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IMPORTANT REMARKS (to be added):
1) Comparison between IKT and the method of con�guration-space characteristics:

A) the phase-space (Schrödinger) dynamical system advances in time the kinetic PDF and therefore, through
it, determines uniquely also the time-evolution of the complete set of quantum �uid �elds;

B) instead the method of characteristics (based on the de�nition of a con�guration-space Lagrangian dynamical
system) determines only a parametrization for the QHE�s.
Recently, the quantum trajectory method (QTM) has been utilized in solving several quantum mechanical wave

packet scattering problems including barrier transmission and electronic nonadiabatic dynamics. By propagating the
real-valued action and amplitude functions in the Lagrangian frame, only a fraction of the grid points needed for
Eulerian �xed-grid methods are used while still obtaining accurate solutions. Di¢ culties arise, however, near wave
function nodes and in regions of sharp oscillatory features, and because of this many quantum mechanical problems
have not yet been amenable to solution with the QTM.
2) restrictions on IKT:
- single and multiple-temperature cases;
- the de�nition of quantum temperature.
- related non-Hamiltonian features;
3) further implications of IKT:
- constant weak H-theorem;
- Heisenberg inequalities;
- role of thermal �uctuations and temperature e¤ects.

I. INTRODUCTION

In the stardard approach to quantum mechanics (SQM), systems of classical point particles, de�ning classical
Hamiltonian systems, are described by corresponding quantum Hamiltonian systems, obeying the Schrödinger equa-
tion. This means that while the canonical state and Hamiltonian function, which de�ne classical Hamiltonian systems,
fx =(q;p);H(x; t)g, are represented by ordinary functions de�ned in a suitable extended phase-space � � Vq�Vp� I
[with Vq; Vp and I; respectively, suitable subspaces of Rn and R]; in SQM they are replaced - via an euristic cor-
respondence principle denoted as quantization - by well-known (quantum) operators, p and H(x; t); acting on the
quantum wave-function  (q; t); the latter being complex functions de�ned [only] on the extended con�guration domain
V � Vq � I:
In a recent paper Tessarotto et al. [1] have shown, however, that the time evolution of the quantum wave-function

is actually uniquely determined by means of a suitable class of phase-space classical dynamical systems, which can
be realized in the framework of the so-called inverse kinetic theory (IKT). The question arises, however, whether
there exists - in particular - among them a subset of abstract classical Hamiltonian systems, which determine uniquely
the time evolution of  (q; t) in terms of the corresponing Hamiltonian evolution operator T (H)to;t : In this paper we
intend to show that a particular realization of IKT developed for the Schrödinger equation (Tessarotto et al. [1])
can be realized to satisfy precisely this requirement. This means that also SQM admits, in some abstract sense, an
Hamiltonian description, and hence - just like classical mechanics - quantum dynamics can be uniquely described in
terms of the extremal curve of an appropriate Hamiltonian action.
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II. HYDRODYNAMIC DESCRIPTION OF NRQM

In this section we intend to recall the well-known �uid description of non-relativistic quantum mechanics (NRQM),
based on the property of the Schrödinger equation to be equivalent to a complete set of �uid equations. For the sake
of clarity let us introduce the basic de�nitions and the mathematical formulation of the problem.
In this paper we shall consider, in particular, the case of a system of spinless scalar particles (bosons) described by

a single scalar wavefunction  (r; t);with associated probability density

f = j (r; t)j2 ; (1)

requiring that both are de�ned and continuous in 
 � I; where 
 denotes the closure of a suitable open set 
: In
addition we impose that f is strictly positive in 
; while f and  are respectively single-valued and possibly multi-
valued in 
 � I; with  at least of class C(2+k;1+h)(
 � I)[� C(2+k)(
) � C(1+h)(I)] with h; k � 0. Hence, by
assumption, f can only vanish on the boundary �
 (i.e., in the nodes rn 2 �
 where f(rn; t) = 0) and must satisfy
the normalization Z




drf(r; t) = 1: (2)

For de�niteness, we shall also assume, without loss of generality, that 
 is a connected subset of R3N and  (r; t)
belongs to the functional space f g ; to be identi�ed with the Hilbert space of complex-valued functions which are
square-integrable in 
. The N�body wave-function  (r; t) is required to satisfy in the open set 
� I the Schrödinger
equation

i~
@

@t
 = H : (3)

Here H is the N�body Hamiltonian operator. Thus, for a single charged particle (with electric charge q and mass
m), subject both to the action both a scalar �eld U and of the EM �eld generated by the EM potentials f�;Ag, it
follows

H =
1

2m

�
p�q

c
A
�2
+ U + q�; (4)

where

p = �i~r

is the quantum momentum and U is a possible additional potential: For well-posedness, appropriate initial and
boundary conditions must be imposed on  (r; t). The initial conditions are obtained by imposing for all r 2 


 (r; to) =  o(r); (5)

where  o is a suitably smooth complex-valued function. To specify the boundary conditions, we �rst notice that
the boundary set �
 can always be considered prescribed. The boundary conditions can be speci�ed by imposing
Dirichlet boundary conditions on �
. This requires 8r� 2 �


 (r�; t) =  w(r�; t); (6)

lim
r!r�

V(r; t) = Vw(r� ; t); (7)

where V (r; t) is the quantum velocity �eld (to be de�ned below), while the complex function  w(r� ; t) and the real
vector function Vw(r� ; t) are prescribed and suitably smooth functions. To specify the value of f(r; t) on �
, let us
require that there results additionally Z




drrf(r; t) = 0: (8)
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In all such cases Eq.(8) implies that there must be 8r
�
2 �


f(r
�
; t) = j w(r� ; t)j

2 � fo � 0; (9)

where fo is either a constant, whose value may still depend on the speci�c subset; or at most is a function fo(t) to
be assumed suitably smooth 8t 2 I: Hence, the points of �
 are not necessarily nodes. However, if r

�
is an improper

point of R3N (hence, 
 is assumed to be an unbounded subset of R3N ), since it must be limjrj!1 f(r; t) = 0; r
�
is

necessarily a node, i.e.,

fo = 0: (10)

This implies for consistency also

lim
jrj!1

 w(r; t) = 0: (11)

The set of equations (3),(5),(6),(7) together with (9) or (10) and (11), de�nes the initial-boundary value problem
for the Schrödinger equation (SE problem). The solution of the SE problem,  ; must be determined in an appropriate
functional space, to be suitably de�ned (see for example Ref.[53]).
The set of hydrodynamic equations corresponding to the Schrödinger equation are well-known [5, 7, 8, 12] and

follow immediately from the exponential representation (known as Madelung transformation [5])

