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Abstract. We propose a higher dimensional generalization of the Poin-
caré – Birkhoff Theorem which applies to Poincaré time maps of Hamil-
tonian systems. The maps under consideration are neither required to
be close to the identity nor to have a monotone twist. The annulus is
replaced by the product of an N -dimensional torus and the interior of
an embedded sphere in RN ; on the other hand, the classical boundary
twist condition is replaced by an avoiding rays condition.

1 Introduction

The so-called Poincaré –Birkhoff theorem is a classical topological result, first
inferred by Poincaré shortly before his death [32], and proved in its full gen-
erality by Birkhoff some years later [5, 6]. In broad terms, it states the exis-
tence of at least two fixed points of an area-preserving homeomorphism of the
(closed) planar annulus, provided that it keeps both boundary circles invari-
ant, while rotating them in opposite senses. It has been extended in different
directions, and subsequently widely applied to the study of the dynamics of
(planar) Hamiltonian systems. See, e.g., [10] or [31, Ch. 2] for a more precise
description of this result, and [17, 23] for two recent review papers, including
corresponding lists of references.

The efforts to generalize this theorem to higher dimensions go back to
Birkhoff himself [7], and have been later continued in many works, including,
for instance [2, 8, 14, 18, 21, 29, 31, 36, 38]. Out of these extensions, we
shall be particularly interested in the version due to Moser and Zehnder [31,
Theorem 2.21, p. 135], which is depicted next. Let S ⊆ RN be a smooth,
compact and convex hypersurface bounding some open region intS, and let
the smooth map P : RN × intS → RN ×RN be given. It is assumed to be an
exact symplectic diffeomorphism into its image and to have the form

P(x, y) = (x+ ϑ(x, y), ρ(x, y)) , (x, y) ∈ RN × intS , (1)

where both maps ϑ, ρ are 2π-periodic in each of the firstN variables x1, . . . , xN .
Suppose further that there exists some c ∈ intS such that

〈ϑ(x, y), y − c〉 > 0 , for every (x, y) ∈ RN × S . (2)
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Under the additional condition that P is either close to the identity or satisfies
a monotone twist condition, the Moser – Zehnder theorem ensures the existence
of at least N +1 fixed points of P in RN × intS. Incidentally, we observe that
this result (and the proof given by Moser and Zehnder) keeps its validity if the
sign of the inequality (2) is reversed.

A natural way to build exact symplectic diffeomorphisms such as those
considered above is by using time maps of Hamiltonian systems. In this Hamil-
tonian setting, the closeness to the identity and the monotone twist condition
have been recently shown to be unessential [18, Theorem 1.1(b) ]. We now
plan to further extend this result in two directions. Firstly, we shall consider
compact surfaces S which are not necessarily convex, but are only required
to be diffeomorphic to the sphere. And secondly, we are going to replace the
twist condition (2) by a more general one, which, loosely speaking, requires
that ϑ(x, y) misses either the inner or the outer normal ray coming from S
whenever y belongs to this set. We have called it the avoiding inner/outer
rays condition.

To be more precise, we consider the Hamiltonian system

(HS) ż = J∇H(t, z) .

Here, J =
(

0 IN

−IN 0

)
denotes the standard 2N × 2N symplectic matrix,

and the continuous function H : R × R2N → R, H = H(t, z) = H(t, x, y)
is T -periodic in its first variable t, 2π-periodic in the first N state variables
x1, . . . , xN , and continuously differentiable with respect to z = (x, y).

Let S ⊆ RN be a (C1-smooth) embedded sphere; i.e., a C1-submanifold
which is C1-diffeomorphic to the standard sphere SN−1. It is well-known that
S separates RN into two open connected components; a bounded one, usually
called the interior of S and denoted by intS, and an unbounded one, the
exterior of S, denoted by extS. Correspondingly, there is a well-defined unit
outward normal vectorfield, which will be written as ν : S → RN .

Let us assume, for the moment being, that for every initial position z0 ∈
RN × intS there is a unique solution z(· ; z0) of (HS) satisfying z(0; z0) = z0

and, moreover, this solution can be continued to the time interval [0, T ]. Then
it makes sense to consider the so-called Poincaré time map P : RN × intS →
R2N , defined by

P(z0) = z(T ; z0) .

It is clear that P has the form (1), the functions θ, ρ being 2π-periodic in each
variable xi. Observe also that the fixed points of P correspond to T -periodic
solutions of (HS). Once such a T -periodic solution z(t) = (x(t), y(t)) has
been found, many others appear by just adding an integer multiple of 2π to
some of the components xi(t); for this reason, we will call geometrically distinct
two periodic solutions of (HS) (or two fixed points of P) which can not be
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obtained from each other in this way. If the Hamiltonian H = H(t, z) is C2-
smooth with respect to z, a fixed point z0 of P is called nondegenerate if 1 is
not an eigenvalue of P ′(z0).

At a point y of the hypersurface S, the inward and outward rays are defined
by

R−(y) :=
{
− λν(y) : λ ≥ 0

}
, R+(y) :=

{
λν(y) : λ ≥ 0

}
,

respectively. We shall say that P satisfies the avoiding inward rays condition
provided that ϑ(x, y) /∈ R−(y) for every (x, y) ∈ RN × S, and we shall say
that P satisfies the avoiding outward rays condition provided that ϑ(x, y) /∈
R+(y) for every (x, y) ∈ RN × S. We shall show the following

Theorem 1.1. (a). Assume either the avoiding inward rays condition or
the avoiding outward rays condition; then, P has at least N + 1 geometrically
distinct fixed points in RN × intS. (b). If, furthermore, H = H(t, z) is
twice continuously differentiable with respect to z and all fixed points of P on
RN × intS are nondegenerate, then there are at least 2N of them.

We emphasize that in this theorem we do not assume the invariance of
the domain RN × intS, nor that our map should be close to the identity, nor
any monotone twist condition on RN × intS. We did presuppose uniqueness
for initial value problems, at least for solutions departing from RN × intS,
so that the Poincaré time map is well defined. This assumption may fail if
the Hamiltonian function is not smooth enough (say, for Hamiltonians of class
C1), reducing the applications of our theorem; for this reason, it will also be
dropped in Theorem 2.1, which is the main result of this paper.

Throughout this paper, N ≥ 1 is a fixed natural number. The case N = 1
is special, because then the embedded sphere S becomes a two-point set {a, b},
with a < b, its interior is the open interval ]a, b[ , and the unit outward normal
vector field is the function ν : {a, b} → R defined by ν(a) = −1, ν(b) = 1.
Thus, for N = 1, Theorem 1.1 becomes the particularization for Hamiltonian
systems of the standard planar Poincaré –Birkhoff theorem (for non necessarily
invariant annuli). Also the more general Theorem 2.1 is known in this case
(see [18, Theorem 2.1]). On the other hand, some of the arguments of this
paper (in particular those in Section 3) become much simpler if N = 1. For
these reasons we shall be concerned mainly with dimensions N ≥ 2.

Theorem 1.1 applies to Poincaré time maps of Hamiltonian systems which
are periodic in the xi variables. It leads to the question of finding an alternative
way to characterize such maps. Clearly, the transformations P : RN × intS →
R2N which we are considering differ from the identity on some map which is
periodic in the xi variables. In addition, assuming the Hamiltonian to be twice
continuously differentiable, P must be an exact symplectic diffeomorphism into
its image. Indeed, it can be seen (cf. [21, Theorem 58.9] or [27, Proposition
9.19]) that P is the Poincaré time map of a Hamiltonian system of the type
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we are dealing with if and only if it can be joined to the identity via a smooth
homotopy of exact symplectic diffeomorphisms. However, this criterion could
not be easy to check in practical situations. More explicit conditions are avail-
able when P is an exact symplectic monotone twist map. Indeed, Moser [30,
Theorem 1] has shown that, when N = 1, all such maps are indeed Poincaré
time maps of a Hamiltonian system. A higher dimensional version of this re-
sult has been obtained by Golé [21, Theorem 41.6], assuming that the map P
is globally defined on RN × RN and the twist is, in some sense, controlled at
infinity.

Notice that Theorem 1.1 states the existence of fixed points for certain
maps defined on RN × intS, the embedded sphere S ⊆ RN being C1-smooth.
The generalized Schoenflies theorem [9] implies that intS is homeomorphic to
the unit ball; however, there are indications that in some cases it may not be
diffeomorphic [28, p. 1069].

Another result presented in this paper is Theorem 2.2. Here, the avoiding
rays condition is replaced by some assumptions near infinity, and we shall refer
to it as our basic Hamiltonian Theorem. It will be used in Section 4 to prove
Theorem 2.1 by suitably modifying the Hamiltonian; in order to do so we shall
need a couple of technical properties of embedded spheres which are developed
in Section 3.

Having completed the passage to Theorem 2.1 from our basic Hamiltonian
Theorem 2.2, we devote the three last sections of the paper to obtain this
last result. In Section 5 we set a variational framework for our problem. The
periodic solutions of our Hamiltonian system then become the critical points
of a (strongly indefinite) functional, and the corresponding abstract theorem is
proved in Section 6 (for the general, possibly degenerate case) and in Section 7
(in the nondegenerate case).

The avoiding rays conditions have implications on the Brouwer degree of the
maps ϑ(x, ·) : intS → RN . Indeed, under the avoiding inward rays condition,
deg
(
ϑ(x, ·), intS, 0

)
= 1 for every x ∈ RN , while if the avoiding outward rays

condition holds, deg
(
ϑ(x, ·), intS, 0

)
= (−1)N for every x ∈ RN . This is easy

to check, since the maps ϑ(x, ·) : intS → RN can be connected by homotopies
to other maps which coincide on S with the outer normal vectorfield ν (in the
case of the avoiding inward rays condition) or the inner normal vectorfield −ν
(in the case of the avoiding outward rays condition); subsequently, the degrees
can be computed, e.g., by using the main theorem of [1]. We do not know
whether the avoiding rays conditions in Theorem 1.1 can be replaced by these
more general assumptions on the topological degrees.

2 Hamiltonian systems without uniqueness

The main result of this paper is a version of Theorem 1.1 which does not
require uniqueness for initial value problems. In order to describe it precisely,
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it will be convenient to introduce some terminology. We shall say that the
function H : [0, T ] × R2N → R, H = H(t, z) = H(t, x, y), is an admissible
Hamiltonian if it is continuous, 2π-periodic in xi for each i = 1, . . . , N , and it
has a continuously defined gradient with respect to z, denoted by∇H. Observe
that under these conditions the Poincaré time map could be multivalued (and
thus not defined in the usual sense). All Hamiltonians appearing in this paper
will be admissible.

A solution z : [0, T ] → R2N of (HS) is said to be T -periodic if it satisfies
z(0) = z(T ). Of course, in case H is the restriction of some function on
R×R2N which is T -periodic in time, then any T -periodic solution in this sense
can be extended to a T -periodic solution defined on R. When H = H(t, z) is
twice differentiable with respect to z, a T -periodic solution of (HS) is said to
be nondegenerate if the linearized system does not have nontrivial T -periodic
solutions. Equivalently, if the corresponding fixed point of the Poincaré map
is nondegenerate.

The avoiding inward/outward rays conditions considered in the Introduc-
tion can be easily adapted to our situation. We shall say that the flow of
the Hamiltonian system (HS) satisfies the avoiding inward [resp. outward]
rays condition relatively to S if every solution z(t) = (x(t), y(t)) of (HS) with
y(0) ∈ S is defined for every t ∈ [0, T ] and satisfies

x(T )− x(0) /∈ R−(y(0)) , [resp. x(T )− x(0) /∈ R+(y(0))] .

We are now ready to state our main result. Once more, we emphasize
that we do not assume any invariance of the domain, nor any closeness to the
identity, nor monotone twist condition.

Theorem 2.1. (a). Let the Hamiltonian function H : [0, T ] × R2N → R be
admissible, and assume the existence of an embedded sphere S ⊆ RN such that
the flow of (HS) satisfies the avoiding inward [resp. outward] rays condition
relatively to S. Then, the Hamiltonian system (HS) has at least N+1 geomet-
rically distinct T -periodic solutions z(0), . . . , z(N) such that, writing z(k)(t) =
(x(k)(t), y(k)(t)),

y(k)(0) ∈ intS , for k = 0, . . . , N .

(b). Moreover, if the Hamiltonian function H = H(t, z) is twice continu-
ously differentiable with respect to z and the T -periodic solutions with initial
condition on RN × intS are nondegenerate, then there are at least 2N of them.

