry) <]0,min{7, 5}

Pick 74,7 > 0 such that

*

0 <rg <mp(ry) <rp < Mi(ry) <7r, <]0,min{4, 5}[.
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Define a continuous function G : R? \ {0} — R by
g(@)z + 9 (y)y
24y
Let A= {(z,y) € R? : 1, < /22 + y2 < 7%} and 6; = mjng > 0. Set 77 = 27 and
— k
take any interval J = [to, 1], with 7 = t; —tg > 7/ and a solution z of with

z(to) = zo, for some 2o € R? such that |zo| = rj. We want to prove that holds,
ie.,

g(:r,y) =

Rot(z; J) > k.

Without loss of generality, we can assume that 0(tg) = 6y € [0, 27[. Therefore the
thesis amounts to proving that

0(t1) — O(to) > 2km. (23)
Set
o =sup{s € [to, t1] : 1, < p(t) < 7% in [to, s]}.
For all ¢ € [tg, o], we have
lu(t)] < p(t) < 6. (24)

Two cases may occur: either o = t1, or o < t.

If o =t1, by and (| E, we have
7P (u(t)v(t) + ft,ult))ult)

Rot(z; J) = 27r MOEE=TOE dt
1 tl T Ty
“o ), G(u(t),v(t)) dt > 5 mjng > o k

and hence follows.

If o < t1, the maximality of o implies that r, < p(t) <7 for all ¢ € [tg, o] and
p(o) € {ry, 7 }. Assume that p(o) = 7, the other case being treated similarly. In
order to prove , we only need to show that

0(o) — 6(to) > 2km,

since, as already observed, the function 6 is strictly increasing. By contradiction,
assume that (o) — 0(t9) < 2kw. The monotonicity of 6 also implies

0(t) € (00, 0o + 2k, (25)

for all ¢t € [to, o].
On the other hand, ¢ = (p, 0) satisfies

p'(t) = f(t, p(t) cosb(t)) Sln9( ) — ¥ (p(t) sin B(t)) cos b(t),

Y(p(t)sind(t)) sinO(t) + f(t, p(t) cosb(t)) cos 6(t)
p(t) ’

0'(t) = (26)
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for all t € R. In this regard, we introduce some more functions S, U : J x R?\ {0} —
R, defined by

J(t,x)y —¥(y)z

S(t7x,y) g x2+y2 R
U(y)y + f(t,z)z
U(t,fﬁ,y) = ( )iEQ n y(z ) )

and R,0 : J x |0, +o0[ x R — R, defined by

R(t,p,0) = pS(t,pcosb, psinb),
O(t,p,0) =U(t,pcosb, psinb).

We easily see that
pS(t,pcosf, psind)  R(t,p,0)

U(t,pcosf,psinf) — O(t, p,0)
holds for all (¢, p) € R x ]0, +o0[, and

S(t,z,y)

m < My (z,y) (27)

holds for all ¢ € [tg, 0], (z,y) € R?\ {0}.
Let v : R — ]0,4o00[ be the solution of satisfying v(6g) = rj. From the
definition of M}, we have
1(0) < My (ry) <T&,

for all € [0y, 0y + 2k7]. By continuity of v, there exists € > 0 such that v(0) < 7%
for all 0 € 16y — €, 00 + 2km + ¢[. From and the positivity of -,

- vS(t,ycosf,ysinf)  R(t,7,0)

o) — 0 sind —
v'(0) = yM(ycos,ysinf) > U(t,ycosf,vsinf)  O(t,v,6)

holds for all ¢ € [tp,o] and 6 € R. Consider again the function (p,#): when re-
stricted to the interval [to, o] and thanks to condition (25)), it takes values in |0, +oo]
X160y — €,00 + 2k + €[. Moreover it is a solution of

p= R(t,p,0)
o' — Ot p,6)

with p(to) = 5 = v(0o) = Y(0(to)). We know that ¢'(¢t) > 0 for all ¢ € [to, o],
so that the function 0 : [tg,o] — [0(to),0(c)] is a C'-diffeomorphism, with inverse
s:[0(to),0(0)] — [to,o]. If we set o(0) = p(s(0)), so that p(t) = p(0(t)), we find