 =
p
fei

S
~ ; (12)

where ff; Sg ; denoted as quantum �uid �elds, are respectively the quantum probability density and the quantum
phase-function (also denoted as Hamilton-Madelung principal function).
We stress that while Eq. (12) is de�ned in the set in which results f � 0 (i.e., in the closure of the con�guration

space 
) S(r; t) remains in principle unspeci�ed on the subset the boundary �
 where f(rn; t) = 0; i.e., the subset
frng of the so-called nodes of  :
REMARK:
This indeterminacy, however, is eliminated by requiring that everywhere in �
; S(r; t) can be prolonged on the

same set by imposing 8rn 2 �
 :

S(rn; t) � lim
r!rn

S(r; t): (13)

Hence, the real functions ff; Sg can both be assumed continuous in 
�I and at least C(2;1)(
�I): Obviously, S(r; t)
is de�ned up to an additive constant 2�k~; being k 2 Z; while S itself is generally not single-valued. In addition, if
 is single-valued, it is obvious that S must satisfy a well-de�ned condition of multi-valuedness. In fact, in this case
on any regular closed curve C of 
, for S it must resultZ

C

dl �rS(r; t) = 2�n~; (14)

where n is an appropriate relative number [52]. Introducing the single-valued potential velocity �eld, de�ned in 
� I;

V(r; t) =
1

m
rS(r; t); (15)

this yields the well-known condition of quantization of the velocity circulation

� �
Z
C

dl �V(r; t) = 2�n~
m

: (16)
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III - QUANTUM HYDRODYNAMIC EQUATIONS (QHE) - CASE OF THE 1-BODY PROBLEM

Let us derive explicitly the complete set of PDE�s, to be ful�lled by a suitable set of �uid �elds fZg ; which
correspond to the Schrödinger equation. Invoking the position (12) there follows

i~
@

@t
 =  

�
i~
2

@

@t
ln f � @

@t
S

�
;

1

2m

�
p�q

c
A
�2
 =

1

2m

�
�i~r�q

c
A
�
�  
�
� i~
2
r ln f +rS � q

c
A

�
=

=
 

2m

�
�~

2

2
r2 ln f � i~r2S + q

c
i~r �A

�
+

+
 q

2mc

�
i~
2
A � r ln f �A � rS + q

c
jAj2

�
+

+
 

2m

�
� i~
2
r ln f +rS � q

c
A

�
�
�
� i~
2
r ln f +rS

�
:

Hence the imaginary part of the equation yields

i~
2

@

@t
ln f =

1

2m

h
�i~r2S + q

c
i~r �A

i
+

q

2mc

i~
2
A � r ln f +

� 1

2m

i~
2
r ln f � rS � 1

2m

h
rS � q

c
A
i
� i~
2
r ln f =

=
1

2m

h
�i~r2S + q

c
i~r �A

i
� i~
2m

h
rS � q

c
A
i
� r ln f

namely

@

@t
ln f +

1

m

h
rS � q

c
A
i
� r ln f + 1

m
r2S = q

mc
r �A: (17)

Imposing the Coulomb gauge r �A = 0 and introducing the (quantum) �uid velocity �eld V = V(r; t) :

V =
1

m

�
rS � q

c
A
�
; (18)

one obtains the countinuity equation:

@

@t
ln f +V � r ln f +r �V = 0: (19)

Similarly the real part of the equation delivers the quantum Hamilton-Jacobi equation:

@

@t
S +Hc(r;rS �

q

c
A; t) = 0; (20)

where Hc(r;rS � q
cA; t) is the Hamiltonian function

Hc(r;rS �
q

c
A; t) =

1

2m

�
rS � q

c
A
�2
+ UQM + q�: (21)

Moreover, here UQM denotes the so-called free-particle quantum potential [8]

UQM =
~2

2

�
1

2
r2 ln f + 1

4
jr ln f j2

�
: (22)

Applying the operator ( 1mr) to the previous equation and introducing the position (164) there follows

@

@t
V+

1

2m2
r
�
rS � q

c
A
�2
= � q

mc

@

@t
A� 1

m
rUQM � 1

m
rq�:
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Now we notice that

1

2m2
r
�
rS � q

c
A
�2

=
1

m2

�
rS � q

c
A
�
� r
�
rS � q

c
A
�
+

1

m2

�
rS � q

c
A
�
�
h
r�

�
rS � q

c
A
�i
=

= V � rV� q

mc
V � [r�A] = V � rV� q

mc
V �B:

Hence it follows the quantum Euler equation:

@

@t
V +V �rV= 1

m
F(r;t); (23)

where F(r;t) (quantum force-�eld) is the vector �eld

F(r;t) � q

�
E+

1

c
V �B

�
�rUQM (24)

and

E =�r��1
c

@

@t
A (25)

B =r�A (26)

are the EM �elds.
The PDE�s (165) and (169) are denoted quantum hydrodynamic equations (QHE) and fZg � ff;Vg as correspond-

ing quantum �iid �elds.

III-b. Lagrangian representation of QHE

A Lagrangian representation for QHE can be obtained by introducing a parametrization in terms of a family of
smooth curves fr(t)g belonging to the con�guration space (
) in which the �uid �elds fZg are de�ned. A possibility
for the de�nition [of these curves] is realized by the curves r(t); to be denoted as characteristics, or Lagrangian paths
(LP) associated to the �uid velocity �eld V(r; t), which are solutions of the initial-value problem

D

Dt
r(t) = V(r; t); (27)

r(to) = ro;

where D
Dt denotes the �uid Lagrangian derivative, de�ned with respect to the �uid velocity V(r; t);

D

Dt
V � @

@t
V +V �rV: (28)

Then a Lagrangian representation of QHE is then simply provided by the set of Lagrangian di¤erential equations
represented by Eq.(27) together with

D

Dt
ln f(r(t); t) = � r �V(r; t)jr=r(t) ; (29)

D

Dt
V(r(t); t) =

1

m
F(r(t);t): (30)

We notice that Eqs.(27)-(30) are manifestly coupled. In particular, if f(r; t) is considered prescribed, Eqs.(27) and
(30) (must) determine uniquely the set of vector functions fr(t);V(r(t); t)g : It follows that these equations can also
be represented in the equivalent integral form8>>>>>>><>>>>>>>:

r(t) = ro +
tR
to

dt0V(r(t0); t0);

f(r(t); t) = f(ro; to) + exp

(
�

tR
to

dt0 r �V(r; t0)jr=r(t0)

)
;

V(r(t); t) = V(ro; to) +
1
m

tR
to

dt0F(r(t0);t0):

(31)
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IV - CASE OF THE N-BODY PROBLEM

Let us now consider the case of the N-body system, represented by an ensemble of (N) charged point particles
subject to an external EM �eld de�ned by the EM potentials f�;Ag. The Hamiltonian [of the N-body system] is
de�ned as

HN =
X
i=1;N

Hi; (32)

Hi =
1

2mi

�
pi�

qi
c
Ai

�2
+ qi�i; (33)

Ai � A(ri; t); (34)

�i � �T (ri; t); (35)