An important ingredient to prove Theorem 2.1 is given below. It is reminis-
cent of a theorem due to Szulkin (cf. [36, Theorem 4.2] and [37, Theorem 8.1]),
but there are some differences. In contrast to Szulkin’s results, we deal with
Hamiltonians which are not quadratic or coercive in the y directions, but have
a finite limit as |y| → ∞. On the other hand, we shall assume that H(t, x, y)
does not depend on t, x for |y| big enough.
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Theorem 2.2. Let the Hamiltonian function H : [0, T ]×R2N → R be admis-
sible. Assume that

[H1] there exists some R0 > 0 such that H(t, x, y) ≡ h(y) does not depend on
t, x whenever |y| ≥ R0,

[H2] the function h has a finite limit ` as |y| → ∞; furthermore, h(y) 6= ` for
|y| sufficiently large,

[H3] lim|y|→∞∇h(y) = 0.

Then, system (HS) has at least N + 1 geometrically distinct T -periodic solu-
tions. If, in addition:

[H4] H is C2-smooth with respect to (x, y),

[H5] lim|y|→∞Hessh(y) = 0,

[H6] the T -periodic solutions of (HS) are nondegenerate,

then (HS) has at least 2N geometrically different T -periodic solutions.

In this result, assumption [H1] looks quite strong, and it seems plausible
that it could be avoided if one replaces the limits in [H2,3,5] by their analogues
referred to H(t, x, y), assumed uniform with respect to (t, x). However, for
the purposes of this paper we shall only need the result in the form above;
indeed, in Section 4 we are going to use Theorem 2.2 as the main tool to prove
Theorem 2.1. We shall first need a couple of facts about embedded spheres in
RN ; they will be the objective of the next section.

3 Embedded spheres in RN

We devote this section to establish two geometrical facts on embedded spheres
in RN . The first one is an approximation result:

Lemma 3.1. Let S ⊆ RN be a C1-smooth embedded sphere and let K ⊆ intS
be a compact set.

(†) There exists a C∞-smooth embedded sphere S∗ ⊆ RN with

K ⊆ intS∗ ⊆ intS∗ ⊆ intS .

(‡) Furthermore, given ε > 0, the embedded sphere S∗ can be chosen with the
following additional property: for any q ∈ S∗ there is some p ∈ S with

|q − p| < ε , |ν∗(q)− ν(p)| < ε .

Here, ν and ν∗ denote, respectively, the unit normal outward vectorfields
on S and S∗.
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Proof. The outer unit normal vector field ν : S → RN is continuously defined.
Using a regularization argument we can find a C1-smooth vector field X : S →
RN with |X(p)| = 1 for every p ∈ S and

〈X(p), ν(p)〉 > 0 , for all p ∈ S .

In order to prove (‡), choose some C1-smooth diffeomorphism σ : SN−1 → S
and some number δ ∈ ]0, ε[ , and consider the map ϕ : SN−1×] − δ, δ[→ RN

defined by
ϕ(θ, t) := σ(θ) + tX(σ(θ)) .

If δ ∈ ]0, dist(S, K)[ is small enough, this is a C1-smooth diffeomorphism into
its (open) image. Moreover,

ϕ(SN−1×{0}) = S , ϕ(SN−1×]0, δ[) ⊆ extS , ϕ(SN−1×]−δ, 0[) ⊆ (intS)\K .

Observe that

(i4) |ϕ(θ,−δ/2)− ϕ(θ, 0)| < ε/2 , for any θ ∈ SN−1.

We denote S4 := ϕ(SN−1 × {−δ/2}), which is a C1-smooth embedded sphere
contained into intS and containing K into its interior. After possibly replacing
δ by an smaller number there is no loss of generality in further assuming that

(ii4) |ν4(ϕ(θ,−δ/2))− ν(ϕ(θ, 0))| < ε/2 , for any θ ∈ SN−1.

(We call ν4 : S4 → RN the unit outer normal vector field on S4.) Using
again a regularization argument, one finds a C∞-smooth map φ∗ : SN−1 → RN

which is close, in the C1-sense, to ϕ(· ,−δ/2). Then, the C∞-smooth embedded
sphere S∗ := φ∗(SN−1) will still be contained in intS and will still contain K
in its interior. Moreover,

(i∗) |φ∗(θ)− ϕ(θ,−δ/2)| < ε/2 , for any θ ∈ SN−1,

(ii∗) |ν∗(φ∗(θ))− ν4(ϕ(θ,−δ/2))| < ε/2 , for any θ ∈ SN−1.

Combining (i4) with (i∗), and (ii4) with (ii∗), we deduce that |φ∗(θ) −
ϕ(θ, 0)| < ε and |ν∗(φ∗(θ)) − ν(ϕ(θ, 0))| < ε, for any θ ∈ SN−1. The result
follows.

We shall be particularly interested in the following consequence of Lem-
ma 3.1(‡). Let the (admissible) Hamiltonian function H be given and assume
that the avoiding inward/outward rays condition (with respect to the embed-
ded sphere S) holds. Then the modified embedded sphere S∗ may be taken so
that the avoiding rays condition perdures. This is the content of the following

Lemma 3.2. Let S ⊆ RN be a C1-smooth embedded sphere and let K ⊆ intS
be a compact set. Let H be an admissible Hamiltonian and assume that either
the avoiding inward rays condition or the avoiding outward rays condition (rel-
atively to S) holds. Then, the embedded sphere S∗ given by Lemma 3.1(†) can
be chosen so that the relative inward/outward avoiding rays condition holds.
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Proof. Using [18, Lemma 5.2], we see that all solutions (x(t), y(t)) of (HS)
starting with y(0) ∈ intS are defined on [0, T ], and indeed, the set of such
solutions is uniformly bounded in the y component. Consequently, there are
also bounds in the variation of the x component, i.e.,

|x(T )− x(0)| ≤M , (3)

for every solution (x(t), y(t)) of this type, the constantM > 0 not depending on
the particular solution. In addition, assuming for instance the avoiding inward
rays condition (relative to S), a compactness argument shows the existence of
some ε0 > 0 such that

dist(x(T )− x(0),R−(p)) ≥ ε0 , (4)

whenever p ∈ S, (x(t), y(t)) is a solution starting with y(0) ∈ intS, and
|y(0)− p| < ε0.

Recalling Lemma 3.1(‡) we may find an embedded sphere S∗ ⊆ intS with
K ⊆ intS∗ and with the following property: for every q ∈ S∗ there is some
p ∈ S with

|q − p| < ε0 , |ν∗(q)− ν(p)| < ε0/M . (5)

(we denote by ν∗ the unit outer normal vectorfield associated with S∗). To
conclude the proof it suffices to check the avoiding (inward) rays condition,
relative to this embedded sphere S∗. We see this by a contradiction argument
and assume instead that there is some solution (x(t), y(t)) of (HS) starting
with y(0) = q ∈ S∗ and such that x(T ) − x(0) = −λν∗(q) for some λ ≥ 0.
By (3), we see that λ ∈ [0,M ]. We choose some point p ∈ S satisfying (5) and
observe that

dist(x(T )− x(0),R−(p)) = dist(−λν∗(q),R−(p))

≤ λ| − ν∗(q) + ν(p)| < M(ε0/M) = ε0 ,

contradicting (4). It concludes the proof.

In the second part of this section we continue our study of embedded spheres
in RN , but with a different goal, which this time will be Lemma 3.5. We shall
start with an apparently unrelated result stating that any two points in an
open domain B ⊆ RN can be sent into each other by a diffeomorphism which
leaves the exterior of the domain pointwise fixed.

Lemma 3.3. Let B ⊆ RN be open and connected. Then, for every p, q ∈ B
there exists a C∞-smooth diffeomorphism Gpq : RN → RN such that Gpq(p) = q,
and Gpq(y) = y for every y ∈ RN \B.

Proof. It is divided into three steps. Firstly, we check the statement in the
special case when B is a convex subset of RN and the points p, q belong to
the first coordinate axis R × {0} ⊆ R × RN−1 ≡ RN ; in this situation the
result is due to Huebsch and Morse [22]. These additional assumptions are
subsequently removed in the second and third steps.
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First Step: B is convex and p = (a, 0), q = (b, 0) ∈ R × {0}. Since one
can take Gqp := G −1

pq there is no loss of generality in assuming that a < b.
The open set B contains the segment [p, q] = {(t, 0) : a ≤ t ≤ b}, and hence,
there are numbers a′ < a < b < b′ and e > 0 such that the cylindrical region
{(t, u) ∈ R × RN−1 : a′ < t < b′, |u| < e} is contained in B. The result now
follows from [22, Lemma 2.1].

Second Step: B is convex and p, q ∈ B are arbitrary. Choose some affine
isomorphism J : RN → RN sending both points p, q into the first coordinate
axis R × {0}. The open set J (B) is convex, so that, by the first step there
is a C∞-smooth diffeomorphism Gp′q′ : RN → RN which sends p′ = J (p) into
q′ = J (q) while leaving the points of RN \ J (B) pointwise fixed. It then
suffices to set Gpq := J −1 ◦ Gp′q′ ◦J .

Third Step: the general case. We define an equivalence relation R on B by
the rule

pR q ⇔ there exists Gpq : RN → RN under the conditions of the lemma.

It follows from the second step (applied to balls) that every equivalence class
is open. Moreover, any two different equivalence classes are disjoint. Thus,
the connected set B is the disjoint union of the (open) equivalence classes, and
we deduce that there is just one class. It completes the proof.

In [28], Morse proved a differentiable version of the Schoenflies Theorem
which states that the interior of an embedded sphere in RN is, excepting for
a possible singular point, diffeomorphic to the pointed ball. The fact that, in
view of Lemma 3.3, the singular points can be prescribed, leads to a variant
of this result in which the exterior of the standard sphere is mapped into the
exterior of an embedded sphere. We denote by BN the open unit ball in RN .

Lemma 3.4. Given a C2-smooth embedded sphere S ⊆ RN , there are open sets
U ⊃ RN \ BN and V ⊃ extS, and a C2-smooth diffeomorphism F : U → V
such that F(SN−1) = S and F(RN \ BN) = extS.

Proof. There is no loss of generality in assuming that 0 ∈ intS. We define

S :=

{
y

|y|2
: y ∈ S

}
.

This is again a C2-smooth embedded sphere in RN , and [28, Theorem 1.1]
states the existence of open sets U ⊃ BN and V ⊃ int S , together with
a homeomorphism F : U → V such that F (SN−1) = S and, for some
point p ∈ BN , the restriction F : U \ {p} → V \ {F (p)} is a C2-smooth
diffeomorphism. But, in view of Lemma 3.3 (applied to the open sets B1 = BN

and B2 = intS), it is not restrictive to assume that p = 0 = F (p). It suffices
now to consider the sets

U :=

{
y

|y|2
: y ∈ U \ {0}

}
, V :=

{
y

|y|2
: y ∈ V \ {0}

}
,
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and define the C2-smooth diffeomorphism F : U → V by the rule

F(u) :=
1

|F (u/|u|2)|2
F
(
u/|u|2

)
.

The lemma follows.

At this moment we are ready to show the second main result of this section:

Lemma 3.5. Let S ⊆ RN be an embedded sphere of class C2. Then, there
exists a C2-smooth function h : RN → [0, 1[ satisfying:

(i) h(y) = 0, for every y ∈ intS ;

(ii) ∇h(y) 6= 0, for every y ∈ extS ;

(iii) lim
y→y0
y∈extS

∇h(y)
|∇h(y)|

= ν(y0), for every y0 ∈ S ;

(iv) lim
|y|→∞

h(y) = 1 ; lim
|y|→∞

∇h(y) = 0 ; lim
|y|→∞

Hessh(y) = 0 .

Proof. Choose the open neighborhoods of infinity U ,V ⊆ RN and the C2-
smooth diffeomorphism F : U → V as given by Lemma 3.4. It can be assumed
that 0 /∈ U . We consider the function f : V → R defined by

f(y) = |F−1(y)| − 1 .

Observe that f ∈ C2(V). Moreover,

f(y)


> 0 , if y ∈ extS ,
= 0 , if y ∈ S ,
< 0 , if y ∈ (intS) ∩ V .

In addition, f is coercive, i.e. lim|y|→∞ f(y) = +∞. This means that its level
sets are compact, allowing us to define the function m : [0,+∞[→ R by

m(r) := r + max{|∇f(y)|+ ‖Hess f(y)‖ : y ∈ f−1(r)} .

Observe that m is continuous and positive. It is therefore possible to find a
C2-smooth function g : R → R, with

(?) g(r) = 0 , if r ≤ 0 ,

(??) 0 < g′(r) , if r > 0 ,

(? ? ?) g′(r) <
1

rm(r)
and − 1

rm(r)2
< g′′(r) < 0 , if r > 1 .
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Combining the first part of (???) with the fact that m(r) > r for any r > 0,
we see that the limit ` = limr→+∞ g(r) is finite. We finally define h : RN → R
by

h(y) =

0 , if y ∈ intS ,
1

`
g(f(y)) , if y ∈ V .

Observe that, since on (intS) ∩ V both definitions coincide, the function h is
well defined and it is C2-smooth. Properties (i)–(iv) are now easily checked.