do(0) _ p'() R(s(0), p(s(0)), 0)

o o' (t) t=5(6) O(s(0), p(s(0)),0) '
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Hence, o(0) satisfies, for 6 € [0(to), 0(0)], the differential inequality
o < oMy (pcos,osinb)

and, moreover, o(6y) = p(to) = v(0p). As uniqueness of solutions holds for any
Cauchy problem associated with , by a classical result on differential inequalities
(see, e.g., [2I, Section 1.6, Theorem 6.1]), we conclude that o(8) < ~(0), for all
0 € [0(to),0(0)], and hence p(t) < v(6(t)), for all ¢ € [to,o]. In particular, we have
7 = p(o) < ~v(0(0)) < Tk, which leads to a contradiction. O

Lemma 3.3. Assume (Sp), (S1), (S2). Let J C R be a compact interval. Then
there exists ro = ro(J) > 0 such that

Rot(z; J) < 1, (28)
for any solution z of , with 0 < mJin |z| < ro.

Proof. Assumptions (S71) and (S2) imply in particular that, for any fixed ¢ > 0,
there exists d. € ]0, [ such that, for all t € R and s € [—0¢, 0c],

f(t,s)s < es’

Let J = [t1,t2] and z = (u,v) be a non-trivial solution of such that, for all
teJ,
|u(t)] < 6 (29)

Denote as usual by (p, 8) the polar coordinates of z and set 6, = 0(¢1) and 03 = 0(t2).
We want to prove that
0y — 61 < 2m. (30)

Assume by contradiction that

02 — 01 > 2r. (31)
As we have, by ,

F(t, p(t) cos (1)) p(t) cos O(t) < e(p(t) cos B(¢))?
and B
B (p(t) sin 6(1) p(¢) sin 6(t) < /(6) (p(t) sin 6(1))
we obtain, from ,
0'(t) <1
¥/(8) (sin 0(t))2 + &(cos 9(t))2 B

)
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for all t € [t1,to]. Setting ¢ = ¢//(0) and integrating over [t1, 2] yield

62 1
J =ty —t1 > d
=tz =t = /gl c(sin s)? 4 (cos 5)? °

27 us
> / ! ds =4 / ’ ! d
5= s
~ Jo c(sins)? 4 e(cos s)? o c(sins)? + e(coss)?
4 1 1 27

/g dt = — /+°° -
€Jo (COSt)21+(\/§tant)2 vee Joo 14¢2 Vee

A contradiction is achieved taking ¢ € 0, (ﬁ[ Hence follows.

In order to conclude, we use Lemma choosing rp > 0 small enough, any
solution z, with 0 < mJin |z| < ro, by satisfies
max |u| < max |z| < dg.
J J
Hence holds, implying the validity of . O

Remark 3.1 Lemma is still valid replacing assumption (S3) with

t
lim 1(t5) =0, uniformly in ¢ € [0, 7]
s—0F S
or
t
lim J(t.s) =0, uniformly in ¢ € [0, T].
s—0~ S

The proof requires just few minor modifications, as shown in [I2, Lemma 3.4].

Theorem 3.4. Assume (Sp), (S1), (S2). For every k € Ny there exists mj, € Ng
such that for any integer m > my, which is coprime with k, equation has a
classical subharmonic solution uy of order m with precisely 2k zeroes in [0, mT].

Proof. Fix k € Ny and let mj € Ny, with m;T > k 7}, and r} be as in Lemma
Take m € Ng such that m > mj and ro = ro([0,mT]) < r} as in Lemma [3.3 The
two results just mentioned guarantee on the one hand that

Rot(z; [0, mT]) > k

for any solution z with initial value zy such that |z9| = 77; on the other hand there
holds
Rot(z; [0,mT]) < k

for any solution z with initial value zy such that |z9| = 7¢. Since solutions of
the Cauchy problems associated with are globally defined, we can apply the
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Poincaré-Birkhoff theorem, in the version of [I8, Theorem 8.2]: there exists in par-
ticular a point zj € R? such that ro < |z}| < r} and a corresponding solution
2 = (ug, vg) of which is mT —periodic and satisfies

Rot(zk; [0, mT]) = k.