�T (ri; t) deniting a suitable e¤ective potential (which can include the action of a gravitational �eld). If binary Coulomb
interactions are included the previous Hamiltonian should be replaced by

HN =
X
i=1;N

Hi +H
(int)
N ;

H
(int)
N denoting the interaction Hamiltonian

H
(int)
N =

X
i;j=1;N ;j<i

qiqj�ij �
�
qiqj�ij

�0
(36)

and qiqj�ij the Coulomb interaction potental.
This corresponds to the Schrödinger equation:

i~
@

@t
 = HN : (37)

where  =  (r;t) and r � (r1; :::; rN ) denote respectively the quantum wave function and the con�guration vector of
the N-body system: It follows:

i~
@

@t
 =  

�
i~
2

@

@t
ln f � @

@t
S

�
;

1

2mj

�
pj�

qj
c
Aj

�2
=

1

2mj

�
�i~rj�

qj
c
Aj

�
�  
�
� i~
2
rj ln f +rjS �

qj
c
Aj

�
=

=
 

2mj

�
�~

2

2
r2j ln f � i~r2jS +

qj
c
i~rj �Aj

�
+

+
 qj
2mjc

�
i~
2
Aj � rj ln f �Aj � rjS +

qj
c
jAj j2

�
+

+
 

2mj

�
� i~
2
rj ln f +rjS �

qj
c
Aj

�
�
�
� i~
2
rj ln f +rjS

�
:

Hence, the imaginary part of the Schrödinger equation yields

i~
2

@

@t
ln f =

1

2m

h
�i~r2jS +

q

c
i~rj �Aj

i
+

qj
2mjc

i~
2
Aj � rj ln f +

� 1

2mj

i~
2
rj ln f � rjS �

1

2mj

h
rjS �

qj
c
Aj

i
� i~
2
rj ln f = (38)

=
1

2mj

h
�i~r2jS +

qj
c
i~rj �Aj

i
� i~
2mj

h
rjS �

qj
c
Aj

i
� rj ln f

(with summation to be unserstood on repeated indexes), namely
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@

@t
ln f +

1

m

h
rjS �

qj
c
Aj

i
� rj ln f +

1

mj
r2jS =

qj
mjc

rj �Aj : (39)

Imposing the Coulomb gauge r�A = 0 and introducing the (quantum) �uid velocity �eld Vj= Vj(r; t) for j = 1; N :

Vj=
1

m(j)

�
rjS �

q(j)

c
Aj

�
; (40)

one obtains the countinuity equation:

@

@t
ln f +Vj � rj ln f +rj �Vj = 0: (41)

Similarly the real part [of the same equation] delivers the quantum Hamilton-Jacobi equation:

@

@t
S +Hc(r;rS �

q

c
A; t) = 0; (42)

where Hc(r;rS � q
cA; t) is the Hamiltonian function

Hc(r;rS �
q

c
A; t) =

1

2mj

�
rjS �

qj
c
Aj

�2
+ UQM + qi�i +

�
qiqj�ij

�0
; (43)

and UQM denotes the so-called free-particle quantum potential [8]

UQM =
X
j=1;N

UQMj ; (44)

UQMj �
~2

2

�
1

2
r2j ln f +

1

4
jrj ln f j2

�
: (45)

Applying the operator ( 1
m(i)

ri) to the previous equation and introducing the position (164) there follows (for
i = 1; N)

@

@t
Vi+

1

2m2
(i)

r(i)
�
riS �

qi
c
Ai

�2
= � q

mc

@

@t
Ai �

1

m
riUQM � 1

m(i)
ri
�
qj�j +

�
qiqj�ij

�0�
:

Now we notice that

1

2m2
j

ri
�
rjS �

qj
c
Aj

�2
=

1

m2
j

�
rjS �

qj
c
Aj

�
� ri

�
rjS �

qj
c
Aj

�
+

+
1

m2
j

�
rjS �

qj
c
Aj

�
�
h
ri �

�
rjS �

qj
c
Aj

�i
=

= Vj � riVj�
qj
mjc

Vj � [ri �Aj ] = Vj � riVj�
q(i)

m(i)c
V(i) �Bi �

�
qj
mjc

Vj � [ri �Aj ]

�0
;

where ()0 �
X

j=1;N ;j 6=i
: Hence it follows the quantum Euler equation:

�
D

Dt

�
i

Vi �
@

@t
Vi+V(i)�r(i)Vi=

1

m(i)
Fi(r;t): (46)

Furthermore Fi(r;t) (quantum force-�eld) is the vector �eld

Fi(r;t) � q(i)

�
Ei +

1

c
V(i)�Bi

�
�r(i)UQMi+ (47)

�Fi(r;t);
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while

�Fi(r;t) = �m(i) (Vj � riVj)
0 �m(i)

�
riqj�j

�0
+

�
qj
mjc

Vj � [ri �Aj ]

�0
� (48)

� (riUQMj)
0

and

Ei=�ri[�(i) +
1

m(i)
ri
�
qj�j +

�
qj�ij

�0�
]�1
c

@

@t
Ai ; (49)

Bi=r(i)�Ai (50)

are the EM �elds acting on the i-th particle. The PDE�s (165) and (169) are denoted as N-body quantum hydrodynamic
equations (N-body QHE ), fZg � ff;Vg being the corresponding quantum �uid �elds.

IV BIS - REDUCED 1-BODY FLUID DESCRIPTION

For de�niteness let us consider in this subsection the case in which the Coulomb interactions are negligible. In this
case the reduced 1-body �uid description is obtained integrating QHE on the con�guration space of the N-1 remaining
particles. Letting

0 < V =

Z



d3ri <1;

introducing the operators

G1 =
1

V N�1

Z



d3r2:::

Z



d3rN ; (51)

Gj =
1

V N�1

Y
i=1;N ;i 6=j

0@Z



d3ri

1A (52)

let us denote f1 = G1 ffg ; V1 = G1 fV1g ; eV1 = V1 �V1 and moreover

Vj = Gj
�
V(j)

	
;eVj = Vj �Vj:;

This yields respectively:

@

@t
f1 +r1 �G1 ffV1g = 0; (53)

@

@t
V1+G1 fV1�r1V1g=

1

m1
G1 fF1(r;t)g ; (54)

where

G1 ffV1g = f1V1 +G1

n ef eV1

o
; (55)

G1 fV1�r1V1g = V1�r1V1 +G1

neV1�r1
eV1

o
; (56)
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G1 fF1(r;t)g = q1

�
E1 +

1

c
V1�B1

�
+ (57)

+�G1 fF1(r;t)g ;

and

�G1 fF1(r;t)g = �G1mi (Vj � riVj)
0 �m1r1G1

�
(qj�j)

0	+G1�mi
qj
mjc

Vj � [ri �Aj ]

�0
� (58)

�m1r1G1
X
j=1;N

UQMj :

There it follows

G1mi (Vj � riVj)
0
= m1r1G1

�
1

2
V2
j

�0
;�

mi
qj
mjc

Vj � [ri �Aj ]

�0
= 0;

hence

�G1 fF1(r;t)g = �m1r1G1

24�1
2
V2
j + qj�j

�0
+
X
j=1;N

UQMj

35 : (59)

We conclude therefore that Eq.(54) reads:

@

@t
V1+V1�r1V1 = �G1

neV1�r1
eV1

o
+

q1
m1

�
E1 +

1

c
V1�B1

�
+ (60)

�r1G1

24�1
2
V2
j + qj�j

�0
+
X
j=1;N

UQMj

35 :
This will be denoted as the reduced 1-body quantum Euler equation.