4 Modifying the Hamiltonian: the proof of the

main theorem

In this section we carry out the proof of Theorem 2.1, assuming for this purpose
the validity of our basic Hamiltonian Theorem 2.2. Some of the arguments have
already been employed in [18]; thus, we will be brief while going through them,
and will concentrate instead on the differences.

The concept of strongly admissible Hamiltonian, considered in [18, Sec-
tion 5], will play an important role here. We recall the definition from there;
the Hamiltonian function H : [0, T ]×R2N → R is said to be strongly admissi-
ble (with respect to the set U = intS) provided that it is admissible and the
following two additional conditions hold:

[1.] there exists a relatively open set W ⊆ [0, T ]×RN , containing {0}×extS,
such that H is C∞-smooth with respect to the state variables z = (x, y)
on the ‘augmented set’ W] := {(t, x, y) : (t, y) ∈ W , x ∈ RN};

[2.] there exists some R1 > maxy∈S |y| such that H(t, x, y) = 0, if |y| ≥ R1.

We shall start by observing that it suffices to prove Theorem 2.1 under the
additional assumptions that the Hamiltonian H is strongly admissible (with
respect to intS) and the embedded sphere S is C2-smooth. With this aim,
let the admissible Hamiltonian H and the C1-smooth embedded sphere S ⊆
RN lie under the framework of Theorem 2.1, i.e., either the avoiding inward
rays condition or the avoiding outward rays condition relative to S holds. As
usual, we denote by (ĤS) the Hamiltonian system associated with the modified

Hamiltonian Ĥ.

Lemma 4.1. Let H and S satisfy the assumptions of Theorem 2.1. Then,
it is possible to find a strongly admissible Hamiltonian Ĥ and a C2-smooth
embedded sphere Ŝ ⊆ intS, such that:

(B) H and Ĥ coincide on some relatively open set containing the graph of

every T -periodic solution (x̂, ŷ) of (ĤS) starting with ŷ(0) ∈ int Ŝ;
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(BB) the flow of Ĥ satisfies the avoiding inward rays condition (resp., the

avoiding outward rays condition) relative to Ŝ.

Proof. In order to fix the ideas we assume, for instance, that the Hamiltonian
H satisfies the avoiding inward rays condition (with respect to S). Using [18,
Lemma 5.2] we see that there is a uniform bound for the solutions (x, y) of (HS)
starting with y(0) ∈ S. Then, a compactness argument shows the existence of
some ε > 0 such that every solution (x(t), y(t)) of (HS) starting with y(0) ∈ S
satisfies dist(x(T )− x(0),R−(y(0))) ≥ ε. Applying [18, Proposition 5.1] with
U = intS we see that there is a strongly admissible (with respect to intS)

Hamiltonian Ĥ which coincides with H on a relatively open set containing
the graph of any T -periodic solution ẑ(t) = (x̂(t), ŷ(t)) of (ĤS) satisfying
ŷ(0) ∈ intS, and such that the avoiding inner rays condition (relative to S)
still holds. Recalling now Lemma 3.2 we see that we can replace S by a C2-
smooth embedded sphere Ŝ ⊆ RN with

{v ∈ RN : (0, v) /∈ W} ⊆ int Ŝ ⊆ int Ŝ ⊆ intS ,

such that the avoiding inward rays condition still holds. The result follows.

Thus, from now on we assume, without loss of generality, that H is strongly
admissible (with respect to intS), and S is C2-smooth. As before, in order to
fix ideas we assume that the avoiding inward rays condition with respect to S
holds. In view of [2.] all solutions of (HS) are defined on [0, T ] and, moreover,
the set of solutions starting from any given compact set is compact. Let the
function h : RN → R be given by Lemma 3.5 for the embedded sphere S; there
must be some % > 0 such that, whenever (x(t), y(t)) is a solution of (HS),

dist(y(0), ∂S) < % ⇒ x(T )− x(0) 6∈ {−r∇h(y(0)) : r ≥ 0} . (6)

Let W be given by [1.]; after possibly replacing % by an smaller number
we have that

{y ∈ RN : (0, y) 6∈ W} ⊆ K := {y ∈ intS : dist(y,S) ≥ %} .

The set K is compact and contained inside intS, and using Lemma 3.1(†),
we may find C∞-smooth embedded spheres S ′,S∗ ⊆ RN with

K ⊆ intS ′ ⊆ intS ′ ⊆ intS∗ ⊆ intS∗ ⊆ intS .

We choose some constant c > 0 and consider the (relatively open) set

Ω :=
(
{0} × intS ′

)
∪
{
(t, y) ∈ ]0, T ]× RN : dist(y, intS ′) < ct

}
.

Denote Ω] :=
{
(t, x, y) ∈ [0, T ] × R2N : (t, y) ∈ Ω

}
. Combining [1.] and [2.]

we see that, if c is large enough, then H is C∞-smooth on the set

G] :=
(
[0, T ]× R2N

)
\ Ω] =

{
(t, x, y) ∈ [0, T ]× R2N : dist(y, intS ′) > ct

}
.
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Moreover, using similar arguments to those carried out in the proof of [18,
Lemma 6.2], we see that, for large c > 0, the set Ω] is strictly forward-invariant
for the flow of (HS), in the sense that

(t0, z(t0)) ∈ Ω] ⇒ (t, z(t)) ∈ Ω] , for every t ∈ ]t0, T ] , (7)

where z = z(t) is any solution of (HS). What is more, Ω] is strictly forward-

invariant for the flow of every Hamiltonian system (H̃S) whose (admissible but

not necessarily strongly admissible) Hamiltonian H̃ coincides with H on Ω].

Consider the set Γ, whose elements are those (t, ζ) ∈ [0, T ]×R2N such that
the solution z of (HS) with z(0) = ζ satisfies (s, z(s)) ∈ G] , for every s ∈ [0, t].
The set Γ is open relatively to [0, T ]× R2N , and it contains the sets

A] = {0} × RN × (extS ′) , B] = [0, T ]× RN × (RN \ BN
R1

) ,

where BN
R1

denotes the ball in RN centered at the origin and having radius R1,
the constant given by [2.]. Choose now some C2-smooth function h� : RN →
R, with

h�(η) = 0 , if η ∈ intS∗ ; h�(η) > 0 , if η ∈ extS∗ ; lim
|η|→∞

h�(η) = +∞ .

(For instance, one can take h�(η) := h∗(η) + max{(|η| −R1)
3, 0}, the function

h∗ being given by Lemma 3.5 for the embedded sphere S∗). Pick next some
constant k > 0 large enough so that ∆] ⊆ Γ, where ∆] := {(t, ξ, η) ∈ [0, T ]×
RN × RN : (t, η) ∈ ∆}, and

∆ :=
{

(t, η) ∈ [0, T ]× RN : h�(η) > kt
}
.

We now recall that the function h : RN → R was given by Lemma 3.5 for
the embedded sphere S. The result below states the existence of a function
r = r(t, η) whose time average is h = h(η) and having support contained in ∆.

Lemma 4.2. There is a C2-smooth function r : [0, T ]× RN → R satisfying

(?) r(t, η) = 0, if (t, η) /∈ ∆,

(??) 1
T

∫ T

0
r(t, η) dt = h(η), for every η ∈ RN ,

(???) r(t, η) = h(η), if |η| is sufficiently large.

Proof. We choose a C∞-smooth function u : R → R satisfying

u(s) = 0 , if s ≤ 0 ; u(s) = 1 , if s ≥ 1 ; 0 < u(s) < 1 , if s ∈ ]0, 1[ .

Then, we define p : [0, T ]× (extS∗) → R by

p(t, η) =
u(h�(η)− kt)

1
T

∫ T

0
u(h�(η)− ks) ds

.

We observe that p is a C2-smooth function satisfying
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(�) p(t, η) = 0, if (t, η) /∈ ∆,

(��) 1
T

∫ T

0
p(t, η) dt = 1, if η ∈ extS∗,

(���) p(t, η) = 1, if |η| is sufficiently large.

Finally, we define r : [0, T ]× RN → R by

r(t, η) =

{
0 , if η ∈ intS∗,
p(t, η)h(η) , if η ∈ extS∗ .

It is easily checked that r satisfies all the required properties. It proves the
lemma.

Proof of Theorem 2.1. Since H(t, x, y) is periodic in x and is equal to zero for
|y| large, there is some constant c > 0 such that∣∣∣∣∂H∂y (t, x, y)

∣∣∣∣ ≤ c , for every (t, x, y) ∈ [0, T ]× R2N . (8)

On the other hand, recalling (ii) in Lemma 3.5, we may find another con-
stant c′ > 0 such that

|∇h(y0)| ≥ c′ , if y0 ∈ extS satisfies dist(y0,S) ≥ % and |y0| ≤ R1 , (9)

the constants % and R1 having been introduced in (6) and assumption [2.],
respectively. Consider the flow map φ : Γ → R2N , φ = φ(t, ζ), giving the
position at time t of the solution z of (HS) with z(0) = ζ. Using arguments
similar to those in [18, Lemma 6.4], it can be seen that the function Φ :
Γ → G], defined as Φ(t, ζ) = (t, φ(t, ζ)), is a C∞-smooth diffeomorphism. Let
r : [0, T ] × RN → R be given by Lemma 4.2 above, let r] : [0, T ] × R2N → R
be defined by

r](t, ξ, η) := r(t, η) ,

and let the Hamiltonian R : [0, T ]× R2N → R be given as

R(t, z) =

{
r](Φ

−1(t, z)) , if (t, z) ∈ G] ,

0 , otherwise .

It can be checked that R is C2-smooth. Fix some constant

λ > c/c′, (10)

and define
H̃(t, z) = H(t, z) + λR(t, z) .

Observe that H̃ coincides with H on the set Ω]. Letting z = (x, y) and
combining [2.] with (? ? ?) in Lemma 4.2, for |y| big enough one has

Φ−1(t, z) = (t, z) , R(t, z) = h(y) .
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Thus, we immediately obtain condition [H1], and [H2,3,5] follow easily from
item (iv) of Lemma 3.5, and the fact that h(y) < 1, for every y ∈ RN . Ap-

plying Theorem 2.2, we see that the modified system (H̃S) has at least N + 1
geometrically distinct T -periodic solutions, while, in the nondegenerate case,
their number is at least 2N .

Let us show now that these are indeed T -periodic solutions of (HS). With

this aim, fix some solution z̃ = (x̃, ỹ) : [0, T ] → R2N of (H̃S), with ỹ(0) ∈
extS ′. Arguing as in [18, Lemmas 6.5, 6.6, 6.7] we see that there exists a
solution z = (x, y) : [0, T ] → R2N of (HS) such that y(t) and ỹ(t) coincide at
t = 0, T ; x(t) and x̃(t) coincide at t = T , and

x(0) = x̃(0) + λT∇h(y(0)) .

In particular, we have

x̃(T )− x̃(0) = x(T )− x(0) + λT∇h(y(0)) .

To conclude the argument we shall see that z̃ is not T -periodic because x̃(T ) 6=
x̃(0). Equivalently,

x(T )− x(0) 6= −λT∇h(y(0)) . (11)

This fact will end the proof of Theorem 2.1, since it implies, by (7), that all

T -periodic solutions of (H̃S) lie in Ω], hence they are T -periodic solutions
of (HS).

We distinguish three cases.

Case 1 : dist(y(0),S) < %. In this situation, (11) follows directly from the
choice of % in (6).

Case 2 : |y(0)| > R1. Since H(t, x, y) = 0 for |y| ≥ R1, we now have that
x(T ) = x(0), and the result follows.

Case 3 : dist(y(0),S) ≥ % and |y(0)| ≤ R1. Recalling (8), we have |x(T ) −
x(0)| ≤ Tc, so that, by (9) and (10),

|x(T )− x(0)| ≤ Tc < Tλc′ ≤ | − λT∇h(y(0))| ,

and hence (11) holds. The proof of Theorem 2.1 is complete.

5 Critical point theory

5.1 Counting the critical points of a function on a finite-
dimensional manifold

In this subsection we recall some classical facts relating the topology of a
compact manifold V and the number of critical points of a function defined
on it. Let V be a finite-dimensional, compact, connected C2-smooth manifold

15



without boundary, and let f : V → R be a function of class C1. The maximum
and the minimum of f on V are critical values of f ; in particular, f has at
least two different critical points. However, if one assumes some additional
‘complexity’ in the topology of V , in some cases it is possible to combine
algebraic topology with critical point theory methods to predict the existence of
more critical points. For instance, it is well known that any real-valued function
defined on the 2-torus T2 must have at least three different critical points, and
four if they are nondegenerate. Results of the former type motivated Ljusternik
and Schnirelmann [25] to develop the concept of category; on the other hand,
the latter statement is a well-known example of the consequences of Morse
theory (see, e.g., [3]).