By the previous discussion we know that, denoting by (py, 0)) the polar coordinates
of zp, the angular displacement 6}, is strictly increasing, and thus u; has exactly 2k
zeroes in [0, mT[. Moreover, since m, k are coprime, m7 is the minimum period of
up among T, 2T, ..., (m — 1)T,mT. Finally, Lemma implies that zj satisfies

ro < |zk(t)| < 7}

for all ¢t € R. This condition assures that uy is a classical subharmonic solution of
of order m, with precisely 2k zeroes in [0, mT7. O

Remark 3.2 Taking k = 1 in Theorem we conclude that, for any m > m] there
exists at least one subharmonic solution having minimum period m7T'.

We are now in position of proving Theorem

Proof of Theorem We keep the same notations as in the proof of Theorem
Fix any k € Ny and take mj, € Ny, coprime with k, such that mj; > max{k?, my}.
From the proof of Theorem we know that there exists at least one point z; € R?
such that 7o < |z;| < r} and a corresponding solution z = (uy,vs) of which is
myT-periodic and satisfies

Rot(zg; [0, mT]) = k.

The minimum period 74 of z;, and hence of wy, satisfies 7, > %T > kT. This
estimate obviously yields
lim 7, = +o0.

k—+o00
The proof of Theorem also guarantees that, for any k € Ny,
max{||ug oo, [|(¥) ™ (uf) oo} < 28lloe < 75
As we chose 1, < % in Lemma we get

I = 0.
(el

This concludes the proof of Theorem O
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4 Large bounded variation subharmonic solutions

We start with some preparatory results.

Lemma 4.1. Let 0 > 0 and u € BVjo(R) be fized. Then u is a o-periodic solution
of if and only if f(-,u) € L'(0,0) and the following inequality

Jo(v) = T5(u) > /00 flt,u)(v—u)dt (32)

holds for all v € BV (0,0), with

:/me—mzw(oﬂ —v(o7)].

Proof. For any ¢ € BV (0,0), let us define 7, : R — R by

Ty(s) = T (u + 50) — /0 " ()t s) di

The function 7 is convex. Let us also set Ky : BV(0,0) — R by

g
:/ V14 |Dvl2.
0

By [1, Theorem 3.6] the functional K, is differentiable in the direction ¢ € BV (0, o)
if and only if |[D¢|* is absolutely continuous with respect to |Du|® and, under this
assumption,

7 Du s
Ko+ 56)ls= °/ 1+|Du ToaE ), Sg“(wm) g 1P 33)

Fix now ¢ € BV(0,0) as required in [I, Theorem 3.6]. Then 7, is differentiable at
s = 0 and the following holds

70 = g Trtutsolen = 5 ([t so)at) o
— %Ka(u + 80)|s=0 + % |(u+59)(0%) = (u+59)(07)|,_, — /00 f(t,u)pdt
dilc (u+ 5¢)|s=0 + d% |u(07) —u(o™) 4+ s(o(0%) —d(a7))|,_, — /o f(t,u)pdt
= 2Kt s0)lco +sgn(u(0) — ulo 7)) (6007) — o07) — [ s
(34)
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From and we obtain

7 Du \ D¢ s
/ 1+|Du y2 ), Sg“(um) gl P
+sgn (u(0h) — u(o™)) (6(07) — ¢(07)) — / f(t,u)pdt. (35)

Assume now that f(-,u) € L'(0,0) and holds for all v € BV(0,0). Then,
for any given ¢ € BV(0,0), the function 74 has a minimum at s = 0. Fix now
¢ € BV(0,0) as required in [I, Theorem 3.6] and such that ¢(0%) = ¢(o7) if
u(0") = u(o™). Since s = 0 is a minimum of 7, we have 7;(0) = 0, or equivalently

using

7 Du D¢ B
/ 1+]Du \2 et 0 Sgn<|DU|> |D¢| Del
+sen (u(0F) — u(o™)) ((0%) — d(o7)) = /0 f(t w) dt.

This means that u is a o-periodic solution of .