OPEN PROBLEMS

1. ISSUE #1 : is it possible to identify in terms of Eq.(60) the quantum enthalpy density E1 = �1TQM + pQM? By
de�nition here we shall assume that there results

E1 = �1TQM + pQM � 0 (61)

(positivity requirement). Here, �, TQM and p are denoted respectively as mass density, quantum kinetic temper-
ature and quantum scalar pressure.

2. ISSUE #2: does there exist an asymptotic limit, or a particular solution of the quantum hydrodynamic equa-
tions, in which [at least for a neutral �uid, namely if qi = 0 for all i = 1; N ] Eqs.(53) and (54) reduce to the
classical incompressible Euler equations (IEE)? In other words, such that there results:

f1 = const: (62)

r1 �V1 = 0; (63)

@

@t
V1+V1�r1V1= �

1

f1m1
rp+ 1

�1
f ; (64)



10

or more generally the classical incompressible Navier-Stokes equations (INSE), obtained replacing Eq.(64) with

@

@t
V1+V1�r1V1= �

1

f1m1
rp+ 1

f1m1
f + �r2V1: (65)

In the case of a heavy and neutral �uid f is de�ned as the volume force produced by the gravitational �eld, i.e.,

1

�1
f = g; (66)

g denoting the gravitational acceleration and �1 = f1m1 the 1-body mass density) and � > 0 a constant dimensionless
parameter (kinematic viscosity)?

CLASSICAL LIMIT OF THE QUANTUM EULER EQUATION

Here we intend to point out that:

� the enthalpy density E1; as well as the quantum temperature and pressure, TQM (r1; t) and p(r1; t); can be
uniquely prescribed in terms of the reduced 1-body quantum Euler equation.(60). In particular, we intend to
prove that a possible de�nition for E1; TQM (r; t) and p(r; t) is provided by

E1
�1
= TQM (r1; t) +

1

�1
pQM (r1; t); (67)

TQM (r1; t) = To(t) + T1(r1; t); (68)

T1(r; t) = m1G1r1

24�1
2
V2
j �

1

2
eV 2j �0 + X

j=1;N

~2

8
jrj ln f j2

35 ; (69)

1

�
pQM (r; t) � G1

 eV 21
2
+
1

2
eV 2j
!0
: (70)

Here the notation is as follows:

1. To(t), to be denoted as pseudo-temperature, is de�ned so that there results identically for all t 2 I :

@

@t
S(gM ) = 0

(constant H-theorem for the microscopic BS-entropy) with S(gM ) the BS entropy (to be de�ned below);

2. TQM (r1; t) and T1(r1; t) are denoted respectively as quantum and relative temperature;

3. pQM (r1; t) is denoted as quantum scalar pressure.

� The quantum Euler equation (59) implies the classical incompressible Euler equation Eq.(64).

De�nition of E1; TQM and pQM

Let us �rst point out the following identity:
LEMMA 1
There its results identically:

G1

neV1�r1
eV1

o
= G1r1

 eV2
1

2

!
: (71)
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PROOF : in fact by de�nition

G1 fV1�r1V1g = r1G1
�
V 21
2

�
= r1G1

0B@
h
V1 + eV1

i2
2

1CA =

= r1
�
V1

2

2

�
+G1r1

 eV2
1

2

!
= (72)

= V1�r1V1 +G1

h
V1 �

�
r1 � eV1

�i
+G1r1

 eV2
1

2

!
Since

G1

h
V1 �

�
r1 � eV1

�i
= 0 (73)

holds identically, while manifestly

G1 fV1�r1V1g = V1�r1V1 +G1

neV1�r1
eV1

o
; (74)

so that Eq. (71) follows. Q.E.D.
The Lemma implies that Eq.(60) can be written as

@

@t
V1+V1�r1V1 =

q1
m1

�
E1 +

1

c
V1�B1

�
+ g +

� 1
�1

r1E1 � (75)

�r1G1

24�qj�j�0 + X
j=1;N

~2

4
r2j ln f

35+
+
E1
�1
r1 ln �1: (76)

where we let
E1
�1
=

1

m1
TQM (r1; t) +

1

�1
pQM (r1; t); (77)

TQM (r1; t) = To(t) + T1(r1; t); (78)

1

m1
T1(r1; t) =

�
1

2
V2
j �

1

2
eV 2j �0 + X

j=1;N

~2

8
jrj ln f j2 (79)

1

�1
pQM (r1; t) =

eV 21
2
+

�
1

2
eV 2j �0 :

In the case of a neutral �uid this reduces to

@

@t
V1+V1�r1V1 = � 1

�1

r1E1 + g �r1G1

24 X
j=1;N

~2

4
r2j ln f

35+
+
E1
�1
r1 ln �1: (80)

In particular, for an isothermal neutral �uid [T1(r1; t) = const] it follows

@

@t
V1+V1�r1V1 = � 1

�1

r1p+ g �r1G1

24 X
j=1;N

~2

4
r2j ln f

35+ (81)

+
E1
�1
r1 ln �1;
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where

G1

24 X
j=1;N

~2

4
r2j ln f

35 = ~2

4
r21G1 [ln f ] : (82)

Let us now consider the semi-classical limit. This is can be de�ned by letting:

~ ! 0; (83)

~2

4
r21G1 [ln f ] ! 0; (84)X

j=1;N

~2

8
jrj ln f j2 ! 0; (85)

thus yielding:

@

@t
V1+V1�r1V1 = �

1

�1

r1p+
1

�1
f (86)

(semiclassical limit), with f now denoting the vector �eld:

f ��1g + E1r1 ln �1: (87)

We remark that :

� Eq.(86) can be viewed as the Euler equation of a classical �uid subject to the "modi�ed" volume force density
(87). We remark that E1r1 ln �1 represents an additional volume force density, not usually included in the
Euler equation of a classical neutral �uid;

� Hence, the classical Euler equation should actually be considered an approximation of Eq.(86), holding when
the extra volume force density E1r1 ln �1 can be considered as negligible. Manifestly this occurs exactly [i.e.,
Eq.(86) reduces identically to the customary Euler equation of a classical ideal �uid ] when it results identically
�1 = const: (condition of incompressibility). In this case one obtains:

THM.1 - Classical incompressible Euler equation
In the case of an incompressible quantum �uid Eq.(81) reduces to:

@

@t
V1+V1�r1V1 = �

1

�1

r1p+ g; (88)

which coincides with the Euler equation of a classical ideal �uid.