We recall that cat(V), the category of V , is the minimum number of closed,
contractible subsets whose union is V . If no such a finite covering of V by
closed contractible subsets exists, then cat(V) := +∞. The importance of
this topological invariant is ensured by the Ljusternik – Schnirelmann theorem:
any C1-smooth function on V has at least cat(V) critical points. See e.g. [13,
Section 5.2.2] or [35, Chapter V] for more details.

In general, the category of a given manifold may not be easy to compute
directly. For this reason, it is usual to consider also other topological invari-
ants, such as the so-called cuplength of V , denoted cl(V). It is the largest
integer k for which there are elements αj ∈ Hqj(V), j = 1, . . . , k (the singular
cohomology vector spaces with real coefficients), such that qj ≥ 1, and the cup
product α1 ∪ . . . ∪αk does not vanish (see, e.g., [35, p. 161] or [36, p. 732]). It
can be used to estimate cat(V); indeed,

cat(V) ≥ cl(V) + 1 .

Finally, a third relevant number associated with our manifold V is sb(V),
the sum of its Betti numbers. With other words,

sb(V) =
+∞∑
n=0

dim[Hn(V)] ,

where Hn(V) denotes the usual n-th homology vector space, whose elements
are equivalence classes of n-dimensional chains with zero boundary and real
coefficients. Observe that all homology vector spaces Hn(V) are finitely gener-
ated, and they vanish for n > dimV , so that the sum is finite. The importance
of this number arises from its connection with the critical point theory of Morse
functions, i.e., C2-functions with only nondegenerate critical points. Indeed,
a well known result in this context is the so-called Morse inequality, which
implies that the number of critical points of any Morse function on V is at
least sb(V) (see, e.g. [3, Section 3.4]).

In this paper, we shall be particularly interested in the case of V being the
N -torus TN = (R/2πZ)N , for which one has

cl(TN) = N , cat(TN) = N + 1 , sb(TN) = 2N .
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(The first two equalities are proposed as an exercise in [35, p. 161]; the last one
is a well-known consequence of the so-called Künneth formula for the homology
with coefficients on a field, see, e.g., [12, p. 5], or [34, p. 235]). Thus, any C1-
smooth function on the torus TN has at least N + 1 critical points, and 2N if
the function is C2-smooth and the critical points are nondegenerate.

5.2 Bounded perturbations of strongly indefinite,
quadratic functionals with nontrivial kernel

We shall develop results of the kind described above for a certain class of func-
tionals defined on the product M = E×V , the Hilbert space E being possibly
infinite-dimensional. Our functionals will display a ‘saddle-like’ geometry in
the first variable, in line with other results which were amply studied in the
literature some 25 years ago, see e.g. [11, 20, 24, 36, 37]. However, these works
treat cases in which the (global) Palais – Smale condition holds, and we are here
interested in allowing the existence of degenerate directions of the quadratic
part, along which compactness may fail. Our results will nevertheless ensure
the existence of at least cl(V) + 1 different critical points, and sb(V) in the
nondegenerate case.

Precisely, let E be a separable real Hilbert space, endowed with the scalar
product 〈·, ·〉 and the associated norm ‖ · ‖. Let L : E → E be a bounded
selfadjoint linear operator, and assume that E splits as the orthogonal direct
sum

E = E− ⊕ E0 ⊕ E+ , (12)

where E0 = kerL 6= {0} is finite-dimensional and E± are closed subspaces
which are invariant for L. We further assume that L is positive definite on E+

and negative definite on E−, i.e., there is some constant ε0 > 0 such that〈Le−, e−〉 ≤ −ε0‖e−‖2, for every e− ∈ E− ,

〈Le+, e+〉 ≥ ε0‖e+‖2, for every e+ ∈ E+ .
(13)

Let V be a finite-dimensional compact C2-smooth manifold without bound-
ary, let M := E × V , and let ψ : M→ R be given. We shall be interested in
the associated complemented functional ϕ : M→ R, defined by

ϕ(e, v) = 1
2
〈Le, e〉+ ψ(e, v) . (14)

We observe that the finite-dimensional compact manifold V admits many
Riemannian structures, which are however equivalent. From now on we see V
as endowed with such a Riemannian structure; it allows us to work with the
gradient maps

∇Mϕ ≡ (∇Eϕ,∇Vϕ) , ∇Mψ ≡ (∇Eψ,∇Vψ) ,
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which are defined on M and take values in TM≡ E × TV . In view of (14),

∇Mϕ(e, v) =
(
Le+∇Eψ(e, v),∇Vψ(e, v)

)
, (e, v) ∈ E × V .

In addition, if this functional is assumed to be C2-smooth, it is possible to
identify its second differential at a critical point (e, v) ∈M with the associated
Hessian linear map HessMϕ(e, v) ∈ L (E×TvV), see, e.g., [16, §(16.5.11)]. As
usual, this critical point is called nondegenerate provided that HessMϕ(e, v) is
a topological automorphism.

In order to introduce the assumptions on ψ, we shall say that it belongs to
the class A provided that:

[ψ1] ψ is bounded, there exists some ` ∈ R such that

ψ(e, v) 6= ` , for every (e, v) ∈M ,

and
lim

‖e0‖→∞
e0∈E0

ψ(e0 + b, v) = ` , (15)

uniformly with respect to b belonging to bounded subsets of E and v ∈ V ;

[ψ2] ψ is C1-smooth, its partial gradient map∇Eψ is bounded and completely
continuous, and

lim
‖e0‖→∞
e0∈E0

∇Eψ(e0 + b, v) = 0 , (16)

uniformly with respect to b belonging to bounded subsets of E and v ∈ V .

We shall say that ψ belongs to the class A + provided that it not only belongs
to the class A , but further satisfies:

[ψ3] there exists some R > 0 such that ∇Mψ(e0, v) ∈ E0 whenever (e0, v) ∈
E0 × V , ‖e0‖ ≥ R;

[ψ4] ψ is C2-smooth, its partial Hessian map HessEψ : M → L (E) is
globally compact (i.e., its image is relatively compact in L (E)), and

lim
‖e0‖→∞
e0∈E0

HessEψ(e0 + b, v) = 0 , (17)

uniformly with respect to b belonging to bounded subsets of E and v ∈ V ;

[ψ5] all critical points of ϕ are nondegenerate.

Since the subspaces E± are allowed to be infinite-dimensional, (13) and
assumption [ψ1] tell us that, in some sense, the functional ϕ has a (strongly
indefinite) global saddle geometry. This fact will allow us to estimate the
number of its critical points from certain topological invariants of the compact
manifold V . Indeed, we shall show the following:
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Theorem 5.1. (a). Assume that ψ belongs to the class A ; then, ϕ has at
least cl(V) + 1 critical points. (b). If ψ belongs to the class A +, then ϕ has at
least sb(V) critical points.

The two parts of this theorem will be proved, respectively, in Sections 6
and 7. We just remark now that, using an observation made in [4, Remark 1.10]
(see also [36, p. 732]), there will be no loss of generality in assuming that1

L(e) = e+ − e− , for every e ∈ E . (18)

Indeed, otherwise we may define the linear map L : E → E by L(e) = e+−e−,
and introduce an equivalent scalar product on E by setting ≺ e|e �:= 〈Le+−
Le− + e0, e〉, so that 〈Le, e〉 =≺ Le | e �.

5.3 An abstract framework for periodic solutions
of Hamiltonian systems

In this subsection we shall see how to obtain our basic Hamiltonian Theo-
rem 2.2 from the abstract Theorem 5.1. To do so we need to write the T -
periodic solutions of our spatially-periodic Hamiltonian system (HS) as the
critical points of a suitable functional defined on the cartesian product of a
Hilbert space E and the N -torus (R/2πZ)N = V . The arguments are mostly
well-known (see, e.g. in [33, Chapter 6]); for this reason we recall them only
briefly.

There is no loss of generality in assuming that T = 1. We shall borrow
the notation from complex Fourier analysis and rewrite 1-periodic functions
f : R/Z → RN as

f(t) =
+∞∑

m=−∞

fm exp(2πmt i) ,

where fm = f−m ∈ CN , for every m ∈ Z. If
∑+∞

m=1 |m| |fm|2 < +∞, such a

function is said to belong to H
1
2 (R/Z,RN), and this space is endowed with a

Hilbert structure by setting〈
+∞∑

m=−∞

fm exp(2πmt i),
+∞∑

m=−∞

gm exp(2πmt i)

〉
:= (f0|g0)+

+∞∑
m=−∞

|m|(fm|gm) .

Henceforth we denote by (·|·) the usual scalar product in CN , i.e. (z|w) =∑N
i=1 ziwi .

Consider the bounded linear operator T : H
1
2 (R/Z,RN) → H

1
2 (R/Z,RN)

defined by

T

(
+∞∑

m=−∞

fm exp(2πmt i)

)
:=

+∞∑
m=−∞

m6=0

i sign(m) fm exp(2πmt i) .

1When the symbols e+, e−, e0 appear in combination with e (assumed to be some element
of E), they denote the corresponding orthogonal projection on E+, E− or E0, respectively.
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It is easy to check that, whenever f, g ∈ H 1
2 (R/Z,RN),

〈T f, g〉 =
1

2π

∫ 1

0

(f ′(t)|g(t)) dt . (19)

Observe also that ker T is the space of constant functions (which can be iden-

tified to RN), while its image is the subspace H̃
1
2 (R/Z,RN) made of functions

with zero mean.

The solutions of our Hamiltonian system (HS) will be sought in the set

of couples z = (x, y) ∈ H
1
2 (R/Z,RN) × H

1
2 (R/Z,RN). Two such couples

(x1, y1), (x2, y2) will be identified provided that y1 = y2 and x2 − x1 differ on
an element of (2πZ)N . We shall formalize this procedure by rewriting the

couple (x, y) in the form ((x̃, y), x̄), where x̄ =
∫ 1

0
x(t) dt is seen as an element

of V = (R/2πZ)N , and (x̃, y) belongs to

E = H̃
1
2 (R/Z,RN)×H

1
2 (R/Z,RN) .

The set E becomes a separable Hilbert space after being endowed with
the scalar product (which we shall continue to denote by 〈·, ·〉) inherited from

H
1
2 (R/Z,RN) × H

1
2 (R/Z,RN). We consider the continuous linear operator

L : E → E given by

L(x̃, y) := 2π (−T y, T x̃) , (x̃, y) ∈ E .

In view of (19), for any (x̃, y), (ũ, v) ∈ E one has〈
L

(
x̃
y

)
,

(
ũ
v

)〉
=

∫ 1

0

(
( ˙̃x(t)|v(t))− (ẏ(t)|ũ(t))

)
dt ,

implying that L is selfadjoint. Observe also that its kernel is the finite-
dimensional subspace E0 := {0} × RN ⊆ E. Moreover, setting

E+ :=

{(
x̃
y

)
∈ E : y = T x̃

}
, E− :=

{(
x̃
y

)
∈ E : y = −T x̃

}
,

we see that 〈Le+, e+〉 ≥ 2π‖e+‖2 for any e+ ∈ E+, while 〈Le−, e−〉 ≤ −2π‖e−‖2

for any e− in E−. Finally, observing that T 2 = −Id on H̃
1
2 (R/Z,RN), one

checks that, for any (x̃, ỹ) ∈ H̃ 1
2 (R/Z,RN)× H̃

1
2 (R/Z,RN),

(x̃, ỹ) =
1

2

(
x̃+ T ỹ ,−T x̃+ ỹ

)
+

1

2

(
x̃−T ỹ ,T x̃+ ỹ

)
∈ E− + E+ ,

and it easily follows that E splits as the orthogonal direct sum E = E−⊕E0⊕
E+. Thus, the Hilbert space E and the operator L satisfy all the requirements
of Subsection 5.2.
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We consider the Nemytskĭı functional ψ : M := E × V → R defined by

ψ((x̃, y), x̄) =

∫ 1

0

H
(
t, x̄+ x̃(t), y(t)

)
dt . (20)

Well-known arguments show that ψ is C1-smooth; moreover, a point ((x̃, y), x̄)
in M is critical for the complemented functional ϕ (defined as in (14)) if and
only if z(t) = (x̄+x̃(t), y(t)) is a 1-periodic solution of (HS). Thus, we are now
(almost) ready to deduce Theorem 2.2 from Theorem 5.1. We shall prepare the
proof with a couple of results, the first of which comes from linear functional
analysis:

Lemma 5.2. Let X, Y, Z be real Banach spaces and K : X → Y a completely
continuous linear map. Then, the composition operator L (Y, Z) → L (X,Z),
M 7→M ◦K, is completely continuous.

Proof. Let {Mn}n ⊆ L (Y, Z) be bounded. After restricting them to the
compact set C := K(BX), (the closure of the image by K of the unit ball in
X), we get a sequence of continuous maps Mn : C → Z. This sequence is
uniformly bounded and equicontinuous, and hence the Ascoli-Arzelà theorem
guarantees the existence of a subsequence which converges uniformly on C.
Then, {Mn ◦ K}n converges, along a subsequence, to some continuous linear
operator from X to Z. The proof is complete.