Conversely, let us assume that u is a o-periodic solution of . ) and ﬁx v E
BV (0,0). According to [25, Corollary 2.2], there exists a sequence (v, ), in Wa'' (0, o)
such that

lim v, =v
n—-+00

in L'(0,0) and a.e. in ]0, o[, and

lim J,(vn) = J5(v).

n—-+00

For each n, set ¢, = v, —u. We have that ¢, € BV (0,0), with |D¢,,|* = |Du|* and
&n(0T) —dp(07) = u(0") —u(o™). As, by assumption, u satisfies the Euler equation
([2), we have Tdﬁn (0) = 0; moreover, by convexity of 7y, , there holds

that is,

To(u+ ¢n) — /ftu (u+ ¢p)dt > Ty(u /ftuudt

or equivalently

To(vn) — /ftuvndt>jo /ftuudt (36)
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As by Lebesgue convergence theorem we have

lim /0 T F () (o) dt = /0 " bt dt,

n—-+00

we can pass to the limit in , as n goes to +00, obtaining
g
Tu(w) = Tolw) = [ Fltu)(w— w
0
that is . O

Lemma 4.2. Let u € BVijoe(R) be a non-constant o-periodic function, for some
o > 0. Then u has a minimum period T > 0 and < € Np.

Proof. We first prove that w cannot have arbitrarily small periods. Assume by
contradiction that there exists a sequence (0 )n, With 0 < 0, < 2, of periods of u.
As u is op-periodic, we have by [25, Proposition 2.9]

0< 2(essﬂ§upu - essRinfu) = 2(esssupu — essinfu)

\On 0,0n
< ["1pul+ tutom) - w00 = 2 ([ 10ul + uto) - uioh)

which yields a contradiction by letting n — +oo.

Let us denote by 7 the set of all (positve) periods of u and set 7 = inf 7. We
know from the previous step that 7 > 0. Let us show that 7 is the minimum period.
Let (op)n be a sequence in 7 converging to 7, with o, > 7 for all n . Let u, denote
the right continuous representative of the bounded variation function u. As there
exists a set E C R, with zero Lebesgue measure, for which u,(t + 0,,) = u,(t) for
every n and each t € R\ E, we conclude that u,(t + o) = u,(t) for each t € R\ E,
that is 7 € 7.

It is finally clear that, o > 0 being a period of u, there holds Z € Np. O

Lemma 4.3. Let u € BVjpe(R) be a non-constant o-periodic solution of and let
7 > 0 be the minimum period of w. Then u is a T-periodic solution of .

Proof. Suppose that ¢ > 7. By definition of o-periodic solution of , u satisfies

o (Du)agb/ B o .
/0 o dt_/o F(t ) dt (37)

for every ¢ € C§°(]0,0]).
Let us prove that the function f(-,u) € L} (R) is 7-periodic. As 7 is the
minimum period of u, there exists N € N, with V > 2, such that 0 = N7. Assume

by contradiction that, e.g., f(t,u(t)) # f(t+7,u(t+7)) for all ¢ in a subset of [0, 7] of
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positive measure. Take ¢1 € C§°(]0,7]) and ¢ € C5°(]7, 27(), with ¢1(t) = p2(t+7)

in [0, 7], such that
27

/ ftwondt # [ 1o

As (Du)* = (Du(- — 7))* a.e. in R and ¢}, = qﬁl( —7) in [1,27], we get from (37),

’ [T (D
J O e
2T Du ¢2 B 2T
/ = [ s wga

which is a contradiction.