In conclusion:
1) the classical limit [of th quantum Euler equation] can be viewed as the equation of a classical �uid subject to a

suitably"modi�ed" volume force density;
2) The extra force represents a new e¤ect, not usually included in the Euler equation of a classical neutral �uid;
3) the classical Euler equation should therefore be considered an approximation of our more correct equation, holding

when the extra volume force density is negligible. This occurs exactly for an incompressible �uid;
4) quantum corrections to the classical Euler equations can be clearly identi�ed;
5) the notions of enthaply density, temperature and scalar pressure are (uniquely) achieved, based on the quantum

description. This is a prerequisite for achieving IKT for the N-body �uid description.

V - INVERSE KINETIC THEORY FOR QHE

In this section we intend to develop two key aspects of the theory. The �rst one deals with the basic assumptions of
the inverse kinetic theory, while the second is concerned with the construction of a classical dynamical system which
provides the dynamical evolution of the quantum system.
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A. - The case of 1-body IKT

Let us �rst determine an inverse kinetic theory (IKT) for the 1-body Schrödinger equation (i.e., a kinetic theory
yielding the 1-body quantum hydrodynamic equations de�ned above). Here we shall consider in particular the case
of a single-temperature IKT requiring

T �M3 [g] � (89)

� 1

f(r; t)

Z
U

dvm
u2

3
g(r;v;t);

[where u = v �V(r; t)] while imposing also

f =M1 [g] �
Z
U

dvg(r;v;t); (90)

M2 [g] �
1

f(r; t)

Z
U

dvvg(r;v;t) = (91)

= V(r; t);

Assuming that the sole information is provided by the knowledge of the initial �uid �elds PEM yields necessarily
that the only admissible probability distribution function (PDF) is

g(x; t) = gM (r;v; t) � f(r; t)
1

�3=2v
3=2
th

exp
�
�X2

	
; (92)

to be denoted as generalized Maxwellian PDF. Here vth =
p
2T=m;X2 = u2=vth and u = v�V(r; t): Requiring that

gM (r;v; t) satis�es identically the Liouville equation, or inverse kinetic equation (IKE)

@

@t
gM + v �rgM+

@

@v
�
�
gM

1

m
K(gM )

�
= 0; (93)

i¤ the �uid �elds ff(r; t);V(r; t)g satisfy the QHE initial-boundary value problem, it follows that mean-�eld force
K(gM ) has the form

K(gM ) = F(gM ) +Ku(gM ); (94)

where 1
mF(gM ) denotes the �uid acceleration, with F(gM ) de�ned as

F(gM ) = q

�
E(r; t)+

1

c
V(r; t)�B(r; t)

�
�rUQM (r; t); (95)

while 1
mKu(gM ) is the kinetic contribution to the acceleration. The form of the mean-�eld force termKu(gM ) depends

of the de�nition of the temperature �uid �eld. Assuming a single temperature (T ), in particular one can require either:
A) T = T (t) or B) T = T (r;t): It follows that
CASE A - letting T = T (t) there results

Ku(gM ) = T (t)r ln f(r; t) +mu�rV+m
2
u
@

@t
lnT (t); (96)

CASE B - letting, instead, T = T (r;t) there results

Ku(gM ) = T (r; t)r ln f +mu�rV+m
2
u
D

Dt
lnT (r; t) + (97)

+rT (r; t)(X2 � 1
2
):

PROOF:
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There results, in fact, from Eq.(93):

@

@t
lg nM + v �r ln gM = D

Dt lnf
(1)

+ u �r lnf
(3)

+

0@ D
Dt

(5)

+ u�r
(6)

1A lnT �X2 � 3
2

�
+ DV

Dt �
2u
v2th

(2)

+ u �rV � 2u
v2th

(4)

1

gM

@

@v
�
�
gM

1

m
K(gM )

�
= - 2u

v2th
� 1mF(gM )
(2)

� 2u

v2th
�

24 1
mTr lnf

(3)

+ rV � u
(4)

+ 1
2u

D
Dt lnT
(5)

+ 1
mrT(X

2- 12 )
(6)

35+
+ r�V

(1)

+ 3
2
D
Dt lnT
(5)

+u�r lnT
(6)

which proves the statement. Q.E.D.

B. - N-body IKT

Let us now construct an inverse kinetic theory (IKT) for the N-body Schrödinger equation. For this purpose we
shall introduce for each particle a single-temperature IKT, requiring for i = 1; N :

Ti(ri;t) �M3 [g] � (98)

� 1

f(r; t)

Z
U

dvmi
u2i
3
g(r;v;t);

where

ui = vi �Vi;

while imposing also

f =M1 [g] �
Z
U

dvg(r;v;t); (99)

M2 [g] �
1

f(r; t)

Z
U

dvvig(r;v;t) = (100)

= Vi(r; t);

Assuming that the sole information is provided by the knowledge of the initial �uid �elds PEM yields necessarily
that the only admissible probability distribution function (PDF) is then

g(x; t) = gM (r;v; t) � f(r; t)
Y
i=1;N

1

�3=2v
3=2
th;i

exp
�
�X2

i

	
; (101)

X2
i =

u2i
v2th;i

; (102)

v2th;i =
2Ti
mi

: (103)

Here vth =
p
2T=m;x2 = u2=vth and u = v �V(r; t):

Again imposing for gM (r;v; t) the IKE

@

@t
gM + vi�rigM+

@

@vi
�
�
gM

1

mi
Ki(gM )

�
= 0; (104)

it follows that mean-�eld force Ki(gM ) has necessarily the form
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Ki(gM ) = Fi +Kui(gM ); (105)

where 1
mi
Fi denotes the �uid acceleration, with Fi(gM ) de�ned by Eq.(170), while 1

mi
Kui(gM ) denotes again the

kinetic contribution to the acceleration and its form depends on the de�ntion of the temperature �uid �elds, namely
either: A) Ti = Ti(t) or B) Ti = Ti(ri;t): It follows that
CASE A - letting Ti = Ti(t) one �nds

Kui(gM ) = Tiri ln f(r; t) +m(i)u(i)�r(i)Vi + (m(i)uj �rjVi)
0 +

mi

2
ui
@

@t
lnTi; (106)

CASE B - letting, instead, Ti = Ti(ri;t) there results

Kui(gM ) = Tiri ln f +m(i)u(i)�r(i)Vi + (m(i)uj �rjVi)
0 + (107)

+
mi

2
ui

�
D

Dt

�
i

lnTi +riTi(X2
i �

1

2
):

PROOF:
Let us invoke now Eq.(104). There results:

@

@t
lg nM + vi�rigM =

X
i=1;N

�
D
Dt

�
i
lnf

(1)

+ ui�ri lnf
(3)

+

0BBBB@
X
i=1;N

�
D
Dt

�
i

(5)

+ ui�ri
(6)

1CCCCA lnTi
�
X2
i �

3

2

�
+

+
X
i=1;N

�
DVj

Dt

�
i
� 2uj
v2th;j

(2)

+ ui�riVj � 2ujv2th;j

(4)

Kui(gM ) = Tiri ln f +m(i)u(i)�r(i)Vi + (m(i)uj �rjVi)
0 + (108)

+
mi

2
ui

�
D

Dt

�
i

lnTi +riTi(X2
i �

1

2
):

1

gM

@

@vi
�
�
gM

1

mi
Ki(gM )

�
= � 2ui

v2th;i
� 1
mi
Fi(gM )

(2)

� 2ui
v2thi

�

264 1
mi
Tiri ln f
(3)

+ uj �rjVi

(4)

+ 1
2ui

�
D
Dt

�
i
lnTi

(5)

+ 1
mi
riTi(X2

i � 1
2 )

(6)

375+
+ ri �Vi

(1)

+ 3
2

�
D
Dt

�
i
lnTi

(5)

+ui�ri lnTi
(6)

which proves the statement. Q.E.D.

A.BIS - Reduced 1-body IKT

The reduced 1-body IKT is obtained introducing the integral operator

H1 =

Z
�1

dx2:::

Z
�N

dxN (109)

and denoting

gM;1 = H1 fgMg � f1
1

�3=2v
3=2
th;1

exp
�
�X2

1

	
: (110)
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Then IKE yields

@

@t
gM;1 + v1�r1gM;1+

@

@v1
�H1

�
gM

1

m1
K1(gM )

�
= 0; (111)

where

H1

�
gM

1

m1
K1(gM )

�
= gM;1

1

m1
F1+

+H1

�
gM

1

m1
Ku1(gM )

�
It follows

H1

�
gM

1

m1
Ku1(gM )

�
= H1gM fTiri ln f+ (112)

+riTi(X2
i �

1

2
)

�
= H1 fgMTiri ln fg+

+gM;1r1T1(X2
1 �

1

2
) +H1 fgMrjTjg ; (113)

namely

H1

�
gM

1

m1
Ku1(gM )

�
=
1

f1
gM1G1

�
1

fi
gMiTirif

�
+ (114)

+gM;1r1T1(X2
1 �

1

2
) +

1

f1
gM1G1

�
f

fi
gMiriTi

�

B. IKT-Schrödinger dynamical system

Let us introduce the phase-space dynamical system de�ned by IKE, namely

x(to) = xo ! x(t) = Tt;toxo (115)

where the evolution operator Tt;to is generated by the �ow of the initial-value problem

�
r � dr

dt
= v; (116)

�
v � dv

dt
� d

�
r

dt
=
1

m
K(gM ); (117)

x � (r;v) and v denoting respectively the kinetic state and the kinetic velocity de�ned by Eqs.(116) and (117). In
the remainder we shall require that x(t) � fr(t);v(t)g = Tt;toxo satis�es the boundary conditions

x(to) = xo; (118)

x(t1) = x1: (119)

In the present case (115) is denoted as IKT-Schrödinger dynamical system.

C.The search of a variational formulation

Let us pose the problem of the search of a variational formulation of the boundary-value problem for Eqs. (116)
and (117): in other words a variational principle of the form�

�S(�) = 0
8��(t) (120)

where the real vector functions �(t) 2 f�(t)g ; S(�) [variational functional], f�(t)g [functional class], ��(t) [synchronous
variation of �(t))] and �S(�) [synchronous variation of �S(�(t))] are all to be suitably de�ned.
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CASE A:

In case A, Eq.(117) reads

d

dt

�
r� T

m

@

@r
ln f(r; t)� (121)

� q

m

�
E(r; t)+

1

c
V(r; t)�B(r; t)

�
� 1

m
rUQM (r; t)�rV(r; t) �

h �
r�V

i
� 1
2

h �
r�V

i @
@t
lnT = 0;

where V(r; t) denotes an arbitrary particular solution of the quantum Euler equation [see Eq.(169)], namely

D

Dt
V(r; t) =

q

m

�
E(r; t)+

1

c
V(r; t)�B(r; t)

�
� 1

m
rUQM (r; t) (122)

[this equation can be proven to be itself variational and Hamiltonian (see Appendix A)]. There results

rV(r; t) �
h �
r�V

i
= rV(r; t) � �r�r1

2
V2(r; t) =

= rV(r; t) � �r� D

Dt
V(r; t) +

@

@t
V(r; t) =

=
d

dt
V(r; t)� D

Dt
V(r; t) :

Let us introduce the decomposition

r = R+ �; (123)

where fR(�(t); t)g and f�(t)g and denote respectively the con�guration-space Lagrangian trajectories solutions of the
equations

dR

dt
= V(R+ �; t) � DR

Dt
; (124)

d�

dt
= v �V(r; t) � u: (125)

As a consequence Eq.(121) is reduced to the ODE:

d

dt

�
� =

T

m

@

@r
ln f(r; t) +

1

2

�
�
@

@t
lnT:

Hence, denoting T (to) = To (with To > 0), the same equation can also be written as

d

dt

�
m

2

To
T

�
�

�
� To
2

@

@r
ln f(r; t) = 0; (126)

to be considered subject to the boundary conditions

�(ti) = �i (127)

for i = 0; 1: This equation can be viewed as prescribing the kinetic relative dynamics, i.e., with respect the local
(quantum) �uid element [which moves with velocity V(r; t)].

CASE B

In case B one obtains instead:
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d

dt

�
r+

T

m

@

@r
ln f(r; t)�

� q

m

�
E(r; t)+

1

c
V(r; t)�B(r; t)

�
+
1

m
rUQM (r; t)+

+rV(r; t) �
h �
r�V

i
+
1

2

h �
r�V

i D
Dt

lnT � 1

m
rT (X2 � 1

2
) = 0; (128)

As a consequence the equation reduces to the ODE:

d

dt

�
� =

T

m

@

@r
ln f(r; t) +

1

2

�
�
D

Dt
lnT � 1

m
rT (X2 � 1

2
)

where

X2 =
m

�
�
2

2T
; (129)

namely

d

dt

�
m

2

To
T

�
�

�
� To
2

@

@r
ln f(r; t) +

To
2

@

@r
lnT (

m
�
�
2

2T
� 1
2
) = 0: (130)

This equation is manifestly non-variational.