Assume now either [H1−3] or [H1−6], and let the function h : RN \BN
R0
→ R

and the constant ` be given by these assumptions. After replacing R0 by a
bigger constant and changing, if necessary, the sign of the Hamiltonian, one
may assume that

h(y) = H(t, x, y) < ` , whenever |y| ≥ R0 . (21)

The aim of the lemma below consists in showing that it suffices to prove
Theorem 2.2 assuming that this inequality holds on the whole extended phase
space [0, 1]× RN × RN , i.e.

H(t, x, y) < ` , for any (t, x, y) ∈ [0, 1]× RN × RN . (22)

Lemma 5.3. Let the (admissible) Hamiltonian H satisfy either assumptions
[H1−3] or [H1−6] in Theorem 2.2, and (21). Then, there exists a modified (ad-
missible) Hamiltonian H̆ which satisfies these same assumptions and also (22),
and such that the associated Hamiltonian systems have the same T -periodic so-
lutions.

Proof. Choose some constant ˘̀ > sup[0,1]×RN×RN H, together with some C2-
smooth function α : R → R satisfying

α(s) = s , if s ≤ max
|y|=R0

h(y) ; α′(s) > 0 , for all s ∈ R ; α(`) = ˘̀.
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Then, define

H̆(t, x, y) :=

H(t, x, y) , if |y| ≤ R0 ,

h̆(y) := α(h(y)) , if |y| ≥ R0 .

It is clear that (22) now holds for H̆ and ˘̀. Observe that the periodic
solutions z(t) = (x(t), y(t)) of the Hamiltonian systems associated with either
H̆ or H are of two classes; those which stay in the region {|y| ≤ R0}, and

those for which y(t) has a constant value y0 ∈ RN \ BN
R0

, which must be a
critical point of h. Consequently, both Hamiltonian systems have the same
1-periodic solutions, and assumptions [H1−3] (or [H1−6]) are inherited by H̆.
This concludes the proof.

Proof of Theorem 2.2. As shown by Lemma 5.3, there is no loss of generality
in assuming (22), which, in view of the definition of ψ in (20), implies the first
part of [ψ1]. In order to check (15), choose sequences {en

0 = ȳn}n ⊆ E0 = RN ,

{bn = (x̃n, yn)}n ⊆ E = H̃
1
2 (R/Z,RN)×H 1

2 (R/Z,RN) and {vn = x̄n}n ⊆ V =
TN , satisfying ‖ȳn‖ → ∞ and supn(‖x̃n‖ + ‖yn‖) < ∞; since the inclusion

H
1
2 (R/Z,RN) ⊆ L1(R/Z,RN) is compact, after passing to a subsequence there

is no loss of generality in assuming that both sequences {x̃n} and {yn} converge
in L1(R/Z,RN) and indeed pointwise for almost every t ∈ R/Z. Equality (15)
now follows from [H1−2] and Lebesgue’s dominated convergence theorem.

A similar reasoning can be used to deduce (16) from [H3]. Concerning the
boundedness and the complete continuity of ∇Eψ, it follows from well-known
arguments, based on the boundedness of ∇H and the fact that the inclusion
E ⊆ L2(R/Z,R2N) is compact.

Assume finally [H1−6]. Then [ψ3] is an immediate consequence of [H1].
On the other hand, in view of [H4−5] we see that H is C2-smooth with respect
to z = (x, y) and its associated Hessian map HessH : [0, T ]×R2N →M2N(R)
is bounded. We deduce that ψ is twice continuously differentiable in its first
variable and, for any (x̃, y), e, e ∈ E and x̄ ∈ V ,

〈
HessEψ((x̃, y), x̄)e, e

〉
=

∫ 1

0

(
HessH

(
t, x̄+ x̃(t), y(t)

)
e(t)
∣∣∣e(t))dt . (23)

Thus, HessEψ : M→ L (E) can be written as the composition of the map
h : M→ L (L2(R/Z,R2N), E) defined by

〈
h((x̃, y), x̄)e, e

〉
=

∫ 1

0

(
HessH

(
t, x̄+ x̃(t), y(t)

)
e(t)
∣∣∣e(t))dt ,

and the ‘restriction operator’ L (L2(R/Z,R2N), E) → L (E) sending M into
M
∣∣
E
. Since h is continuous and globally bounded, and the inclusion E ⊆

L2(R/Z,R2N) is compact, it follows from Lemma 5.2 that HessEψ is globally
compact.
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It remains to check (17). Equivalently, (letting b = (x̃, y) ∈ E, v = x̄ and
e0 = ȳ),

lim
|ȳ|→∞

HessEψ((x̃, ȳ + y), x̄) = 0 ,

uniformly with respect to (x̃, y) belonging to bounded subsets of E and x̄ ∈ TN .
However, in view of (23), for any (x̃, y), e, e ∈ E and x̄ ∈ V , one has∣∣∣〈HessEψ((x̃, y), x̄)e, e

〉∣∣∣ ≤ ∥∥HessH
(
·, x̄+ x̃, y

)
e
∥∥

L2‖e‖L2 ;

moreover, since E is continuously embedded in L2(R/Z,R2N), there is some
constant K > 0 such that ‖e‖L2 ≤ K‖e‖E, and hence,∥∥HessEψ((x̃, y), x̄)e

∥∥
E
≤ K

∥∥HessH
(
·, x̄+ x̃, y

)
e
∥∥

L2 ,

for any (x̃, y), e ∈ E and x̄ ∈ V . Thus, it suffices to check that ‖HessH
(
·, x̄+

x̃, ȳ+ y
)
e
∥∥

L2 → 0 as |ȳ| → ∞, uniformly with respect to (x̃, y), e belonging to
bounded subsets of E and x̄ ∈ V .

With this aim, choose bounded sequences {(x̃n, yn)}n, {en}n ⊆ E, and
{x̄n}n, {ȳn}n ⊆ RN with |ȳn| → ∞. The inclusion of E into L2(R/Z,R2N)
being compact, after possibly passing to a subsequence we may assume that,
for some (x̃, y), e ∈ E,

(x̃n, yn) → (x̃, y) and en → e , in L2(R/Z,R2N) .

Moreover, there is no loss of generality in assuming that this convergence holds
pointwise at almost every point. By the triangle inequality,

‖HessH
(
·, x̄n + x̃n, ȳn + yn

)
en‖L2 ≤

≤‖HessH(·, x̄n + x̃n, ȳn + yn)(en − e)‖L2 +‖HessH(·, x̄n + x̃n, ȳn + yn)e‖L2 .

The first term in the right side converges to zero because en → e and HessH
is uniformly bounded, while the second term also converges to zero, by [H5]
and Lebesgue’s theorem. The proof is complete.

6 Relative category and multiplicity of critical

points

The goal of this section is to prove the first part of Theorem 5.1: if ψ belongs
to the class A then the complemented functional ϕ has at least cl(V) + 1
critical points. Accordingly, we go back to the framework and assumptions of
this result, and consider a Hilbert space E splitting as in (12), a selfadjoint
operator L : E → E having the form (18) and a compact connected C2-
smooth manifold V . Finally, we choose a functional ψ : M = E × V → R
in the class A , and construct its complemented functional ϕ by (14). Our
tools will be mainly topological, and more precisely, will come from algebraic
topology. Many of these arguments were developed by Szulkin [36], and it is
from this paper that we borrow the notation and, to some extent, the line of
argument.
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The set of critical points of ϕ is Ξ = {z ∈ M : ∇Mϕ(z) = 0}. We recall
that a function V : M \ Ξ → E × TV is said to be a pseudogradient vector
field for ϕ if it is locally Lipschitz continuous and satisfies

‖V (z)‖ ≤ 2‖∇Mϕ(z)‖ , 〈∇Mϕ(z), V (z)〉 ≥ 1
2
‖∇Mϕ(z)‖2 ,

for every z ∈ M \ Ξ. The result below has been extracted from [36, pp. 730–
731]:

Lemma 6.1. There exists a pseudogradient vector field of the form

V (e, v) =
(
V1(e, v) = Le+W (e, v) , V2(e, v)

)
,

where W : M \ Ξ → E is bounded and completely continuous (i.e., it maps
bounded subsets of M\ Ξ into relatively compact subsets of E).

From now on, let V be fixed under the conditions of the above lemma. We
consider the initial value problem

dγ

dτ
= −V (γ) , γ(0, z) = z . (24)

For each initial position z ∈ M \ Ξ, the unique solution γ(· , z) is defined on
some maximal interval ]τ−(z), τ+(z)[ .

6.1 An admissible class of deformations of M
By a deformation of M we mean a continuous map η : [0, 1] × M → M
such that η(0, z) = z for every z ∈ M. Following [36, Definition 2.3], a class
D of deformations of M will be called admissible if it contains the trivial
deformation η(t, z) = z and, whenever η, η̃ belong to D, their superposition

η ? η̃(t, z) =

{
η(2t, z) , for 0 ≤ t ≤ 1/2 ,

η̃(2t− 1, η(1, z)) , for 1/2 ≤ t ≤ 1

also belongs to D.

Inspired by Szulkin [36, Definition 3.5], we consider the class D of defor-
mations of M defined as follows: the deformation η belongs to D provided
that:

(�) for every z ∈ M \ Ξ, the flow η(· , z) moves forward along the integral
curve γ(· , z) of (24), in the sense that, for any t1 < t2 in [0, 1], there are
τ1 ≤ τ2 in [0, τ+(z)[ such that η(t1, z) = γ(τ1, z) and η(t2, z) = γ(τ2, z);

(��) there are continuous functions q± : [0, 1] ×M → R which are bounded
on bounded sets and satisfy q±(0, e, v) = 1, and a completely continuous
map K : [0, 1] ×M → E with K(0, e, v) = e0, such that η(t, e, v) =(
η1(t, e, v) , η2(t, e, v)

)
, with

η1(t, e, v) = q−(t, e, v)e− + q+(t, e, v)e+ +K(t, e, v) , (25)

for every (t, e, v) ∈ [0, 1]× E × V .
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It is easy to check that this class of deformations is admissible in the sense given
above. We remark that it is not exactly the class of deformations considered
in [36], since it is further required there (for Le = e+−e−), that both functions
q± are bounded away from zero, and satisfy q−(t, e, v)q+(t, e, v) ≡ 1. So, our
class D actually contains more deformations than that the one considered by
Szulkin; however, we will keep the essential properties of Szulkin’s relative
category.

A closed set N ⊆ M is said to be invariant for the class D if η([0, 1] ×
N ) ⊆ N for every η ∈ D. In view of property (�) with which our class of
deformations D has been defined, a sufficient condition for the set N to be
invariant for the class D is that it be forward-invariant for the flow of (24). The
result below, which follows along the lines of [36, Theorem 3.8], establishes the
existence of a family of sets which satisfy these conditions.

Lemma 6.2. If R > 0 is big enough, the set

N (R) =
(
(E− \ BE−

R )⊕ E0 ⊕ E+

)
× V (26)

is invariant for the class D.

Proof. In view assumption [ψ2], our functional ψ has a bounded gradient. This
implies the existence of some R > 0 such that Ξ ∩ N (R) = ∅. Furthermore,
since also W is bounded, after possibly replacing R by a bigger number we
may assume that 〈Le+W (e, v), e−〉 < 0 for every (e, v) ∈ N (R). Then N (R)
is forward-invariant for the flow of (24), and the result follows.

There is a well-known deformation lemma which provides the existence of
many nontrivial deformations in the class D. Given some level c ∈ R we write

ϕc = {z ∈M : ϕ(z) ≤ c} , Ξc = {z ∈ Ξ : ϕ(z) = c} .

Lemma 6.3. Let ϕ satisfy the Palais – Smale condition at a given level c ∈ R.
If U is an open neighborhood of Ξc, then there exists a deformation η ∈ D such
that η(1, ϕc+ε \ U) ⊆ ϕc−ε, for some ε > 0.

In view of (18), this result follows from straightforward adaptations in the
arguments of [33, Theorem A.4−Proposition A.18].

6.2 Relative category

The notion of (absolute) category was already considered in Subsection 5.1.
The generalized concept of relative category was introduced by Fournier and
Willem [19], and adapted by Szulkin [36, Definition 2.4], so to treat infinite-
dimensional variational problems. We shall follow almost exactly Szulkin’s
approach, but using the modified class of deformations D introduced in the
previous subsection.
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It will be convenient to begin by clarifying the terminology and setting the
notation. Let X be a metric space and A ⊆ X a closed set; by a deformation
of A in X we mean a continuous map η : [0, 1]×A→ X such that η(0, a) = a
for every a ∈ A. We shall say that A is contractible in X if there exists a
deformation η of A in X such that η(1, A) = {p} is a singleton. If Y is another
closed subset of X, we shall say that A is of category k ≥ 0 relative to Y ,
denoted catX,Y (A) = k, provided that k is the smallest integer such that

A = A0 ∪ A1 ∪ . . . ∪ Ak , (27)

where all Aj are closed in X, all Aj with j ≥ 1 are contractible in X, and
there exists a deformation η0 of A0 ∪ Y in X satisfying

η0(1, A0) ⊆ Y , and η0(t, Y ) ⊆ Y , for every t ∈ [0, 1] . (28)

(If no such a k exists, catX,Y (A) = +∞.)