We next prove that u is a 7-periodic solution of . Pick any w € BV(0,7)
and let v; € BV ((i — 1)7,471) be such that v;(t + (i — 1)7) = w(t) for a.e. t € [0, 7],
fori=1,...,N. Define v € BV(0,0) by v(t) = v;(t) for a.e. t € [(i —1)7,i7], for
i=1,...,N. We have

/OU V1+|Dv]2+ |v(e™) —v(0T)] — /OU ft,u)vdt

N T
=Z/‘ VI+ Dul
i—1 (i—1)7
N T
v((iT) T v —o(0h)] — t,u)v; dt
+Zr () )+ ole ) o0 =30 [ st

= N/ V1+ |Dw2 + Njw(r™) —w(0")| — N/T flt,w)wdt
0 0
and
/U I+ DuP + [u(o) — u(0+)] - /a F(tw)udt
0 0
=N [VIFTBUE + Nl — 00 = N [ (e
0 0
Hence we conclude that
/T V14 |Dul? 4+ |u(r7) — u(0T)] — /T ft,u)udt
0 0
< /T V14 [Dwl? + |w(r™) —w(0T)| — /T ft,w)wdt.
0 0

Therefore u is a 7-periodic solution of . O
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The following result guarantees the existence of a sequence of arbitrarily large
kT-periodic solutions of .

Theorem 4.4. Assume (sg), (s2),

. F(t,s)
/ 1 )
(1) Jim =

= 0 uniformly a.e. in [0,T],

(s4) there exists R > 0 such that f(t,s)s > 0 for a.e. t € [0,T] and every s with
|s| > R.

Then, there exists a sequence (uy)y of kT -periodic solutions of , satisfying

lim esssupup =+oo or lim essinfuy = —oc. (38)
k—+oo [0,kT] k—+oo [0,kT)

Proof. For any fixed k € Ny, define a functional Zyp : BV (0,kT) — R by setting

kT
Ter(v) = Tir(v) — /D F(t,v) dt.

We also define
kT
Wr = {w € BV(0,kT) : / wdt = 0}
0

and, for every v € BV (0,kT), we set
1 kT

- dt
kT, U

r

so that w =v —r € Wyr.

Step 1. Iy has a mountain-pass geometry.

Assumptions (sg) and (s}) imply that for every e > 0 there exists a T-periodic
function ¢, € L{ .(R) such that

F(t,s) <el|s| + c:(t), (39)

for a.e. t € R and every s € R. For every w € Wy, we have, using and [25]
Corollary 2.7],

kT
Tir(w) = Ter(w) — /0 F(t,w)dt

kT kT kT
> / |Dw| + [w((kT)”) —w(0%)] — 5/ |w| dt — / ce dt
0 0 0

> <1 _5’“4T> </OkT Dl + |w((KT)") —w(o+)\) _ /OkT e di.
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This implies that

inf Zpp > —o0.
kT

On the other hand, by assumption (s3) there exists Ay € R such that
kT
kT — / F(t, Ak) dt < inf Zpr.
0 Wit

According to [25, Lemma 2.13], there exist sequences (vy,), in BV (0,kT) and (gp,)n
in R such that lim ¢, =0,

n—-+00

kT

Tir(v) = Jir(vn) > ; fton) (0 = vp) dt —enllv = vallgypry,  (40)

for every v € BV (0,kT), and

lim Zpr(vn) = ¢ = inf 7 : 41
nﬂufoo kr(vn) = e Vlénrkédr—nfi}i‘lk] kT(’Y(f)) ()

where
Ty = {7 € O([= Ak, A}, BV(0,kT)) : 7(+Ay) = £A;} . (42)

Step 2. The sequence (vy)y is bounded in BV (0, kT").
Let us write, for each n € N, v,, = w,,+7r,, with w,, € Wyp. Assume by contradiction
that, possibly passing to a subsequence that we still denote by (vy,)n,

m [onll v (0,0) = +00- (43)
Using (39), and [25, Corollary 2.7] again, we get for all large n

kT
en+1 > Tyr(vn) = Jer (wn) — / F(t,wp + ) dt
0

kT
> |Dwy| + [wy, ((KT)7) — wn(0F)] —
J J
> (1 - 511T> </0kT | Dwy,| + |wn, ((KT) ™) — wn(0+)|> —ekT|rp| — /OkT ce dt.

