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Abstract

An open problem arising in the statistical description of turbulence is related to
the determination of the so-called multi-point velocity probability density functions
(PDFs) characterizing a Navier-Stokes �uid. In this paper it will be shown that -
relaying on a suitable axiomatic approach which permits to determine the local PDFs
(i.e., before performing the enesemble-average] - as explicit solution to this problem
can actually be achieved. The result is based on the so-called inverse kinetic theory
(IKT), for incompressible NS �uids. More precisely, based on a suitable entropic
principle, it is shown that all local multi-point PDFs are necessarily factorized in
terms of the corresponding 1-point velocity PDF (f1). As a consequence the multi-
point PDFs usually considered for the phenomenological description of turbulence
can be theoretically predicted based on the knowledge of f1 achieved by means of
IKT. PACS: 05.20Jj,05.20.Dd,05.70.-a

Key words: Incompressible Navier-Stokes-Fourier equations; kinetic theory;
turbulence theory.

1 Introduction

In the context of the statistical description of �uids, the problem of the deter-
mination of multi-point PDFs arises in the following two circumstances:

� the �rst one is in the phenomenological description of turbulence (for a re-
view see for example Monin and Yaglom [1] 1975 and Pope, 2000 [2]). In
such a context, in fact, the statistical behavior of �uids is often described in
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terms of statistical frequencies [3], namely experimentally-measured proba-
bility densities, de�ned for multi-point velocity spatial increments (however,
in principle, similar frequencies can be established also for other �uid �elds,
such as vorticity, scalar pressure, temperature, etc.).

� the second one occurs in the customary approach to the statistical descrip-
tion of turbulence, namely the so-called statistical hydromechanics devel-
oped originally by Hopf [4], Rosen [5] and Edwards [6] (HRE approach) and
later investigated also by Monin and Lundgren [7, 8] (ML approach). In
both approaches, the goal is to predict the time evolution of the ensemble-
average of the 1-point PDF, to be de�ned in terms of a suitable ensemble-
averaging operator h�i. As shown by Monin and Lundgren this implies the
so-called Monin-Lundgren hierarchy [7, 8], in turn equivalent [9] to the Hopf
� functional-di¤erential equation [4]. Such a theory should provide, in prin-
ciple, a theoretical model for the phenomenological description of turbu-
lence and, as a consequence, be able to predict also the precise form of
the velocity-di¤erence PDF observed experimentally in HIST (homogenous,
isotropic and stationary turbulence).

Several open issues are related to these approaches. In particular, they concern
the search of possible exact particular solutions of the ML hierarchy repre-
sented by a �nite set of ensemble-averaged multi-point PDFs. It is well known
that the construction of "closure conditions" of this type for the ML hierar-
chy (closure problem) remains one of the major unsolved theoretical problems
in �uid dynamics. In practice, however, the program of constructing (exact)
theories of this type or (in some sense) approximate, and holding for arbitrary
�uid �elds, is still open due to the di¢ culty of preserving the full consistency
with the �uid equations. In fact, it is well known that many of the customary
statistical models adopted in turbulence theory - which are based on closure
conditions of various type - typically reproduce at most only in some approx-
imate (i.e., asymptotic) sense the �uid equations. This leaves fundamentally
unsolved the problem of the construction of a consistent theoretical model for
the multi-point PDFs arising in the phenomenological description of turbu-
lence.

The goal of this paper is to prove that under suitable assumptions the problem
can be solved, in an equivalent way, in the framework of the so-called IKT
(inverse kinetic theory [10�14]) developed for the incompressible Navier-Stokes
equations (INSE, see Appendix A).

The result is reached by considering, in contrast to the prevailing literature
(in particular the HRE and ML approaches), a statistical description based on
local multi-point PDFs rather than their ensemble-averages. For this purpose,
�rst, it is shown that all local multi-point velocity PDFs characterizing a tur-
bulent NS �uid are factorizable in terms of the corresponding (local) 1-point
velocity PDF (see THM.1). Second, the local 1-point velocity PDF de�ned in
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the framework of IKT is proved to be directly determined by the correspond-
ing 1-point PDF used in the HRE approach, the relationship between the two
being provided by THM.2 (Sec.3). The result proves also the equivalence of the
two approaches, yielding the same subset of �uid equations namely that both
yield (see Sec.3). A fundamental application of the theory concerns the treat-
ment of multi-point PDFs, which are uniquely determined by the local 1-point
PDF determined by the IKT approach (see Sec.4). As a further consequence,
also the ensemble-averaged multi-point PDFs usually considered for the phe-
nomenological description of turbulence can actually be theoretically predicted
in this way! In particular, in the case of local Gaussian 1-point PDF one ob-
tains in this way an explicit analytic representations of the 2-point velocity
PDFs usually considered for the description of HIST (see Sec.4, subsections
4.1. and 4.2).

2 Multi-point statistical models

The description of �uids, and more generally of continua, is based on the
introduction of a suitable set of �uid �elds fZg � fZi; i = 1; kg satisfying a
closed set of PDEs denoted as �uid equations. In the case of a �uid obeying
INSE (NS �uid), a possible representation of the �uid �elds is provided by the
set fZg � f�0;V; p1; STg ; where in particular both �0 (the mass density) and
ST (the thermodynamic entropy) are assumed constant in 
� I [see Eqs.(49)
and (52) in Appendix A]. Furthermore, V and p1 denote respectively the �uid
velocity and the kinetic pressure; in particular, p1 is de�ned as the strictly
positive function

p1(r; t) = p(r; t) + p0(t) + �(r; t); (1)

where p(r; t); p0(t) and �(r; t) represent respectively the �uid pressure, the
(strictly-positive) pseudo-pressure and the (possible) potential associated to
the conservative volume force density acting on the �uid [see the Appendix,
Eq.(60)]. Fluids, such as a NS �uid, can be regular or turbulent, i.e., described
respectively by deterministic or stochastic �uid �elds [13�15]. The formulation
of the problem appropriate for turbulent �ows arising in a NS �uid is recalled
in the Appendix. This requires that, leaving unchanged the functional form of
INSE and of the related initial-boundary value problem, the �uid �elds and
the �uid equations, as well as the related initial and boundary conditions be
considered as stochastic. It follows that the �uid �elds fV; p1g together with
the NS acceleration are generally stochastic functions of the form