We recall that the closed subset Y ⊆ X is called a retract of X if there
exists a continuous map r : X → Y such that r(y) = y for every y ∈ Y . We
shall be interested in the following properties of relative category.

Lemma 6.4. The following hold:

(X) Let Z ⊆ Y ⊆ X be closed, and assume that Y is a retract of X. Then,
catY,Z(Y ) ≤ catX,Z(Y ).

(XX) Let V be a finite-dimensional, compact, connected C2-smooth manifold
without boundary, and let m ≥ 1 be an integer. Then,

catBm×V,Sm−1×V(Bm × V) ≥ cl(V) + 1 .

Proof. Item (X) follows easily from the definitions. On the other hand, (XX)
is a consequence of [36, Proposition 2.6 and Lemma 3.7].

In order to deal with infinite-dimensional problems it is convenient to re-
strict the family of deformations η0 allowed in (28). Thus, assume now that
X = M = E × V is the ambient space considered in Subsection 5.3, and let
D be the class of deformations defined in the previous subsection. Given two
closed sets A,N ⊆ M we shall say that A is of category k ≥ 0 relative to N
and D, written catDM,N (A) = k, provided that k is the smallest integer such
that (27) holds: here, all sets Aj are required to be closed in M, all Aj with
j ≥ 1 should be contractible in M, and (28) must hold for some deformation
η0 ∈ D. Again, catDM,N (A) is defined as +∞ if no such a k exists.

This second concept of relative category satisfies again many properties for
which we refer to [36, Propositions 2.8 and 2.9]. We have extracted two of
them, which will be needed in the sequel; the proofs are immediate from the
definitions, and are hence omitted.
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Lemma 6.5. The following hold:

(Y) catDM,N (A2) ≤ catDM,N (A1), for any closed sets A2 ⊆ A1 ⊆M.

(YY) Let N2 ⊆ N1 be closed and assume that N1 is invariant for the class D.
Then, catDM,N1

(A) ≤ catDM,N2
(A), for any closed set A ⊆M.

A well-known result in the framework of the Ljusternik – Schnirelmann the-
ory is that, under suitable compactness conditions, the relative category of two
level sets can be used to estimate the number of critical points which lie in
between. This fact continues to hold for the relative category with respect to
our class D of deformations.

Lemma 6.6. Let the levels a < b be such that the Palais – Smale condition
(PS)c holds for every c ∈ [a, b]. Then, ϕ has at least catDM,ϕa

(ϕb) critical
points in ϕ−1([a, b]).

Proof. It suffices to transcribe the proof of [36, Proposition 3.2], in which the
Palais – Smale condition is assumed for all levels and not only for the candidate
critical ones.

A key step in our argument towards the proof of Theorem 5.1(a) will be a
refinement of [36, Proposition 3.6], which we examine next. For any positive
number R > 0 we consider the sets N (R), defined as in (26), and

A(R) = BE−
R × V .

Lemma 6.7. The following inequality holds:

catDM,N (R)

(
A(R)

)
≥ cl(V) + 1 .

Proof. There is no loss of generality in assuming R = 1, and, in order to
simplify the notation, we shall just write N , A in the place of N (1), A(1).
Using a contradiction argument, assume that

catDM,N (A) ≤ κ = cl(V) .

Then, the set A can be decomposed in the form (27), where all Aj are closed
subsets of M, all Aj with j ≥ 1 are contractible in M, and there exists a
deformation η0 ∈ D with (28), for Y = N . We write η0 = (η1, η2), with η1

having the form (25) for some continuous functions q± : [0, 1]×M→ R with
q±(0, e, v) = 1, and a completely continuous map K : [0, 1] ×M → E with
K(0, e, v) = e0, for every (e, v) ∈M.

The map K being completely continuous, there are finite-dimensional sub-
spaces F± ⊆ E±, and a continuous map C : [0, 1]×M→ F := F− ⊕E0 ⊕ F+,
with

‖K(t, e, v)− C(t, e, v)‖ < 1
2
, for every (t, e, v) ∈ [0, 1]× A . (29)

Furthermore, since K(0, e, v) = e0, after possibly replacing the function C by
C(t, e, v)−C(0, e, v)+e0, we see that C can be taken satisfying C(0, e, v) = e0,
for every (e, v) ∈M.
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We consider the sets

M∗ := F− × V , N ∗ := SF− × V , A∗ := A ∩M∗ = BF− × V ,

and A∗j = Aj ∩M∗, for j = 0, 1, . . . , κ. Observe that A∗ = A∗0 ∪A∗1 ∪ · · · ∪A∗κ,
and A∗j is either empty or contractible in M∗, for every j = 1, . . . , κ. We define
η∗ : [0, 1]×M∗ →M∗ by the rule

η∗(t, f−, v) =
(
η∗1(t, f−, v) = q−(t, f−, v)f− + πC(t, f−, v) , η2(t, f−, v)

)
,

where π : F → F− is the orthogonal projection π(f−+ e0 + f+) = f−. Observe
that

η∗(0, f−, v) = (f−, v) , for every (f−, v) ∈M∗,

and, letting O := F− \BF−
1/2, the combination of (28) for Y = N and (29) gives

η∗1(1, A
∗
0) ⊆ O , and η∗1(t,N ∗) ⊆ O , for every t ∈ [0, 1] .

We consider the continuous function

d : O → R , d(f−) := min
{

1,
∣∣‖f−‖ − 1

∣∣} ,
which measures the distance from f− to the unit sphere, with a maximum of
one. The Tietze Extension Theorem implies the existence of continuous maps
α : [0, 1]× F− → F− and δ : [0, 1]×M∗ → [0, 1], with

α(t, f−) =

{
f− , if t = 0 ,

f−/‖f−‖ , if f− ∈ O and d(f−) ≤ t ≤ 1 ,

δ(t, f−, v) =

{
0 , if t = 0 ,

d(η∗1(t, f−, v)) , if (t, f−, v) ∈
(
{1} × A∗0

)
∪
(
[0, 1]×N ∗) .

We define h1 : [0, 1]×M∗ → F− by

h1(t, f−, v) = α(δ(t, f−, v), η
∗
1(t, f−, v)) ,

and observe that

h1(0, f−, v) = f− , h1(1, A
∗
0) ⊆ SF− , h1(t,N ∗) ⊆ SF− ,

for every (f−, v) ∈M∗ and every t ∈ [0, 1] . Consider now the continuous map
h : [0, 1]×M∗ →M∗, defined by

h(t, f−, v) := (h1(t, f−, v), η2(t, f−, v)) .

Then,

h(0, f−, v) = (f−, v) , h(1, A∗0) ⊆ N ∗, h(t,N ∗) ⊆ N ∗ ,

28



for every (f−, v) ∈ M∗ and every t ∈ [0, 1]. Since, as observed above, A∗j is
either empty or contractible in M∗, for every j = 1, . . . , κ, we conclude that

catM∗,N ∗(A∗) ≤ κ .

The finite-dimensional space F− can now be identified with Rm, the integer m
being its dimension. We see that

catRm×V, Sm−1×V(Bm × V) ≤ κ .

Consider now the usual retraction r : Rm → Bm, sending Rm \ Bm into the
sphere Sm−1. By Lemma 6.4 (X),

catBm×V, Sm−1×V(Bm × V) ≤ catRm×V, Sm−1×V(Bm × V) ≤ κ = cl(V) .

However, this contradicts Lemma 6.4 (XX). The proof of the lemma is thus
concluded.

Proof of Theorem 5.1 (a). After possibly replacing ϕ by −ϕ, we may
assume that ψ(e, v) < `, for every (e, v) ∈M.

Step 1. The Palais – Smale condition (PS)c holds for every level c 6= `.

Indeed, choose such a number c and assume the existence of a sequence
{(en, vn)}n in M with ϕ(en, vn) → c and ∇Mϕ(en, vn) → 0. In particular,

∇Eϕ(en, vn) = Len +∇Eψ(en, vn) → 0 , (30)

and since ∇Eψ is bounded, we see that {en
−}n and {en

+}n are bounded. Assume
for a moment that {en

0}n were also bounded. Then, the compactness of ∇Eψ
implies, when combined with (30), that {en

±}n have converging subsequences.
Also the bounded, finite-dimensional sequence {en

0}n must have a converging
subsequence, and we see that c must be a critical value of ϕ.

Thus, we assume on the contrary that, for a subsequence, ‖en
0‖ → +∞.

Then, by (16), we have that ∇Eψ(en, vn) → 0, and (30) implies that en
± → 0.

Thus, c = limn ϕ(en, vn) = limn ψ(en, vn), contradicting assumption (15). The
proof of Step 1 is thus concluded.

Step 2. There are numbers a < ` and R > 0 such that (i). ϕa ⊆ N (R) ;
(ii). N (R) is invariant for the deformations in the class D.

In view of Lemma 6.2, it is possible to choose the number R > 0 satisfy-
ing (ii). Since ψ is bounded, the complemented functional ϕ is bounded from

below on
(
BE−

R + E0 + E+

)
× V , and the result follows.

Step 3. sup
E−×V

ϕ < `.
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Assume the contrary, and choose a sequence {(en
−, v

n)}n in E− × V such
that

lim
n

[
1
2
〈Len

−, e
n
−〉+ ψ(en

−, v
n)
]
≥ ` .

Since 〈Len
−, e

n
−〉 ≤ −ε0‖en

−‖2 and ψ(en
−, v

n) < `, we see that en
− → 0 and

ψ(en
−, v

n) → `. From the boundedness of ∇Eψ we conclude that ψ(0, vn) → `,
which is impossible, since

ψ(0, vn) ≤ max
v∈V

ψ(0, v) < ` , for every n .

The end of the proof. Pick numbers a < ` and R > 0 as provided by Step 2.
Use now Step 3 to find some number b such that max{a, supE−×V ϕ} < b < ` .
Then, A(R) ⊆ ϕb, and, by Lemma 6.5 (Y),

catDM,ϕa
(ϕb) ≥ catDM,ϕa

(A(R)) .

On the other hand, in view of Step 2 and Lemma 6.5 (YY), we see that

catDM,ϕa
(A(R)) ≥ catDM,N (R)(A(R)) ,

and combining these inequalities with Lemma 6.7, we obtain

catDM,ϕa
(ϕb) ≥ cl(V) + 1 .

Since, by Step 1, the Palais – Smale condition (PS)c holds for every c ∈ [a, b],
Lemma 6.6 provides the existence of at least cl(V) + 1 critical points of ϕ. It
concludes the proof.

7 Morse theory and multiplicity of

nondegenerate critical points

The aim of this section is to prove Theorem 5.1(b): if ψ belongs to the class
A +, then it has at least sb(V) critical points. Our approach will be divided
into two steps. Firstly, we shall define a new class A ∗ of functionals ψ, which
will be contained in A +, and we shall prove a version of Theorem 5.1(b) for
functionals ψ in this subclass. The second step will consist in showing that,
given some functional ψ in the class A +, then there exists another functional
ψ∗ in the class A ∗ such that the associated complemented functionals ϕ and ϕ∗

have exactly the same number of critical points. This will be shown provided
only that ϕ has finitely many critical points, and after that, the proof of
Theorem 5.1 will be complete.

7.1 A review on homology and Morse theory

In this subsection we collect a few basic elements from homology and Morse
theory which will be needed in our proof of Theorem 5.1(b). We do not
claim any originality in these results, which are well-known to the specialists.
However, we believe that having them all listed here can be helpful for some
potential readers of this paper.
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A topological pair is a couple (X,A), where X is a topological space and
A ⊆ X is a subset. Given such a topological pair (X,A) we shall denote by
H∗(X,A) = {Hn(X,A)}n≥0 the associated graded sequence of relative homol-
ogy groups with real coefficients. Thus, Hn(X,A) is, for each index n, a real
vector space whose elements are equivalence classes of singular chains having
zero boundary. Moreover, this is done in such a way that H∗(X, ∅) = H∗(X).
A map between topological pairs f : (X,A) → (Y,B) is a continuous mapping
f : X → Y such that f(A) ⊆ B. Such a mapping induces a corresponding
sequence of linear transformations f∗ : H∗(X,A) → H∗(Y,B), and this corre-
spondence is functorial, in the sense that

[
Id(X,A)

]
∗ = IdH∗(X,A) and, for any

maps f : (X,A) → (Y,B) , g : (Y,B) → (Z,C), one has that (g ◦f)∗ = g∗ ◦f∗.
See, e.g., [34, Ch. 4] for more details.