Hence we deduce that for every n > 0, there exists ¢, > 0 such that for all large n

kT kT
|wy| dt — ekT|ry,| —/ co dt
0

1

5 </OkT |Dwy| + |wn (KT)7) - wn(0+)l) < nlral + ¢

and, by [25, Corollary 2.10],

[wnl| oo 0,6y < N7l + cy- (44)
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By and , we infer that

lim |r,| = +o0.
n——+00

Possibly passing to a further subsequence that we still denote by (v,),, we can
suppose that

either lim r, =+oc0 or lim r, = —oc.
n—-+00 n—-+00

Assume that the former case occurs. From we get

lim essinfv, = +o00 (45)
n—+00 [0,kT]

and hence, by (s5), for all large n

f(t,v(t)) >0,
for a.e. t € [0, kT]. Testing against v = v, + 1, we obtain
kT
0>+ f(t,v,) dt — e, kT
0

and then, for all large n,

kT kT
[ itta=| [ s ] < i (46)
0 0

Now, test against v = r,. We get, using and [25 Corollary 2.7, Corollary
2.10],

kT

Ter(wn) < Tir(rn) + f(t, vn)wn dt + en [lwn|l gy (o pr)
0

< KT+ [|FCovn)ll propry lwnll oo o 67y + &n llwnll gy o e (47)
kT
< gn<1 + }m) </ Dwa + [wn (KT)") — wn(o+>y) + KT.
0

Hence we can easily conclude that there exists a constant ¢ > 0 such that for all
large n

kT
/0 |Dwy| + [wn (KT)7) — wa(07)] < ¢

and
Trr(wy) < c.
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Therefore, using (s4), we get for all large n

kT
T (vn) = Tir(wn) — /0 F(t,v,)dt

kT ess inf vy, kT vn (t)
= Tir(wn) — / ( / () ds) dt — / ( / f(t,s) ds) dt
0 0 0 essinf vy,

(0,kT]

kT
<c-— / F(t, ess infvn) dt.
0 [0,k

Then a contradiction follows, using and (s2), as we have by

inf Zpp(vy,) > —o0.

Step 3. For each k € Ny, there exists a kT-periodic solution uj of , with
Trr(ug) = k.

Fix k € Ny. Since by Step 2 the sequence (vy,), is bounded in BV (0,kT), there
exists a subsequence, that we still denote by (vy,)n, and a function u; € BV (0, kT,
such that

Iim v, =u
i n k

in L'(0,kT) and a.e. in [0, k7], and

Sup [[vp|| oo (0 k1) < +00-
n

Hence, using (sp), [25, Proposition 2.4] and Lebesgue convergence theorem, we get

lim f(va) = (o), in L0, KT),

n—-4o00o
kT kT
im [ Pt ) dt = / Pt ug) dt,
0

liminf Jer(vn) > Jir (uk),
n—-+00

kT kT

lim flt,vn) (v —vy)dt = f(t, ug) (v — uy) dt,
n—+o Jo 0

L en v =vnll gy o rr) =0,
for every v € BV (0,kT). Accordingly, we obtain from

kT kT

Jir(v) — ; fltug) (v —ug) dt = Tpr(v) — ngar_loo ; flt,vn)(v—vy)dt

+ lim en o —onllpyour) 2 iminf Fer(va) 2 Jur(uk),
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i.e., u is a kT-periodic solution of . Moreover, testing against v = ug, we
get

kT

Trr(uk) — S up) (ur — vn) dt + e [luk — onll gy o pry = Tar(vn)-
0

Letting n — 400, we have

Trr(ug) > limsup Jpr(vp).

n—4o0o

As

Tk (ug) < %Qigf Tt (Vn),
we conclude that

T (ug) = nll}:il—loo Tkt (vn)
and

Trr(ug) = Jm Tk (vn) = k.

Step 4. The following limits hold

1
lim — S 4

. 1
o [urll L1007y = F00,

kl{lfoo k]| oo (0,1:7) = +00- (49)

kT
For each k € No, let ¢, : [0,kT] — R be defined by ¢u(t) = ksgn(t - 7).