Zi = Zi(r; t; �); (2)
FH = FH(x1; t; �); (3)

i.e., to depend on suitable stochastic variables � 2 V� � Rn independent
of (r; t): In all cases the �uid �elds are, by assumption, strong solutions of
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the well-posed initial-boundary value problem associated to INSE. As a basic
consequence, both for regular and turbulent �ows, the �uid �elds fZg uniquely
prescribe the �uid state. In particular, the stochastic functions Zi ( for i = 1; n)
can depend either on (r; t; �) or only (t; �); with (r; t) spanning the whole
existence domain 
 � I (with 
; closure of the bounded set 
 � R3; the
con�guration domain and I � R the time axis).

2.1 Complete/incomplete statistical models

The statistical description usually adopted for turbulent �ows (which may
be invoked, however, to describe also regular �ows) consists, instead, in the
introduction of appropriate axiomatic approaches denoted statistical models,
i.e., sets ff;�g formed by a suitable probability density function (PDF) and a
phase-space � (subset of Rn) on which f is de�ned. By de�nition, a statistical
model )SM) ff;�g realizes a statistical description of the �uid if it is possible
to de�ne a mapping ff;�g ) fZg ; which allows the representation in terms
of f by means of suitable "velocity"moments (of f) either: A) of the complete
set or more generally only (type A) B) or a proper subset of the �uid �elds
fZg � fZi; i = 1; ng which de�ne the �uid state (type B). Approaches ful�lling
either property A or B will be denoted respectively complete and incomplete
SMs.

In both cases their construction involves, besides the speci�cation of the phase
space (�) and the PDF f; the identi�cation of the functional class to which f
must belong, denoted as ffg : Thus, for example, ff;�gmay be identi�ed with
ffN ;�Ng ; with fN theN -point PDF (withN � 1 to be suitably prescribed) to
be generally identi�ed with a PDF of the form fN � fN(x1; :::;xN ; t; �); which
is de�ned on �N � I � V�; with �N �

Q
i=1;N

�1 the N -point phase-space, �1 =


�U , and U a suitable velocity space. In particular, fN may be is required to
satisfy a normalization condition of the form

R
UN

Q
j=1;N

dvj fN(x; t; �) = 1; i.e.,

to be a velocity PDF on UN : Based on classical statistical mechanics (CSM)
statistical models can be introduced for the INSE problem. For de�niteness,
the standard formulation appropriate to Newtonian dynamical system of N
point particles (SN) is recalled in Appendix B. Hence, thanks to Proposition
3 (see Appendix B), in the case of an incompressible NS �uid, fN(x; t; �) can
always be identi�ed with the corresponding N -body velocity PDF for SN [see
Eqs.(107)]:

As a basic consequence, consistent with CSM (see Appendix B), the following
axiom is imposed on the SM ffN ;�Ng:

� Axiom #1 (�uid moments - �uid velocity): fN(x1; :::;xN ; t; �) determines
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uniquely either the complete set or a proper subset of the local �uid �elds
(type A orB). Thus, introducing suitable weight functions fGi(rk;vk;t; �); i = 1; ng
the local �uid �elds Zi(rk;t; �); all evaluated at the local position rk and time
t belonging to
�I;are taken of the form

R
U dvkGi(rk;vk;t; �)f1(rk;vk;t; �) =

Zi(rk;t; �): In particular, we shall require

V(r1;t; �) =
Z
U
dv1v1f1(x1;t; �); (4)

V(r1;t; �) denoting the �uid velocity. Here the �uid �elds fZ(rk;t; �)g are
identi�ed with the set (or a proper subset) of the �uid �elds characterizing
the INSE problem, namely (55) which by assumption are strong solution of
the same problem (see Appendix A).

2.2 An example: the HRE statistical model

The customary approach to the statistical description of turbulence, to be
found in the literature (for a review see for example Monin and Yaglom[1] and
Pope [2]) is the so-called statistical hydromechanics (HRE approach) developed
originally by Hopf [4], later extended by Rosen [5] and Edwards [6] (see also
Novikov [16], Kollmann [17], Pope [18], Givi [3] and Dopazo [19]). This yields a
well-known example of SM for INSE which is consistent with Axiom#1 as well
as with the applicable axioms of CSM [i.e., all Axioms indicated in Appendix
B, except for CSM-#2]. The result is reached by means of an appropriate
de�nition for f1(1); which is identi�ed with the deterministic 1-point velocity
PDF

fH1(r1;u1;t) � � (v1�V(r1;t; �)) ; (5)

(local HRE 1-point velocity PDF ), where u1� u(r1;t)� v1�V(r1;t; �) denotes
the relative kinetic velocity. It follows that fH1(1) obeys the Liouville equation

L1(1)fH1(1) = 0; (6)

with L1(1) denoting the 1-point Liouville streaming operator

L1(1) �
@

@t
+ v1 �

@

@r1
+

@

@v1
� fF(x1; t; �)�g (7)

and F(x1;t; �) � F(ext)(x1;t; �) � FH(r1; t; �) the �uid acceleration at position
r1 [see Eq.(59) in the Appendix A]. We remark, that in terms of fH1(1) the
corresponding N�point velocity PDF can simply be de�ned as

fHN(x1; :::;xN ; t) �
Y
i=1;N

fH1(i) (8)
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(local deterministic N-point velocity PDF ). It follows [4�6] that fN(1; ::N)
must obey the N�point Liouville equation

LN(1; ::; N)fHN(1; ::; N) = 0 (9)

with LN(1; ::; N) now denoting the corresponding N�point Liouville stream-
ing operator

LN(1; ::; N) �
@

@t
+ vi �

@

@ri
+

@

@vi
� fF(xi; t; �)�g : (10)

It is immediate to prove that in the HRE approach, denoting �1 = 
�U and
�N � �N = 
N � UN respectively the 1- and N - point phase spaces, both
ffH1;�1g and ffHN ;�Ng are SMs which besides ful�lling the CSM Axioms
CSM-#1,#3-#5 (indicated in Appendix B), satisfy Axiom #1 but not Axiom
#2-#4. Hence both are incomplete SMs for INSE. Nevertheless, subject to the
constraints of constant mass-density [Eq.(49)], the velocity moment equations
of the Liouville equation [i.e., either (6) or (9)], evaluated w.r. to the weight
functions fGg = f1;v1g ; coincide respectively with Eqs.(50) and (51) [see
Appendix A].