We recall that a homotopy between f, g : (X,A) → (Y,B) is a continuous
map h : [0, 1]×X → Y such that h(0, ·) = f , h(1, ·) = g, and h([0, 1]×A) ⊆ B.
If such a homotopy exists, f and g are called homotopic. The following lemma,
which states the homotopy invariance of the homology, is completely standard.

Lemma 7.1 (Deformation). If f, g : (X,A) → (Y,B) are homotopic, then the
induced linear maps f∗, g∗ : H∗(X,A) → H∗(Y,B) are equal.

A second important fact is the so-called Künneth formula. It relates the
relative homology groups of a product of spaces with those of each factor,
see, e.g. [12, p. 5], [34, p. 235]. We shall be interested only in the following
particularly simple case (⊗ denotes the usual tensor product):

Lemma 7.2 (Künneth formula). Let (X,A) be a topological pair, and Y a
topological space. Then,

Hn(X × Y,A× Y ) ∼=
⊕

i+j=n

[Hi(X,A)⊗Hj(Y )] ,

for every integer n ≥ 0.

It will be convenient to have at hand the relative homology groups of the
pairs (RN ,SN−1) or, what is the same (by Lemma 7.1), of the pairs (BN ,SN−1).
Again, this is a completely standard result.

Lemma 7.3. Hn(RN ,SN−1) ∼= Hn(BN ,SN−1) ∼=

{
0 , if n 6= N ,

R , if n = N .

Finally, we shall need the elementary result given below. Since we could
not find it in the literature, this time we include the short proof.

Lemma 7.4. Let X be a topological space, and let Z ⊆ Y be subsets of X.
Assume that there exists a continuous map h : [0, 1]×X → X, with

• h(0, x) = x for every x ∈ X;
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• h(t, Y ) ⊆ Y and h(t, Z) ⊆ Z, for every t ∈ [0, 1];

• h(1, Y ) ⊆ Z.

Then, the map i∗ : H∗(X,Z) → H∗(X, Y ), induced by the inclusion i :
(X,Z) → (X, Y ), is an isomorphism.

Proof. We consider the mapping r : (X, Y ) → (X,Z), defined by r(x) :=
h(1, x), for x ∈ X. Then,

i∗ ◦ r∗ = (i ◦ r)∗ = IdH∗(X,Y ) ,

since h : [0, 1]×X → X is a continuous deformation of (X, Y ), connecting the
identity with i ◦ r. Moreover,

r∗ ◦ i∗ = (r ◦ i)∗ = IdH∗(X,Z) ,

since h : [0, 1]×X → X is also a continuous deformation of (X,Z), connecting
the identity with r◦i. Hence, i∗ is an isomorphism, with inverse (i∗)

−1 = r∗.

The dimensions dimHn(X,A) of the homology vector spaces associated
with a given topological pair (X,A) are called Betti numbers. These numbers
play an important role in classical Morse theory, since, under compactness
conditions, they can be used to estimate the number of critical points of a
Morse function (i.e., one having only nondegenerate critical points). This is
done by letting X,A be sublevel sets of the given functional. More precisely,
let φ be a C1-smooth functional defined on some C2-smooth, finite-dimensional
manifold without boundary. Assume further that φ is C2-smooth on some open
set containing all its critical points, and that it is a Morse function. Assume
finally that a < b are real numbers such that the Palais – Smale condition (PS)c

holds at every level c ∈ [a, b]. The result below is a classical consequence of
the so-called weak Morse inequalities (see, e.g. [13, Example 3 (p. 328) and
Corollary 5.1.28 - Theorem 5.1.29 (p. 339)] or [26, Theorem 8.2 (p. 182) and
Remark 2 (p. 189)]).

Lemma 7.5. Under these conditions, the functional φ has at least sb(φb, φa) =∑∞
n=0 dimHn(φb, φa) critical points in φ−1([a, b]).

7.2 The class A ∗ and a weak version of Theorem 5.1(b)

We keep the general setting and the notation from Subsection 5.2 (includ-
ing (18)). Let the functional ψ : M→ R belong to the class A +; since ∇Eψ
is bounded, we may find some R1 > 0 such that2‖e−‖ ≥ R1 ⇒ 〈Le+∇Eψ(e, v), e−〉 < 0 ,

‖e+‖ ≥ R1 ⇒ 〈Le+∇Eψ(e, v), e+〉 > 0 .
(31)

2As in page 19 we denote by e±, e0, the orthogonal projections on E±, E0 of the vector
e ∈ E. Also, we will write ẽ to denote e+ + e−.
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After possibly replacing ψ,L, ` by −ψ,−L,−`, we see that, in order to prove
Theorem 5.1(b), there is no loss of generality in assuming that

ψ(e, v) < ` , for every (e, v) ∈ E × V .

It will be said that ψ belongs to the class A ∗ provided that the follow-
ing additional three conditions hold: (a) the space E is finite-dimensional;

(b) there exists a compact set K ⊆ E0 such that, denoting Ẽ := E− ⊕ E+,

[K1] all critical points of ϕ belong to (K + Ẽ)× V ,

[K2] sup
(K+ eE)×V

ψ < `−R2
1/2,

for some positive constants `, R1 satisfying [ψ1] and (31), respectively;

and (c): there exists a continuous map m : [0, 1]× E0 → E0 such that

[m1] m(0, e0) = e0, e0 ∈ E0,

[m2] m(t, e0) = e0, t ∈ [0, 1], e0 ∈ K,

[m3] m(1, E0) = K,

[m4] ψ(e− +m(t, e0) + e+, v) ≤ ψ(e, v), t ∈ [0, 1], e ∈ E, v ∈ V .

Summarizing, assumptions [m1−4] require K to be a strong deformation
retract of E0; moreover, the sublevel sets of ψ(· + ẽ, v) are kept invariant by
m. In rough terms, membership to the class A ∗ can be described by saying
that, in addition to the Hilbert space E being finite-dimensional, the saddle
geometry of the functional is stressed. The main result of this subsection will
be the following:

Proposition 7.6. Let ψ : M → R be in the class A ∗; then the associated
complemented functional ϕ has at least sb(V) critical points.

Let us start the proof. Recalling assumption [K2], it is possible to find a
real number b < ` with

sup
{
ψ(e, v) : (e, v) ∈ (K + Ẽ)× V

}
+
R2

1

2
< b .

In this way we have, by (18) and (31),

sup
{
ϕ(e, v) : (e, v) ∈ (E− +K +B+)× V

}
< b , (32)

where B+ := BE+

R1
. We shall use this inequality later.
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On the other hand, we recall (from [ψ1]) that ψ is bounded; hence we may
find a constant a ∈ R such that

ϕ(e, v) > a , for every e ∈ E with ‖e−‖ ≤ R1 + 1 , and v ∈ V . (33)

Observe that a < b < `. On the other hand, ϕ satisfies the Palais – Smale
condition (PS)c, for every c < ` (remember Step 1 in Section 6); consequently
(in view of Lemma 7.5), Proposition 7.6 will be proved if we show the following

Lemma 7.7. Under the above, sb(ϕb, ϕa) ≥ sb(V).

Proof. Using again the boundedness of ψ, we may find a constant R2 > R1+1,

such that, setting B− := BE−
R2

, one has

ϕ(e, v) < a , if e ∈ (E− \B−) + E0 +B+ . (34)

Let the homotopy m+ : [0, 1]× E+ → E+ be defined by

m+(t, e+) =


e+ , if e+ ∈ B+ ,

(1− t)e+ + tR1
e+
‖e+‖

, if e+ ∈ E+ \B+ ,

and let the deformation h+ : [0, 1]×M→M be given as

h+

(
t, (e, v)

)
:=
(
e− + e0 +m+(t, e+), v

)
.

We observe that, by (31),

ϕ
(
h+(t, (e, v))

)
≤ ϕ(e, v) , for every (e, v) ∈M and t ∈ [0, 1] ,

and hence the sublevels ϕa, ϕb are kept invariant by the deformation. Conse-
quently, by Lemma 7.1,

H∗(ϕb, ϕa) ∼= H∗

[
ϕb∩

(
(E−+E0+B+)×V

)
, ϕa∩

(
(E−+E0+B+)×V

)]
. (35)

On the other hand, remembering (33) and (34), we see that(
(E− \B−) + E0 +B+

)
× V ⊆ ϕa ⊆

(
(E− \ BE−

R1+1) + E0 + E+

)
× V . (36)

This time we consider the homotopy m− : [0, 1]× E− → E− defined by

m−(t, e−) =


e− , if e− ∈ B− ,

(1− t)e− + tR2
e−
‖e−‖

, if e− ∈ E− \B− .

In view of the first inclusion of (36) we see that the deformation

h− : [0, 1]×M→M ,
(
t, (e, v)

)
7→
(
m−(t, e−) + e0 + e+, v

)
,

keeps invariant both sets ϕb∩
(
(E−+E0+B+)×V

)
and ϕa∩

(
(E−+E0+B+)×V

)
.

Hence, by Lemma 7.1, expression (35) can be simplified to

H∗(ϕb, ϕa) ∼= H∗(X, Y ) , (37)

where X = ϕb ∩
(
(B− +E0 +B+)×V

)
, and Y = ϕa ∩

(
(B− +E0 +B+)×V

)
.
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Let us consider now the piecewise linear function u : ]0,+∞[→ ]0,+∞[
given by

u(ρ) :=


ρ , if ρ ∈ ]0, R1] ∪ [R2,+∞[ ,

R1(R1 + 1− ρ) +R2(ρ−R1) , if ρ ∈ [R1, R1 + 1] ,

R2 , if ρ ∈ [R1 + 1, R2] ,

and the homotopy n : [0, 1]× E− → E− given by

n(t, e−) :=


(1− t)e− + t

u(‖e−‖)
‖e−‖

e− , if e− 6= 0 ,

0 , if e− = 0 .

We use this map to construct the deformation

η : [0, 1]×M→M , η(t, (e, v)) = (n(t, e−) + e0 + e+, v) ,

and observe that, by (31), both sets X, Y are kept invariant by η. Moreover,
the second inclusion of (36) gives

η(1, Y ) = ((∂B−) + E0 +B+)× V =: Z ,

and the set Z is also kept invariant by the deformation η. Remembering (37)
and applying Lemma 7.4, we obtain that

H∗(ϕb, ϕa) ∼= H∗(X,Z) .

Finally, let m : [0, 1]×E0 → E0 be given by the fact that ψ belongs to the
class A ∗. We consider the associated homotopy

h : [0, 1]×M→M ,
(
t, (e, v)

)
7→
(
e− +m(t, e0) + e+, v

)
.

It follows from [m4] that both setsX,Z are kept invariant by h. Moreover, (32)
implies that X ⊇ (B− +K +B+)× V , and hence

h(1, X) = (B− +K +B+)× V , h(1, Y ) = ((∂B−) +K +B+)× V ,

and we finally deduce that

H∗(ϕb, ϕa) ∼= H∗((B− +K +B+)× V , ((∂B−) +K +B+)× V) .

Since B+ is contractible, a deformation argument gives

H∗(ϕb, ϕa) ∼= H∗((B− +K)× V , ((∂B−) +K)× V) .

By the Künneth formula (Lemma 7.2), for n = 0, 1, 2, . . . we have

Hn(B− ×K × V , (∂B−)×K × V) ∼=
⊕

i+j=n

[Hi(B− × V , (∂B−)× V)⊗Hj(K)] ,
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and hence, the corresponding Betti numbers satisfy

dimHn((B− +K)× V , ((∂B−) +K)× V) ≥ dimHn(B− × V , (∂B−)× V).

Using again the Künneth formula (and combining it with Lemma 7.3), we get

Hn(B− × V , (∂B−)× V) ∼=
⊕

i+j=n

[Hi(B−, ∂B−)⊗Hj(V)]

∼= R⊗Hn−r(V) ∼= Hn−r(V) ,

where r = dimE−. We conclude that dimHn(ϕb, ϕa) ≥ dimHn−r(V), for any
n = r, r + 1, r + 2, . . . , and the result follows.

7.3 From the class A + to the class A ∗

The aim of this subsection is to obtain Theorem 5.1(b) from Proposition 7.6.
Our argument will be divided in two steps. Firstly, we shall use a Liapunov –
Schmidt reduction procedure to replace ϕ by a new functional ϕ̂. It will still
be the complemented of a functional in the class A +, and will also have the
same number of critical points, but its domain will be M∗ := F × V , the
subspace F ⊆ E being finite-dimensional. In the second step we shall modify
our functional to the complemented of a functional in the class A ∗ (so that
Proposition 7.6 applies). Again, while performing this procedure we shall be
careful to keep the number of critical points.

First Step: It suffices to check Theorem 5.1(b) when the space E is finite-
dimensional.