Note that ¢, is an eigenfunction associated with the second eigenvalue % of the

1-Laplace operator with periodic boundary condition on [0, k7] (cf. [I5]). Define a
path ~y : [— Ak, Ax] — BV(0,kT) by

Ve(§) =&+ ( - Li)(lﬁk

Clearly, we have v; € I'y, where I'; is defined in . Let us compute, for each
E € [_Ak‘v Ak];

ﬂfhaayzﬁf(<—fi)m)=4k<—fi>+ﬁrgu+Tm.

Hence we obtain, for each & € [— Ay, Ag],

kT
ﬂﬂw@D§M+T%—A F(t,3(©)) dt. (50)
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Now we want to estimate the last integral for all k£ large enough. Note that we can
assume, without restriction, that Ay > k > max{4, R}. Hence, we see that there
exists an interval [ag, bg] C [0, kT with ay = a(€),br = bx(§) and by — ap > LgJ T,
such that for each £ € [— Ay, Ag]

for a.e. t € [ag, b|. Indeed, the following statements hold:

T
k:sgn(t — 162)‘ >k,

(7) if £ =0, then
76(0) ()] =

a.e. in [ag, by] = [0, kT7;

(i) if & €]0, Ay], then

7 (€) (1) = ‘5+k<1 - jk>sgn(t— ’f)‘ - k+5<1— i) >k,

a.e. in [ag, be] = [[5] T, kT].
(7i1) if £ € [~ A, 0], then

kT

@0 = [+ k(14 5 Jsmm (1= )| = -€(1- ) +r2

a.e. in [ag, be] = [0, [ 5]T7.

As we have assumed Ay > k > R, we have, using (s}),

F(t,s) > F(t, k),

for a.e. t € R and every s with |s| > k. Moreover, by (so), there exists a T-periodic
function h € L{ (R) such that

F(t,s) > —h(t),

for a.e. t € R and every s € R. Therefore we obtain, for every & € [— Ay, Ag],

kT by
/ F(t () dt = / F(t () dt + / F(t,3(6)) dt
0 ag [0,kT\[ak,b]
by,
>/‘F@@ﬁ—/ hdt (51)
ag [0,kT\[ak,bk]

by,
2/ F(t,k)dt = k|[|h]l 11 o) -

ag



Note that, for any & € [— Ay, Ag], we have
b, k T
/ F(t,k)dt > {J / F(t,k)dt
ap 2 0

1 [0

k—+o0 an

Therefore we can conclude, from and , that

and then, by (s3)

1 1 [
lim — max IkT(fyk(Q)gklirf (4+T+Hh”L1(O,T)_k/ F(t k) dt

k—+oo k £€[—Ay, Ak a

which in turn implies that
lim lIk;p(uk) = —00,
k—-+oo k
as
Tyr(ug) = viélka ge[r—n,%:,{Ak]IkT (v(8)).
We finally observe that, as

1 1 kT
—IkT(uk) Z —/ F(t,uk) dt,
k k Jo

then we get, from ,
1 (kT
lim / F(t,uy) dt = 4o0.
0

Using with € = 1, we have

1 kT 1 kT 1 kT
- F(t dt < — dt + — dt
| Pewa< g [ i g [l

and hence both

. 1
kll)ffoo % [kl L1007y = 00

and
]-‘ [e'e] — .
% im [ug| (0,kT) = TO0

29

)=

1
=% lwkll 2o pry + lerll rory < T llukll poo o ey + llerll o,ry -
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Remark 4.1 Under the assumptions of Theorem [£.4] we cannot exclude that all
the solutions uy, are constant. This cannot happen if assumption (s4) is slightly
strengthened, replacing it with (s3), in that case the obtained solutions, if classical,
would be subharmonic solutions in the sense, e.g., of [14], p. 426]. This is the content
of Theorem [£.5

Theorem 4.5. Assume (so), (s}), (s2) and (s3). Then, there exists a sequence
(uk)ken, of kT-periodic solutions of (1)), satisfying

lim (esssupug — essinfug) = —+o0. 53
k‘HJrOO( [O,Tk]p g [0,7%] 2 (53)

Moreover, for each N € Ny, there exists k such that, for every k > k, upn is not a
NT-periodic solution of .