D. Variational formulation for Eq.(126) - The basic results

We intend to prove that the boundary-value problem associated to Eq.(126) is:

1. variational

2. Hamiltonian.

The result does not pose any constraint on the quantum temperature T = T (t):
The following results hold:

THM.1 - Lagrangian variational principle for Eq.(126)

Let us introduce the following de�nitions:

1) functional S1(�):

S1(�) =

t1Z
t0

dtL1(�(t);
�
�(t); t); (131)

L1(�;
�
�; t) =

m

4

T (t)

To

�
�
2
+
T 2(t)

2To
ln f(R+ �; t) ; (132)

2) functional classes f�(t)g and fr(t)gR :

f�(t)g =
n
�(t) : �(t) 2 C(2)(I);�(ti) = �i and �(t);�i 2 R3; i = 0; 1

o
(133)

fr(t)gR =
n
r(t) : r(t) = R(t)+�(t); R(t) 2 C(2)(I);�(t) 2 f�(t)g ; r(ti) = ri and r(t); ri 2 R3; i = 0; 1

o
;(134)

3) in Eq.(133) the vector function R(t) is considered uniquely prescribed for all curves r(t); i.e., independent of che
choice of �(t) 2 f�(t)g;
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4) synchronous variation �S1(�) :

�S1(�) =
d

d�
	1(�)

����
�=0

(135)

with 	1(�) the real function de�ned, for � 2 ]�1; 1[ ; as

	1(�) = �S1(�+���) �
t1Z
t0

dtL1(�(t) + ���(t);
�
�(t) + ���(t); t)

where ��(t) = �(t)��1(t); with �(t) and �1(t) denoting two arbitrary functions belonging to f�(t)g : Hence, consistent
with the requirements #2 and 3, we let

	1(�) = (136)

=

t1Z
t0

dt

�
m

4

T (t)

To

� �
�(t) + ��

�
�(t)

�2
+
T 2(t)

2To
ln f(R(�(t); t) + �(t) + ���(t); t)

�
:

Then it follows that the Lagrangian variational principle�
�S1(�) = 0
8��(t) (137)

is equivalent to the boundary-value problem (126)-(127).
PROOF
From de�nitions #1-4 it follows

�S1(�) =

t1Z
t0

dt��(t) �
(
� d

dt

�
m

2

T

To

�
�

�
+
T 2

2To
=
@

@�
ln f(R(�; t)+�; t)

����
R;t

)
; (138)

Now we notice that by de�nition

@

@r
ln f(r; t) � @

@r
ln f(R(�; t)+�; t) = (139)

=
@

@�
ln f(R(�; t)+�; t)

����
R;t

:

Hence the Euler-Lagrange equations corresponding to the variational principle (137) manifestly coincide with Eq.(126),
with �(t) to be considered subject to the same boundary conditions (127). Therefore Eqs.(137) and (126) are equiv-
alent. Q.E.D.

THM.2 - Hamiltonian form of Eq.(126)

In validity of THM.1 there results:
a) (Proposition a-THM.2)
the boundary-value problem (126)-(127) admits the modi�ed Hamilton principle�

�S1;H(z) = 0
8��(t); �p�(t)

(140)

where S1;H(z) is the Hamiltonian action

S1;H(z) =

t1Z
t0

dt
h �
�(t) � p�(t)�H(z(t); t)

i
(141)
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and H(z; t) the corresponding Hamiltonian function

H(z; t) =
To

4mT (t)
p2� �

T 2(t)

2To
ln f(R+ �; t); === (142)

b) (Proposition b-THM.2)
the boundary-value problem (126)-(127) admits an Hamiltonian equations de�ned w.r. to the Hamiltonian (142)

and the canonical state z =
�
�;p�

�
. Thus, equation (126) is equivalent to the canonical equations

�
� =

@

@p�
H(z; t); (143)

�
p� = � @

@�
H(z; t): (144)

PROOF
The proof of Proposition a) is an obvious consequence of THM.1. In fact, the Lagrangian (132) manifestly regular,

since by assumption m
4
T (t)
To

> 0: Therefore, the transformation
n
�;

�
�
o
! f�;p�g ; with

p� =
@L1(�;

�
�; t)

@
�
�

=
m

2

T (t)

To

�
�(t)

is a di¤eomeorphism. Thus, Eq.(140) is the modi�ed Hamilton variational principle corresponding to the Lagrangian
variational principle (137). To prove Proposition b), let us invoke Eq.(142). It follows manifestly that Eqs.(??) yield
Eq.(126). Q.E.D.

IV. COMPARISON BETWEEN IKT AND THE METHOD OF CONFIGURATION-SPACE
CHARACTERISTICS

V. CONCLUSIONS

Motivated by the previous results, relevant for the mathematical investigation of the Schrödinger equation, which
concern the discovery of an IKT for the Schrödinger equation, properties of the the underlying dynamical system
(the Schrödinger dynamical system), have been investigated. We have found that, that a particular realization of the
IKT can be achieved which permits by means its identi�cation with an abstract Hamiltonian system. The present
approach has the following main features:

1. the inverse kinetic equation (IKE) has been assumed to be a Vlasov-type kinetic equation, while its solution,
i.e., the kinetic PDF, has been required to be a Maxwelin distriubution endowed with a single kinetic temperature
T; with T required to depend only on time;

2. the IKT achieved in this way is complete, namely all �uid �elds are expressed as moments of the kinetic
distribution function, while all the hydrodynamic equations are identi�ed with suitable moment equations of
IKE.

3. the theory holds for arbitrary quantum �uid �elds, i.e., arbitrary initial and boundary conditions for the quantum
wave function, as well as arbitrary conservative (both quantum and classical) forces acting for the quantum
system.

The result appears relevant for the �uid description of quantum mechanics and a deeper understanding of the
underlying statistical (in particular, kinetic) descriptions.
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APPENDIX A: THE METHOD OF CONFIGURATION-SPACE CHARACTERISTICS

A.1 - Formulation for QHE�s

As is well known [in the theory of PDE�s] the method of characteristics is the classical approach to construct local
solutions to nonlinear PDE�s [for a presentation see Evans, 1988 [56][. This method can be used:
1) to de�ne a Lagrangian representation of QHE�s;
2) to cast a suitable subset of the same equations [represented by Eqs.(27) and (30)] in Hamiltonian form.
In particular, the method of characteristics is wellknown in the case of the Hamilton-Jacobi (HJ) equation, namely

an equation of the form

@S(r; t)

@t
+H(r;rS; t) = 0; (145)

where H(r;rS; t) denotes in principle an arbitrary smooth real function. Then, letting

p � rS; (146)

its characteristics r(t) are simply the solutions (i.e., the integral curves) of the coupled Lagrangian equations

r0 =
@H(r;p; t)

@p
; (147)

p0 = �@H(r;p; t)
@r

;

for r(t); p(t); where, r0 and p0 denote suitable derivatives with respect to the variable t and the curves and r(t); p(t)
satisfy the initial conditions

r(to) = ro; (148)

p(to) = po:

In such a framework the approach can be extended in a straihtforward way to the quantum HJ equation [i.e.,
Eq.(166)], where the Hamiltonian H is now of the form

H � Hc(r;rS �
q

c
A; t); (149)

simply by letting

p � rS � q

c
A;

and identifying the derivatives on the l.h.s. of Eqs.(147) with D
Dt ; i.e., the �uid Lagrangian derivative de�ned above

(28). As a consequence Eq.(166) delivers the Hamilton equations

Dr

Dt
=

@Hc(r;p; t)

@p
; (150)

Dp

Dt
= �@Hc(r;p; t)

@r
;

with the initial conditions (148). These equations are manifestly equivalent to the set of non-canonical equations

(27) and (30) expressed in the (non-canonical) variables (r;V).