To show this statement let us go back to the framework of Theorem 5.1(b)
and assume that ψ : M → R is in the class A +. We shall start with the
following remark:

Lemma 7.8. The set

K :=
{

HessEψ(e, v)e : (e, v) ∈M, e ∈ E, ‖e‖ ≤ 1
}
,

is relatively compact in E.

Proof. Using a contradiction argument, assume instead the existence of ε0 > 0
and sequences {(en, vn)}n ⊆ M, {en}n ⊆ E, such that ‖en‖ ≤ 1 for every n,
and ∥∥HessEψ(en, vn)en − HessEψ(em, vm)em

∥∥ ≥ ε0 , for m 6= n .

Combining assumption [ψ2] with the fact that the differential at any point
of a completely continuous map is compact [35, Theorem 1.40, p. 27], we see
that the linear map HessEψ(en, vn) ∈ L (E) is compact, for every n. On
the other hand, [ψ4] states that, after possibly passing to a subsequence, we
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may assume that {HessEψ(en, vn)}n converges in L (E), and well-known ar-
guments show that its limit T must again be a compact operator, see, e.g. [15,
Proposition 4.2(b)]. However, for n 6= m big enough one has:

‖T en − T em‖ ≥ ε0/2 ,

and hence the sequence {T en}n has no convergent subsequences. This is a
contradiction, and concludes the proof.

We begin by observing that the critical points of ϕ are exactly the solutions
(e, v) ∈ E × V of the system

(S)

Le+∇Eψ(e, v) = 0 ,

∇Vψ(e, v) = 0 .

The Hilbert space E was assumed separable, and hence, there are increasing
sequences {F n

±}n ⊆ E± of finite-dimensional subspaces with dense union in
E±. Choose some index n ∈ N, to be fixed later, and set F± := F n

±, F :=
F+ ⊕ E0 ⊕ F−. In view of (18), L(F ) ⊆ F . Rewriting the points of E in the
form e = f + g, where f ∈ F and g ∈ F⊥, and denoting by π : E → F ,
f + g 7→ f the orthogonal projection, the first equation of system (S) splits asLf + π[∇Eψ(f + g, v)] = 0 ,

Lg + (Id− π)[∇Eψ(f + g, v)] = 0 .
(38)

If n is big, the last equation above can be solved in the variable g. We check
this below:

Lemma 7.9. Assume that n has been chosen large enough. Then, there exists
a C1-smooth map G : M∗ := F × V → F⊥such that, if f ∈ F , v ∈ V, and
g ∈ F⊥,

Lg + (Id− π)[∇Eψ(f + g, v)] = 0 ⇔ g = G(f, v) . (39)

Moreover, G(e0, v) = 0 for any e0 ∈ E0 with ‖e0‖ ≥ R, and both G and its
partial differential G′F : M∗ → L (F, F⊥) are globally bounded, and satisfy

lim
‖e0‖→∞

e0∈E0

G(e0 + b, v) = 0 , lim
‖e0‖→∞

e0∈E0

G′F (e0 + b, v) = 0 , (40)

uniformly with respect to b belonging to bounded subsets of F , and v ∈ V.

Proof. By assumption [ψ4], the second-order derivative of ψ is bounded, and
hence, ∇Eψ : M→ E is Lipschitz continuous in its first variable. Let α > 0 be
an associated Lipschitz constant. In view of Lemma 7.8, the set K defined there
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is relatively compact, and hence there exists a finite set of points e1, . . . , ep in
E such that

⋃p
j=1 BE

1/(4α)(ej) ⊇ K. On the other hand, the set

∞⋃
n=1

F n =
( ∞⋃

n=1

F n
−

)
⊕ E0 ⊕

( ∞⋃
n=1

F n
+

)
is dense in E; therefore, we can find some n0 ∈ N and points f1, . . . , fp in F n0

such that ‖fi − ei‖ < 1/(4α). It follows that
⋃p

j=1 BE
1/(2α)(fj) ⊇ K.

Fix now some n ≥ n0. Then, ‖(Id − π)e‖ ≤ 1/(2α), for every e ∈ K and,
consequently, for any f ∈ F and v ∈ V , the map g 7→ (Id−π)[∇Eψ(f+g, v)] is
Lipschitz continuous on F⊥, with associated Lipschitz constant α/(2α) = 1/2.

Since, on the other hand, L−1 : Ẽ → Ẽ is Lipschitz continuous with Lipschitz
constant 1 (by (18)), we see that, for any f ∈ F⊥ and v ∈ V , the map

g 7→ L−1(Id− π)[∇Eψ(f + g, v)]

is a contraction on F⊥. Thus, the Banach Contraction Theorem ensures that
it has a unique fixed point g = G(f, v) on F⊥, which is the unique solution of
the second equation in (38). And the implicit function theorem ensures that G
is C1-smooth. The remaining statements on G follow easily from its definition
and assumptions [ψ2−4].

Let us consider the functionals ψ̂, ϕ̂ : M∗ → R defined by

ψ̂(f, v) := 1
2

〈
LG(f, v), G(f, v)

〉
+ ψ(f +G(f, v), v) ,

ϕ̂(f, v) := 1
2

〈
Lf, f

〉
+ ψ̂(f, v) = ϕ

(
f +G(f, v), v

)
.

We consider the map Υ : M∗ → M defined by Υ(f, v) :=
(
f + G(f, v), v

)
.

Straightforward computations, combined with (39), give

∇F ψ̂ = π ◦ (∇Eψ) ◦Υ , ∇V ψ̂ = (∇Vψ) ◦Υ ,

so that ψ̂ (and consequently, also ϕ̂) is actually a C2-smooth functional. Fur-
thermore, ∇M∗ϕ̂(f, v) = ∇M ϕ

(
Υ(f, v)

)
,

HessF ϕ̂(f, v) = HessEϕ
(
Υ(f, v)

)
◦
[
IdF +G′F (f, v)

]
,

for every (f, v) ∈ M∗. It is now easy to check that ψ̂ satisfies assumptions
[ψ1−4] and the critical points of ϕ̂ are in a one-to-one correspondence (given
by Υ) with the critical points of ϕ. Finally,

HessM∗ϕ̂(f, v) = HessMϕ
(
Υ(f, v)

)
◦Υ′(f, v) ,

at every critical point (f, v) of ϕ̂. Thus, ϕ̂ satisfies also [ψ5], concluding the
discussion of the first step.
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Second Step: Intensifying the saddle geometry.

Having in mind the First Step, in order to conclude the proof of Theo-
rem 5.1 we shall assume that dimE < +∞, and the functional ψ : M =
E × V → R belongs to the class A +. As we already said before, without loss
of generality we shall only consider the case ψ(e, v) < ` for every (e, v) ∈ M.
Moreover, we may assume that (18) holds, and the complemented functional
ϕ : M → R has finitely many critical points, otherwise there is nothing to
prove.

Lemma 7.10. Under the above, there exists a functional ψ∗ : M→ R in the
class A ∗ such that all critical points of the complemented functional ϕ∗ are
critical points of ϕ, and vice-versa.

Proof. By (31), there is a number R1 > 0 such that

∇ eEϕ(e, v) = Le+∇ eEψ(e, v) 6= 0 , if max{‖e−‖, ‖e+‖} ≥ R1 . (41)

On the other hand, in view of assumption [ψ3] and the comments preceding
this lemma, there is some R > 0 such that, for e0 ∈ E0,

0 6= ∇Mϕ(e0, v) = ∇Mψ(e0, v) ∈ E0 , if ‖e0‖ ≥ R . (42)

In particular, ∇Vψ(e0, v) = 0, and ψ(e0, v) = h(e0) does not depend on v ∈ V
if ‖e0‖ ≥ R. The function h : E0 \ BE0

R → R defined in this way is C2-smooth
and, by [ψ1,2,4] and (42), satisfies h(e0) < `, ∇h(e0) 6= 0 , for any e0 ∈ E0 \ BE0

R ,

lim
‖e0‖→∞

h(e0) = ` , lim
‖e0‖→∞

∇h(e0) = 0 , lim
‖e0‖→∞

Hessh(e0) = 0 .
(43)

Since, in view of (42), one has that ∇ eEψ(e0, v) = 0 for any e0 ∈ E0 with
‖e0‖ ≥ R, the triangle inequality gives

‖∇ eEϕ(e, v)‖ = ‖Le+∇ eEψ(e, v)−∇ eEψ(e0, v)‖
≥ ‖ẽ‖ − ‖∇ eEψ(e0 + ẽ, v)−∇ eEψ(e0, v)‖ . (44)

(We used (18) to obtain ‖Le‖ = ‖ẽ‖.) Remembering [ψ4], we may replace R
by a bigger constant so that

‖HessEψ(e, v)‖ < 1
2
, if ‖e0‖ ≥ R and ‖e±‖ ≤ R1 .

Hence, for ‖e0‖ ≥ R the map ẽ 7→ ∇ eEψ(e0 + ẽ, v) is contractive on BE−
R1

+BE+

R1
,

and (44) gives

∇ eEϕ(e, v) 6= 0 , if ‖e0‖ ≥ R and 0 < max{‖e−‖, ‖e+‖} ≤ R1 ,

which, when combined with (41) means that

∇ eEϕ(e, v) 6= 0 , if ‖e0‖ ≥ R and ẽ 6= 0 . (45)

In particular, (42) and (45) imply that ϕ has no critical points (e, v) with
‖e0‖ ≥ R.
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Choose numbers α < β < `, R′ > R such that

h(e0) < α , if ‖e0‖ = R , h(e0) > α , if ‖e0‖ ≥ R′ ,

and
h(e0) < β , if ‖e0‖ ≤ R′ .

Pick also some C2-smooth functions n, ω : R → R, with

n(ρ) =

1 , if ρ ≤ R′ ,

0 , if ρ ≥ R′ + 1 ,
n′(ρ) < 0 , if R′ < ρ < R′ + 1 ,

and
ω(t) = 0 , if t < α , ω′(t) > 0 , if t > α .

Define, for λ > 0,

ψ∗λ(e, v) :=

ψ(e, v) , if ‖e0‖ < R ,

n(‖e0‖)ψ(e, v) + λω(h(e0)) , if ‖e0‖ ≥ R .

For λ big enough, one has

`+ λmax{ω(h(e0)) : R ≤ ‖e0‖ ≤ R′ + 1} < λω(`) ,

and one easily checks that ψ∗λ then satisfies assumptions [ψ1−4], the new limit
along E0 being λω(`). The associated complemented functional ϕ∗λ coincides
with ϕ as long as ‖e0‖ ≤ R, and satisfies∇E0ϕ

∗
λ(e0, v) =

(
1 + λω′(h(e0))

)
∇h(e0) 6= 0 , if R ≤ ‖e0‖ ≤ R′ ,

∇ eEϕ∗λ(e, v) = ∇ eEϕ(e, v) 6= 0 , if R ≤ ‖e0‖ ≤ R′ , ẽ 6= 0 ,

by (43) and (45), respectively. Hence,

∇Mϕ
∗
λ(e, v) 6= 0 , if R ≤ ‖e0‖ ≤ R′ . (46)

Since n and ψ are bounded with bounded differentials, while ∇h is bounded

away from zero on BE0

R′+1 \ BE0

R′ , we can take a larger constant λ so that

〈∇E0ϕ
∗
λ(e, v),∇h(e0)〉 = 〈∇E0ψ

∗
λ(e, v),∇h(e0)〉 > 0 , if ‖e0‖ ≥ R′ .

We set ψ∗ := ψ∗λ. Combining the inequality above with (46), we see that
ϕ∗ := ϕ∗λ has no critical points (e, v) with ‖e0‖ ≥ R.

Two important consequences follow: on the one hand, all critical points of
ϕ∗ are indeed critical points of ϕ, and vice-versa; hence, [ψ5] also holds for ϕ∗,
so that ψ∗ belongs to the class A +; on the other hand, setting

K := BE0
R ∪ {e0 ∈ E0 \ BE0

R : h(e0) ≤ β} ,
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we see that [K1] holds for ϕ∗. Moreover, after possibly replacing λ by a bigger
number, we see that

sup
(K+ eE)×V

ψ∗λ < λω(`)− R2
1

2
,

and hence, also assumption [K2] holds for ψ∗. Now, the homotopy m : [0, 1]×
E0 → E0 satisfying [m1−4] can be built as follows: we keep all the points
of K fixed, while, if e0 ∈ E0 \ K, then m(·, e0) is the curve, starting from
m(0, e0) = e0, which follows backwards the flow lines of ∇h, and arrives at
the point m(1, e0) where the flow first meets K. (Notice that this flow is
transversal to the boundary of K.) Hence, ψ∗ belongs to the class A ∗. It
completes the proof.
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[5] G. D. Birkhoff, Proof of Poincaré’s geometric theorem. Trans. Amer. Math.
Soc. 14 (1913), 14–22.

[6] G. D. Birkhoff, An extension of Poincaré’s last geometric theorem. Acta
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