2.3 The ensemble-averaging operator: local and ensemble-averaged PDFs

Goal of the HRE approach is actually to predict, in the presence of turbulence,
the time evolution of hf1(x1;t; �)i � hfH(r1;u1;t; �)i and consequently of
hV(r1;t; �)i ; hp(r1;t; �)i ; where the brackets h�i denote an ensemble-averaging
operator, to be suitably prescribed, over the possible realizations of the �uid
[2]. The same problem, however, can be set also for hfs(x1; :::;x2;t; �)i �
hfHs(1; ::; s; �)i (for s = 2; N) in terms of which correlation functions can be
determined. In the remainder, we shall denote respectively f1(x1;t; �); fs(x1; :::;x2;t; �)
and hf1(x1;t; �)i ; hfs(x1; :::;x2;t; �)i as the local and ensemble-averaged veloc-
ity PDFs. In the case of so-called homogeneous, isotropic and stationary
turbulence (HIST), h�i by de�nition commutes with the [di¤erential and in-

tegral] operators fQg �
(
@
@t
; @
@r1
; @2

@r1�@r1 ;
@
@v1
;
R


dr;

R
U
dv

)
: The corresponding

evolution (or transport) equation obtained in this case for hfHi has been in-
vestigated by several authors (see for example Dopazo [19] and Pope [2]).
Monin [7] and Lundgren [8] (see also Monin and Yaglom [1] and therein cited
references) have shown that the construction of the ensemble-averaged PDF
hf1(r;v;t; �)i appropriate for HIST is actually equivalent to the solution to an
in�nite set of PDEs denoted as ML hierarchy [7, 8].

However, more generally in the context of the statistical description of turbu-
lence the operator h�i should be understood as a mean value in the probabilistic
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sense [20], namely a stochastic average de�ned in terms of a suitable stochastic
probability density g�

h�i =
Z
V�

d�g�(r; t); (11)

where the operator h�i may generally not commute with respect to the opera-
tors fQg. In the remainder, all quantities depending locally on (r1;t; �); (x1;t; �)
will be called as local functions, in contrast to non-local functions, i.e., de-
pending more generally on (r1; :::; rs;t; �); (x1; :::;xs;t; �) with s � 2 or on the
ensemble average (11), namely, for example, in the last case are of the form
ha(x1; ;t; �)i. Finally, we shall denote as global, functions which are constant
or depend at most only on time.

2.4 An N-point PDF statistical model for local PDFs

As indicated above, in the HRE approach both f1 and fN are identi�ed with
local deterministic PDFs which do not yield the complete set of �uid mo-
ments, to be expressed in terms of velocity moments. Let us now look for
possible alternative SMs ff1;�1g and ffN ;�Ng requiring that: 1) both f1(1)
and fN(1; ::N) are ordinary smooth functions de�ned and strictly positive in
the domains �1 � I and �N � I; 2) that both ff1;�1g and ffN ;�Ng are com-
plete (i.e., of type A); 3) the velocity space U is identi�ed with R3: This means
that all the NS �uid �elds

n
Z
o
[see Eq.(55)] must be de�ned in terms of suit-

able moments of the corresponding PDFs. In particular we shall require that
the kinetic pressure p1 and the thermodynamic entropy ST are respectively
prescribed as follows:

� Axiom #2 (kinetic pressure): consistent with CSM [21, 22], the �uid �eld p1
de�ned by Eq.(1) is identi�ed with the velocity moment of fGi(r1;v1;t; �)g =
f�ou21=3g ; namely

p1(r1;t; �) =
Z
U
d3v1�o

u21
3
f1(x1;t; �): (12)

� Axiom #3 (entropy constraints): the thermodynamic entropy ST (t) for all
t 2 I and s = 1; N is identi�ed with [12]

ST = S(fs) = S(f1); (13)

where for s = 1; N;

S(fs) = �K2
s

Z
�s

dxfs ln fs (14)

and K2
1 = 1: This requires for consistency that also the constraint

S(fs(t)) = S(f1(t)) (15)
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must hold identically (entropy constraints). Furthermore, consistent with
the principle of entropy maximization (PEM [23]) holding in CSM (see
Axiom CSM-#2 in Appendix B), Propositions 1 and 2 (see Appendix B)
and the requirement of isentropic �ow [see Eq.(52) in Appendix A] we shall
require:

� Axiom #4 (entropic principle): for all for all t 2 I and s = 1; N; the
s�point velocity PDF fs(t) � fs(1; ::s) satis�es PEM, i.e., for arbitrary
�fs(t) = fs(t)� f 0f (t); with fs(t); f 0f (t) 2 ffs(t)g ; it satis�es the variational
equation

�S(f 0s(t))jfs = 0 (16)

together with the inequality

�2S(f 0s(t))
���
fs

< 0: (17)

Let us analyze the physical interpretation of the previous assumptions. Here
we remark that:

(1) The state of the �uid is solely prescribed by the local �uid �eldsV(r1;t; �);
p1(r1;t; �) as well as the global �uid �eld ST : Hence, it cannot depend on
non-local PDF, and therefore on multi-point velocity PDFs. This means
that, in a complete SM it must be possible to represent all �uid �elds
solely in terms of suitable moments of the 1-point velocity PDF f1.
This justi�es Axioms #1,#2 and #3. In particular, regarding Axiom
#3, Proposition 3 justi�es the [equivalent] identi�cation of the thermo-
dynamic entropy with S(f1) and S(fN) (and hence also with S(fs) for
s = 2; N � 1).