Proof. Theorem guarantees the existence of a sequence (uy)x of kT-periodic
solutions of for which holds. Let us prove the validity of . Indeed,
otherwise from we deduce, possibly passing to a subsequence of (ug)g, still
denoted by (ug)g, that
lim essinfu, = +o0o or lim esssupui = —oo.
k—+oco [0,kT) k—+o00  [0,kT]

Assume that the former case occurs. Hence condition (s3) implies that, for all large
k,

f(t ur(t)) >0, (54)
for a.e. t € [0,kT]. Testing against v = u, £ 1, we infer
kT
f(t, uk) dt = 0.
0

A contradiction then follows from .

Next, in order to prove the last conclusion, we suppose by contradiction that,
for some N € Ny, there exists a subsequence (uy,n); of (ugn )k, such that, for every
J, ug;n is NT-periodic. Let us denote this subsequence by (ugn ) for simplicity.
From condition and the NT-periodicity of uin, we have

1 1
lim -7 = lm 7 = —co.
Jm S Inr(ury) = m e T (usy)

This implies that
supZyr(ugn) = M < +oo.
k

The same argument employed in Step 2 in the proof of Theorem [{.4] yields the
existence of a further subsequence of (ujy )y, which we still denote by (urn)n, such
that

lim essinfugy = +oo or lim esssupuipy = +00.
k—-+co [0,NT] k—+o0 [O,NTF

Now we proceed as above in order to get a contradiction by means of condition
(s3). O
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Remark 4.2 By a diagonal argument, we see that there exists a sequence (k;); of
positive integers, with k; > j for every j € Ny, such that the corresponding solutions
(ug;); are k;T-periodic, but not hT-periodic for h =1,...,j.

Finally, if both assumptions (s}) and (s§) are strengthened into (s1) and (s3),
respectively, then the obtained solutions exhibit large-amplitude oscillations and
have arbitrarily large minimum periods, as stated in Theorem [1.2

Proof of Theorem [1.2| Theorem {.5(guarantees the existence of a sequence (ug)g
of kT-periodic solutions of for which holds. Since, for all large k, uy is a
non-constant k7T-periodic solution of , Lemma and Lemma imply that ug
has a minimum period 7 > 0 and it is a 7,-periodic solution of (1)), i.e., for every
veEB V(O, T k),

Tk
o) = Tlw) = [ Fltw)w - w) dr (55)
0
We want to prove that
klil}rl T, = +00. (56)

Assume by contradiction that there exists a subsequence (7;); of (74)x such that

sup 7y, = 7 < +00.
J

Let us denote (7y,); simply by (7x)x. Assumptions (so), (1), (s2) imply that, for
every € > 0, there exists c. € L] (R) such that

f(t,s)s <els| + ce(t), (57)

for a.e. t € R and every s € R. Testing against v = 0 and using , we get

T (ug) < / Pt g dt + 7
0

Tk Tk
§€/ |uk|dt—|—/ ce dt + T
0 0

<er ”Uk”Loo(o,rk) + HCEHLl(O,T) T

Set r, = & [ uy dt and wy, = uy, — 1. By [25, Corollary 2.10], we obtain

T JO

Tk
2 [kl e 0.y < / D] + Jug(7) — i (0F)]
< o7 wrll ooy + 71l + llecll oy + 7

Hence we conclude that, for every n > 0, there exists ¢, > 0, which is independent
of k, such that

HwkHLOO(o;,-k) < nlre| + ¢y,
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which is the counterpart of in Step 2 in the proof of Theorem We can
then proceed as there and obtain, possibly passing to a subsequence of (ug)g, still
denoted by (ug)g, that
lim essinfup =400 or lim esssupui = —oo.
k—+oco  [0,7%] k=400 [0,74]
Arguing as in the first part of the proof of Theorem [£.5] we finally get a contradiction
by means of condition (s3). O
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