A.2 - Another form of the Hamiltonian characteristics

The previous equations can also be written in the alternative way in terms of the kinetic Lagrangian derivative

d

dt
� @

@t
+ v � r+ 1

m
K� @
@v

: (151)
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In this case Eqs. (27) and (30) are replaced respectively by

dr

dt
= v; (152)

dV(r; t)

dt
� DV(r; t)

Dt
+ u �rV(r; t) = 1

m
F(r;V;t) + u �rV(r; t); (153)

where v and

u= v �V(r; t) (154)

denote the kinetic and relative kinetic velocities. Let us now introduce the Hamiltonian function

H1(r;p;u(t);t) =
1

2m

h
p� q

c
A(r; t)

i2
+ q�(r; t) + UQM (r; t) + u(t)�

h
mV(r(t); t)+

q

c
A(r(t); t)

i
: (155)

In this case there follows:

THM.3 - Hamiltonian form of QHE

The Hamiltonian equations corresponding to Eqs.(150) read

dr

dt
= v � @H1(r;p;u(t);t)

@p
; (156)

dp

dt
= �@H1(r;p;u(t);t)

@r
: (157)

PROOF
The proof follows by invoking the Hamiltonian (155). Q.E.D.

A.3 - Time-evolution of the �uid �elds

Let us show, �nally, that the the classical Hamiltonian dynamical system generated by Eqs.(??),namely the bijection

xo ! x(t) = [r(t);P(r(t); t)] � Tto;txo (158)

[with Tto;t prescribed by Eqs.(??) and (??)] uniquely determines the time evolution of the �uid �elds ff(r; t);V(r; t)g :
To prove the statement, let us introduce the Liouville equation

Lg(x; t) = 0; (159)

where L is the Liouville operator

L =
@

@t
+ v �r+ @

@v
� fK(x; t)g (160)

and the KDF is prescribed so that there results identically

f(r; t) =

Z
R3

d3vg(x; t) (161)

V(r; t) =

Z
R3

d3vvg(x; t): (162)
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As a consequence the corresponding moment equation of Eq.(159) necessarily must coincide respectively with Eqs.(165)
and (??). Since Eq.(159) can be written in the equivalent integral form

g(x(t); t) =
1

J(x(t); t)
g(xo; to);

where

J(x(t); t) =

����@x(t)@xo

���� ;
while Eqs (161) and (162) hold identically by assumption, it follows that g(x(t); t) determines the �uid �elds at time
t [while the initial �uid �elds are prescribed by g(xo; to)]. Hence the Liouville equation (159) actually advances in
time also the �uid �elds.
Then, it is immediate to prove that a particular solution fK(x; t);g(x; t)g is delivered by�

K(x; t)= 1
mF(x; t);

g(x; t) = � (v �V(r; t)) :

APPENDICE: VERIFICA QHE�S

Let us derive explicitly the complete set of PDE�s, to be ful�lled by a suitable set of �uid �elds fZg ; which
correspond to the Schrödinger equation. Invoking the position (12) there follows

i~
@

@t
 =  

�
i~
2

@

@t
ln f � @

@t
S

�
;

1

2m

�
p�q

c
A
�2
 =

1

2m

�
�i~r�q

c
A
�
�  
�
� i~
2
r ln f +rS � q

c
A

�
=

=
 

2m

�
�~

2

2
r2 ln f � i~r2S + q

c
i~r �A

�
+

+
 q

2mc

�
i~
2
A � r ln f �A � rS + q

c
jAj2

�
+

+
 

2m

�
� i~
2
r ln f +rS � q

c
A

�
�
�
� i~
2
r ln f +rS

�
:

Hence the imaginary part of the equation yields

i~
2

@

@t
ln f =

1

2m

h
�i~r2S + q

c
i~r �A

i
+

q

2mc

i~
2
A � r ln f +

� 1

2m

i~
2
r ln f � rS � 1

2m

h
rS � q

c
A
i
� i~
2
r ln f =

=
1

2m

h
�i~r2S + q

c
i~r �A

i
� i~
2m

h
rS � q

c
A
i
� r ln f

namely

@

@t
ln f +

1

m

h
rS � q

c
A
i
� r ln f + 1

m
r2S = q

mc
r �A: (163)

Imposing the Coulomb gauge r �A = 0 and introducing the (quantum) �uid velocity �eld V = V(r; t) :

V =
1

m

�
rS � q

c
A
�
; (164)

one obtains the countinuity equation:

@

@t
ln f +V � r ln f +r �V = 0: (165)
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Similarly the real part of the equation delivers the quantum Hamilton-Jacobi equation:

@

@t
S +Hc(r;rS �

q

c
A; t) = 0; (166)

where Hc(r;rS � q
cA; t) is the Hamiltonian function

Hc(r;rS �
q

c
A; t) =

1

2m

�
rS � q

c
A
�2
+ UQM + q�: (167)

Moreover, here UQM denotes the so-called free-particle quantum potential [8]

UQM =
~2

2

�
1

2
r2 ln f + 1

4
jr ln f j2

�
: (168)

Applying the operator ( 1mr) to the previous equation and introducing the position (164) there follows

@

@t
V+

1

2m2
r
�
rS � q

c
A
�2
= � q

mc

@

@t
A� 1

m
rUQM � 1

m
rq�:

Now we notice that

1

2m2
r
�
rS � q

c
A
�2

=
1

m2

�
rS � q

c
A
�
� r
�
rS � q

c
A
�
+

1

m2

�
rS � q

c
A
�
�
h
r�

�
rS � q

c
A
�i
=

= V � rV� q

mc
V � [r�A] = V � rV� q

mc
V �B:

Hence it follows the quantum Euler equation:

@

@t
V +V �rV= 1

m
F(r;t); (169)

where F(r;t) (quantum force-�eld) is the vector �eld

F(r;t) � q

�
E+

1

c
V �B

�
�rUQM (170)

and

E =�r��1
c

@

@t
A (171)

B =r�A (172)

are the EM �elds.
The PDE�s (165) and (169) are denoted quantum hydrodynamic equations (QHE�s) and fZg � ff;Vg as corre-

sponding quantum �iid �elds.
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