(2) The entropy constraints (13) and (15) follow by noting that the ther-
modynamic entropy must be independent of the level of the statistical
description ffs;�sg. In other words, the thermodynamic entropy is inde-
pendent of the level adopted for the statistical description of the same
�uid (i.e., the index s associated to the s-point PDF fs).

(3) The validity for all times t 2 I of the entropic principle (16),(17) is due
to Proposition 3 (in Appendix B). Remarkably, its proof follows also in-
dependently from the entropic constraint (13), the condition of isentropic
�ow (50) as well as from the second axiom of CSM (see Axiom CSM-#2,
in Appendix B).

(4) The requirement of completeness for the SM ff1;�1g demands that the
local �uid �elds V(r1;t; �); p1(r1;t; �) must satisfy INSE, which requires
that in the set 
� I; the following moment equationsZ

U
d3v1L1(1)f1(x1;t; �) = r �V(r1;t; �) = 0; (18)Z

U
d3v1v1L1(1)f1(x1;t; �) = �(r1;t; �)

D

Dt
V � �(r1;t; �)FH = 0; (19)

must coincide respectively with the incompressibility and NS equations
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[see Eqs.(50) and (51)]. Here L1(1) and F(x1;t; �) denote respectively the
1-point Liouville operator (7) and a vector �eld depending only on the
variables (x1;t; �) which must be de�ned, in particular, so that the con-
straint equation

R
U d

3v1F(x1;t; �)f1(x1;t; �) = FH is identically ful�lled
in 
� I:

Basic issues are related to the, possibly non-unique, determination of the ap-
propriate SM ff;�g. These concern in particular:

(PROBLEM #1) the search of the (possible) minimum level (N) of the sta-
tistical description to be adopted for ff;�g ;

(PROBLEM #2) the determination of the time-evolution of the multi-point
PDFs fN ;

(PROBLEM #3) the determination of the initial and boundary conditions for
fN .

Regarding the �rst problem the following remarkable result holds:

Theorem 1 - Factorization theorem for the local N-point PDF fN :

Let us impose the Axioms of CSM [Axioms CSM-#1-#5 ] as well as Axioms
#1-#4. Then, denoting it follows necessarily that:

1) the variational constraint

� fS(fN)� S(f1)g = 0 (20)

must hold for all t 2 I;

2) for all N 2 N1; the local N -point PDF fN(x1; :::;xN ; t; �) is of the form:

fN(x1; :::;xN ; t; �) =
Y
i=1;N

f1(x1; t; �); (21)

with f1(x1; t; �) denoting the corresponding 1-point PDF;

3) the constant K2
N entering in the in Eq.(14) reads

K2
N = 1=N�(
)

N�1: (22)

PROOF. First we notice that the entropy constraint (15) together the en-
tropic principle #4 [i.e., the requirement that Eqs.(16) and (17) hold for all
t 2 I] imply that, for all N and for all t 2 I; also the variational constraint
(20) must be ful�lled. To prove that the factorization property of the N -point
PDF must hold for all t 2 I, let us consider for illustration (and without
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loss of generality) the case N = 2: Denoting bf2(x1;x2; t; �) � bf2(1; 2) andbf1(x1; t; �) � bf1(1), Eq.(20) delivers for arbitrary variations �f1(3):Z
�3

dx�f1(3) ff2(1; 2) ln f2(1; 2)� f1(1)f1(2) [ln f1(1) + ln f1(2)]g = 0: (23)

This implies necessarily that the factorization condition f2(1; 2) = f1(1)f1(2)
must hold identically in �2� I: The proof can easily be extended to arbitrary
N > 2; yielding Eq.(21). In turn, thanks to Eq.(21), equation (22) immediately
follow from Eq.(15). Q.E.D.

We remark that in principle THM.1 can generalized by requiring that PEM
holds only at the initial time to 2 I (Axiom#5a): Nevertheless, in this case the
constraint (15) only warrants that the factorization condition (??) holds at the
initial time to; unless the form of the statistical (Liouville) equations holding
for the s-point velocity PDFs is explicitly prescribed as done in Ref. [14].
Invoking, however, the validity of Axiom #5b and consequently of THM.1, the
SM ff;�g can be identi�ed with the IKT SM for the 1-point PDF [10�13].

3 IKT statistical model - Relationship with the HRE approach

The explicit construction of a complete SM ff1;�1g satisfying Axioms #1-#4,
as well as the requirements set by CSM [Axioms CSM-#1-#5, in Appendix B]
can be achieved following the inverse kinetic theory (IKT) developed in Ref.
[10] by means of a suitable de�nition for the vector �eld F(x1;t; �) appearing in
the Liouville streaming operator L1(1): For de�niteness the basic requirements
of IKT are summarized in Appendix C.

In this section we intend to prove that the IKT approach is fully consis-
tent with the customary approach to the statistical description of turbulence,
namely the HRE approach.

Here, we intend to show, in particular, that IKT can be achieved in an equiv-
alent way based on the same HRE approach. For this purpose, we pose the
problem of determining the relationship between the 1-point PDF which char-
acterizes the IKT SM ff1;�1g and the PDF fH(t) associated to the statistical
model ffH ;�1g : Thus, let us denote

f1 � f1(r1;u1;t; �) (24)

[with u1= v1�V(r1; t) and x1=(r1;v1) 2 �1] the 1-point velocity PDF pre-
scribed by IKT [10], namely a solution of a Liouville equation of the form (6)
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with vector �eld F(x1; t); both de�ned according to Axioms #1-#4 and CSM
(Axioms CSM-#1-#5) [see Appendix C]. Accordingly, we intend to show that
f1 can be identi�ed with a suitable stochastic-average of fH1 [see Eq.(5)].

The result follows immediately by noting that a representation of the INSE
problem is provided by the equivalent stochastic representation fZ�Vg de-
�ned in Appendix A [Eq.(64)]. This is obtained replacing the �uid velocity
V(r1; t; �) with V0(r1; t; �) = V(r1; t; �) + �V; �V 2 R3 denoting an arbi-
trary stochastic constant velocity �uctuation independent of (r1; t; �) which
can be considered as stochastic. Hence, by assumption,�V � (�V1;�V2;�V3)
is endowed with a stochastic PDF of the general form g1(�V; r1;t): Due to its
arbitrariness, it can always be identi�ed with

g1(�V; r;t; �) � f1(r1;�V;t; �); (25)

with f1 prescribed by Eq.(24). Thus, introducing the stochastic-averaging op-
erator

h�i�V �
Z
R3

d3�Vg1(�V; r;t; �)�; (26)

we can always impose, consistent with IKT (see Appendix C) that the mo-
ments of g1 are set so that the following constraint equations

h1i�V �
Z
R3

d3�Vf1(r1;�V;t; �); (27)

0= h�Vi�V �
Z
R3

d3�V�Vf1(r1;�V;t; �); (28)

p1(r1; t; �) =
�o
3

D
(�V)2

E
�V

� �o
Z
R3

d3�V
1

3
(�V)2 f1(r1;�V;t; �); (29)

and

ST = �
Z



d3r1

Z
R3

d3�Vg1(�V; r;t; �) ln g1(�V; r;t; �) � S(g1) (30)

are ful�lled identically. In particular, the third velocity moment (29) requires
that, up to the constant factor, the stochastic-average of the stochastic ki-
netic energy m

2
(�V)2 ; p1(r1; t; �) must coincide with the corresponding ki-

netic pressure. On the other hand, since fZ�Vg are solutions of an equivalent
INSE problem [see the Appendix A, Proposition A.1], the HRE 1-point veloc-
ity PDF becomes in this case:

fH1(r1;u1 ��V;t) � � (v1�V(r1;t)��V) : (31)

Therefore, since the properties of the NS �ow cannot depend on �V (see
Proposition A.1 in Appendix A); it is obvious that it can be equivalently
described either by ffH1;�1g or fhfH1i�V ;�1g ; where fH1 and hfH1i�V are
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respectively identi�ed with the local PDF fH1(r1;u1;t) de�ned by Eq.(5) and
hfH1(r1;u1 ��V;t)i�V : Indeed thanks to the positions (27)-(30) in both
cases velocity moment equations of the Liouville equation (6) evaluated w.r.
to the weight functions fGg = f1;v1g ; coincide respectively with Eqs.(50)
and (51) [see Appendix A]. In fact, in this setting it follows that:

Theorem 2 - Representation of f1 in terms of fH1 :

Invoking the positions (25) and (26), the stochastic average h�i�V of the HRE
1-point PDF fH1; de�ned by Eq.(31), is provided by

hfH1(r1;u1 ��V;t)i�V = f1(r;u;t; �); (32)

with f1(r;u;t) denoting the 1-point velocity PDF (24) prescribed according to
IKT [10]. As a consequence, it follows

hhfH1(r1;u1 ��V;t)i�Vi = hf1(r;u;t; �)i ; (33)

h�i denoting the ensemble-average operator de�ned by Eq.(11).

PROOF. The proof of Eqs.(60) and (33) follows by noting that hfH1i�V �R
R3
d3�Vf1(r;�V;t; �)�(v �V(r;t; �)��V) = f1(r;u;t; �) is identically sat-

is�ed. Q.E.D.

As a consequence of Eq.(32) and the properties of the 1-point velocity PDF
f1(r;u;t; �) [see Appendix C, Eqs. (110),(111)],(112),(113)] it follows that
ff1 � hfH1i�V ;�1gis a complete statistical model.

In conclusion:

� the 1-point PDF of the IKT SM ff1;�1g is simply de�ned a suitable stochastic-
average of the PDF fH1; achieved by means of the stochastic-averaging
operator h�i�V de�ned above [Eq.(26)];

� in view of the position (29), g1 can be interpreted as the stochastic PDF
which takes into account the thermal motion of �uid particles produced in
a NS �uid by the kinetic pressure p1(r; t);

� manifestly Eq.(32) does not imply any restriction on the �ow dynamics, i.e.,
on the (strong) solutions of the INSE problem.

12



4 IKT for multi-point PDFs

The construction of multi-point PDFs is a problem of "practical" interest in
experimental/numerical research in �uid dynamics, usually adopted for the
statistical analysis of turbulent �uids. In fact, they can be experimentally
measured in terms of velocity di¤erences between di¤erent �uid elements. In
the present paper, unlike elsewhere [such as the ML approach] where the
ensemble-averaged PDF hf1i is considered, we are interested solely in the de-
termination of the local 1-point velocity PDFs f1(xi; t; �) and fs(x1; :::;xs; t; �)
together with the related statistical equations advancing them in time. We in-
tend to show that in the framework of the IKT approach the construction of
the multi-point PDFs becomes trivial. Nonetheless, the construction method
here pointed out is useful to analyze basic implications of IKT dealing with:
a) the speci�c representation of certain �reduced�multi-point PDFs, de�ned
in terms of the 1�point PDF; b) their dynamics, namely the statistical equa-
tions which they ful�ll. Let us now identify f1 with the 1�point PDF de�ned
by the IKT SM [10], namely a particular solution of the Liouville equation
(6) with F(i) � F(xi; t; �; f1) is the 1-point mean-�eld force per unit mass
at (xi; t); to be generally considered as functionally dependent on the same
f1 [10] (see also Ref.[13] for the extension to the stochastic INSE problem).
Then, denoting f1(i) � f1(xi;t; �;Z) (for i = 1; s) the 1-point velocity PDF
evaluated at the states xi � (ri;vi) (for i = 1; s); the corresponding s�point
velocity PDF de�ned in the product phase-space �s �

Q
i=1;s

� is simply de�ned

as

fs(1; 2; ::s) �
Y
i=1;s

f1(i); (34)

where fs advances in time by means of the corresponding s�point Liouville
equation, namely

Ls(1; ::; s)fs(1; 2; ::s) = 0; (35)

with Ls(1; ::; s) de�ned by Eq.(10). As a consequence, the corresponding ensemble-
averaged PDF is simply identi�ed with

hfs(1; 2; ::s)i =
* Y
i=1;s

f1(i)

+
: (36)

Therefore the ensemble averaged PDFs hfs(1; 2; ::s)i are uniquely determined!
We remark that Eq.(36) generally implies the obvious consequence that hfs(1; 2; ::s)i
is not factorizable, i.e., hfs(1; 2; ::s)i 6=

Q
i=1;s

hf1(i)i.
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4.1 Explicit evaluation of 2-point velocity PDFs

In terms of the 2-point PDF, f2(1; 2), a number of reduced probability densities
can be de�ned in suitable subspaces of �2. To introduce them explicitly let
us �rst introduce the transformation to the center of mass coordinates of the
two point-particles with states (ri;vi) (for i = 1; 2)

fr1;v1; r2;v2g ! fr;R;v;Vg (37)

[here r = r1�r2
2
;R =r1+r2

2
; furthermore, v;V can be identi�ed with v = v1 � v2

and V = v1 + v2]. Then, these are respectively:

1) the local (in con�guration space) velocity-di¤erence 2-point PDF g2(r1; r2;v; t; �)
de�ned in the phase-space 
2�U and obtained integrating the 2-point velocity
PDF w.r. to the mean velocity V

g2(r1; r2;v; t; �) =
R
U d

3Vf2(1; 2) �

�
R
d3Vf1(r1;v +V;t; �))f1(r2;V � v;t; �;Z);

(38)

2) the velocity-di¤erence 2-point PDF bf2(r;v;t; �) de�ned in �1 = 
 � U
and obtained integrating also on the center-of-mass position vector R: Thus
denoting by

h�iR;
 =
1

�(
)

Z


d3R� (39)

the con�guration-space average operator acting on the center of mass coordi-
nates R; there it follows

bf2(r;v;t; �) = hg2(r+R;R� r;v; t; �)iR;
 : (40)

In particular, in the case of a Gaussian PDF [see Eq.(114) in Appendix C],
Eq.(38) delivers again a Gaussian-type PDF

g2(r1; r2;v; t; �) =
1

�3=2v3th
exp

8><>:�



v�V(1)�V(2)

2




2
v2th

9>=>; ; (41)

where V(i) � V(ri; t); v2th;p(i) = v2th;p(ri; t) and v2th denotes

v2th =
v2th;p(1) + v

2
th;p(2)

4
: (42)

In a similar way it is possible to obtain explicit representations for the following
additional 2-point PDFs:
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(1) the velocity-di¤erence 2-point PDF for parallel velocity increments: Intro-
ducing the representations v = nv and r = nr; n denoting a unit vector,bf2k(r; v;t) can be simply de�ned as the solid-angle average

bf2k(r; v;t; �) = Z
d
(n) bf2(r = nr;v = nv;t; �); (43)

(2) the velocity-di¤erence 2-point PDF for perpendicular velocity increments:
Introducing, instead, the representations v = nv and r = n� br; n and
b denoting two independent unit vectors, bf2?(r; v;t) can be de�ned as the
double-solid-angle average

bf2?(r; v;t; �) = Z
d
(n)

Z
d
(b) (44)bf2(r = n� br;v = nv;t; �):

An interesting property which emerges from these results is that in all
cases indicated above [i.e., Eqs.(40),(43) and (44)] the de�nition of g2
given above [Eq.(38)] implies that non-Gaussian features, respectively inbf2; bf2k and bf2?; may arise even if the 1�point PDF is Gaussian. This oc-
curs due to velocity and pressure �uctuations occurring between di¤erent
spatial positions r1 and r2.

4.2 Statistical evolution equation for the velocity-di¤erence 2-point PDF

From the 2�point Liouville equation (35) it is immediate to obtain the cor-
responding evolution equation for the reduced PDFs indicated above. For ex-
ample, the velocity-di¤erence 2-point PDF bf2 satis�es the equation

@ bf2
@t

+ v� @
@r

bf2 = � @

@v
�D (45)

where D is the di¤usion vector

D =
1

�(
)

Z
d3V

Z


d3R

F1(1)� F2(2)
2

f2(1; 2): (46)

It follows, in particular, that in the case of a Gaussian 1-point PDF this
equation reduces to the Fokker-Planck equation

@ bf2
@t

+ v� @
@r

bf2 = � @

@v
�cD (47)

F(T )g2(r+R;R� r;v; t; �);

where the Fokker-Planck di¤usion vector cD reads

cD =
1

�(
)

Z


d3RF(T )g2(r+R;R� r;v; t; �) (48)
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and the vector �eld F(T )1 � F(T )1 (r1; r2;V; t; �;fM) is reported in Ref. [10]. It
follows that both equations are manifestly non-Markovian as a consequence
of the non-local dependencies arising (in both cases) in the Fokker-Planck
coe¢ cients D and cD.
We stress, that from Eqs.(45) and (47) the corresponding statistical equations
advancing in time the ensemble-averaged PDF

D bf2E can simply be determined.
Therefore, to evaluate

D bf2E only the knowledge of the local PDF bf2;de�ned
by Eq.(40), is required. Therefore, in turn,

D bf2E is uniquely prescribed by the
local 1-point velocity f1; determined by the IKT SM ff1;�1g :

An interesting issue is here provided by the comparison with the statistical
formulation developed by Peinke and coworkers [24�28]. Their approach, based
on the statistical analysis of experimental observations, indicates that in case
of stationary and homogeneous turbulence both the 2-point PDFs for parallel
and velocity increments obey stationary Fokker-Planck equations. In particu-
lar, according to experimental evidence [27, 28] a reasonable agreement with
a Markovian approximation for Eq.(47) - at least in some limited subset of
parameter space- is suggested. Our theory implies, however, that a breakdown
of the Markovian property should be expected due to non-local contributions
appearing in the previous statistical equations (45) and (47).

5 Conclusions

In this paper we have shown that the multi-point PDFs used in customary phe-
nomenological approaches to turbulence can be explicitly evaluated in terms of
the local 1-point velocity PDF (f1) determined in the framework on the IKT
SM [10�14]. As a basic consequence the corresponding ensemble-averaged
multipoint PDFs can be simply evaluated.

Starting points are provided by THM.1, showing that under suitable hypothe-
ses the local multi-point PDF fN is necessarily factorized in terms of the
1-point PDF f1; and THM.2, displaying the relationship between the local
1-point velocity PDFs used in the HRE and IKT approaches. The require-
ments here imposed include, in particular, the assumption that ff1;�1g is a
complete SM, i.e., that in terms of the local 1-point PDF the complete set of
�uid �elds (de�ning the �uid state) can be represented by means of suitable
velocity and phase-space moments [see Axioms #1-#4]. Then, provided the
SM satis�es the axioms of CSM (Axioms CSM-#1-#5) as well as the entropic
principle (Axiom#4) the factorization condition (21) for fN in terms of the
1-point PDF f1 necessarily follows. As a result, in validity of the previous
requirements, the SM for NS �uid can be identi�ed with the IKT SM ff1;�1g
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earlier developed [10�13] and based on the 1-point PDF f1.

Important consequences of the theory include:

(1) arbitrary multi-point PDFs can be uniquely represented in terms of the
1-point PDF characterizing the IKT SM ff1;�1g;

(2) the time evolution of the multi-point PDFs is uniquely determined by
ff1;�1g ;

(3) the theoretical prediction of multipoint PDFs based uniquely on �rst
principles is actually made possible;

(4) as a particular case, the example of a Gaussian 1-point PDF has been
considered;

(5) qualitative properties of the multi-point PDFs can be investigated. In
particular, this concerns the possible prediction of non-Gaussian behavior
for the 2-point PDFs arising in HIST. As pointed out in Sec.4 this may
arise, even in the present of a Gaussian 1-point PDF, due to non-local
velocity and pressure e¤ects.
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6 Appendix: stochastic INSE Problem

For stochastic �uid �elds of the form (2) the �uid equations for an incompress-
ible NS �uid are the so-called incompressible Navier-Stokes equations (INSE)
:

� = �o; (49)
r �V = 0; (50)
NV = 0; (51)
@

@t
ST = 0; (52)

fZ(r;to; �)g= fZo(r; �)g ; (53)
fZ(r;t; �)j@
g= fZw(r;t; �)j@
g ; (54)

for the stochastic NS �uid �elds

fZg � f�o;V(r;t; �); p1(r;t; �); STg : (55)
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Eqs. (49)- (54) denote respectively the uniformly (space- and time-) constant
mass density, incompressibility (or isochoricity), Navier-Stokes and constant
thermodynamic entropy equations and the initial and Dirichlet boundary con-
ditions for fZg ; with fZo(r; �)g and fZw(r;t; �)j@
g suitably prescribed initial
and boundary-value �uid �elds, de�ned respectively at the initial time t = to
and on the boundary @
: In particular, this means that they are are required
to be at least continuous in all points of the closed set 
� I, with 
 the clo-
sure of 
: Due to Eq.(49), since in the domain 
� I; � is a positive constant
parameter the �uid �elds describing the NS �uid can be e¤ectively reduced to
the subset of NS proper �uid �elds

fZgR � fV(r;t; �); p1(r;t; �); STg (56)

In the remainder we shall require that:

(1) 
 (con�guration domain) is a bounded subset of the Euclidean space E3

on R3;
(2) I (time axis) is identi�ed, when appropriate, either with a bounded in-

terval, i.e., I=]t0; t1[ � R; or with the real axis R;
(3) in the open set 
�I the functions fZg ; are assumed to be solutions of

Eqs.(49)-(52) subject, while in 
�I they satisfy the whole set of Eqs.
(49)-(54). In particular: Eqs. (53)- (54) de�ne the initial-boundary value
INSE problem,

(4) by assumption, the �uid �elds are strong solutions of the �uid equations.
Hence Eqs.(53)- (54) are required to de�ne a well-posed problem with
unique strong solution de�ned everywhere in 
�I.

Here the notation as follows. N is the NS nonlinear operator

NV =
D

Dt
V � FH ; (57)

with D
Dt
V and FH denoting respectively the Lagrangian �uid acceleration and

the total force per unit mass

D

Dt
V =

@

@t
V(r;t; �) +V(r;t; �) � rV(r; t; �); (58)

FH � �
1

�o
rp(r;t; �) + 1

�o
f(r;t; �) + �r2V(r;t; �); (59)

while �o > 0 and � > 0 are the constant mass density and the constant
kinematic viscosity. In particular, f is the volume force density acting on the
�uid, namely which is assumed of the form

f = �r�((r;t; �) + fR(r;t; �); (60)

�((r;t; �) being a suitable scalar potential, so that the �rst two force terms [in
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Eq.(59)] can be represented as

�rp(r;t; �) + f(r;t; �) = �rp1(r;t; �) + fR(r;t; �); (61)

with p1(r;t; �) de�ned by Eq.(1) denoting the kinetic pressure. As a conse-
quence the �uid pressure necessarily satis�es the Poisson equation

r2p(r;t; �) = S(r;t; �); (62)

where the source term S reads

S(r;t; �) = ��or � (V � rV) +r � f : (63)

6.1 An equivalent form of INSE

An equivalent form for INSE follows by introducing a stochastic representation
for the �uid �elds fZg.

PROPOSITION A.1 - Stochastic representation fZ�Vg

An equivalent representation for INSE is provided by the stochastic �uid �elds

fZ�Vg = fV(r1; t; �) + �V; p(r1; t; �); STg ; (64)

where fZgR = fV(r1; t; �); p1(r1; t; �); STg and �V 2 R3 denote respectively
an arbitrary particular solution of the INSE problem [Eqs. (49)- (54)] and
an arbitrary stochastic vector independent of (r;t; �). fZ�Vg are solutions of
the equivalent INSE problem in which the NS equation (51) and similarly the
initial and boundary conditions (53)- (54) are replaced respectively with

D

Dt
V0 = FH +�FH ; (65)

and

fZ�V(r;to; �)g= fZ�V;o(r; �)g ; (66)

fZ�V(r;to; �)j@
g=
n
Z�V;w(r;t; �)j@


o
; (67)

while �FH denotes the vector �eld

�FH = �V � rV(r; t; �): (68)

PROOF (omitted)

19



7 Appendix B - Statistical mechanics of Newtonian dynamical
systems

In this Appendix the basic assumptions and elementary consequences of classi-
cal statistical mechanics are recalled. Let us consider, for de�niteness, a New-
tonian dynamical system associated to an ensemble of N like point-particles
(SN), i.e., the �ow de�ned for all xo 2 �N and to; t 2 I :

Tto;t : xo ! x(t) = Tto;txo � �(xo; to; t) (69)

and with inverse transformation

Tt;to : x(t)! xo � x(to) = Tt;tox(t) � �(x(t); t; to); (70)

which is generated by initial value problem8><>:
dx
dt
= X(x; t);

x(to) = xo;
(71)

with X(x; t) � fv;F(x; t)g ;

F(x; t) � (F1(x; t); ::;FN(x; t)) (72)

a suitable vector �eld, x = (r;v) = fx1 = (r1;v1); :::;xN = (rN ;vN)g 2 �N
the state of SN , each point-particle being endowed with the Newtonian state
xi = (ri;vi). In particular, we shall require that the vector �elds Fi (for
i = 1; N) are of the form

Fi(x; t) =
1

m
F(ext)(xi; t) +

1

m

X
j=1;N
j 6=i

F(int)(xi;xj; t); (73)

with F(ext)(xi; t) and F(int)(xi;xj; t) denoting unary and binary forces, with
the latter ones satisfying the action-reaction principle

F(int)(xi;xj; t) = �F(int)(xj;xi; t): (74)

Then, according to Classical Statistical Mechanics (CSM), the statistical de-
scription for the dynamical system (69) is de�ned by the following Axioms
#1-#5:

(1) Axiom CSM-#1 (initial PDF - Deterministic/stochastic initial conditions
-Functional setting): the initial state xo is a stochastic vector endowed
with a probability density pN(to) � pN(xo; to; �) (initial PDF ), belonging
to a suitable functional class fpN(to)g : Then the initial state xo will be
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denoted deterministic or stochastic on �N if everywhere in �N ; pN(to)
takes either the form: A) pN(to) = �(xo � x(to)) (deterministic PDF );
yielding hhxoii = xo [the brackets denoting the stochastic average hhii =R
�N

dxopN(to)], or respectively B) pN(to) (stochastic PDF ) is at least

C(o)(�N); which, instead, implies that almost everywhere in �N ; hhxoii 6=
xo:

(2) Axiom CSM-#2 (PEM): if fpN(to)g is identi�ed with the set of stochas-
tic PDFs pN(to) which are strictly positive and admit the Boltzmann-
Shannon entropy functional

S(pN(to)) = �K2
N

Z
�s

dxopN(to) ln pN(to) (75)

(N-body BS entropy), with dxo =
Q

k=1;s
drokdvok and KN a suitable real

constant. Then the initial PDF entering Eq.(78), pNo � pNo(xo; �); max-
imizes the N-body BS-entropy S(p0N(to)) in a suitable functional class to
which it belongs fpN(to)g [principle of entropy maximization (PEM [23])].
Thus, denoting respectively with �S(f 0N(to)) and �

2S(f 0N(to)) the �rst
and second variations of S(p0N(to)) evaluated for an arbitrary p

0
N(to) �

p0N(xo; to; �) 2 fpN(to)g and variation �pN(to) = pNo � p0No(to); the vari-
ational equation

�S(p0N(to))jfNo = 0 (76)

must hold for arbitrary �pN(to) and pNo such that

�2S(p0N(to))
���
fNo

< 0: (77)

(3) Axiom CSM-#3 (Liouville equation and BBGKY hierarchy): the proba-
bility density pN satis�es the integral Liouville equation

p(x; t; �) =

�����@xo(to)@x

����� pNo(x(to); �) (78)

with
���@xo(to)

@x

��� denoting the Jacobians of the inverse transformation (70):
Then, if pNo(x(to); �) is at least C(1)(�N), pN(x; t; �) satis�es necessarily
the di¤erential Liouville equation

LN(1; :::N)pN(x; t; �) = 0; (79)

with LN(1; :::N) denoting the N-body Liouville streaming operator

LN(1; :::; N) �
@

@t
+ v � @

@r
+
@

@v
�
�
1

m
F(x; t)�

�
� (80)

� @

@t
+ vi �

@

@ri
+

@

@vi
�
�
1

m
Fi(x; t)�

�
(81)
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with summation understood on repeated indexes. As a consequence, for
s = 1; N � 1 the reduced PDFs

ps(x1; :::;xs; t; �) =
Z
�1

d3xs+1ps+1(x1; :::;xs+1; t; �); (82)

satisfy the equations (of the BBGKY hierarchy):

Ls(1; :::; s)ps � Cs(ps+1); (83)

with Cs(ps+1) the integro-di¤erential operator

Cs(ps+1) = �
X

j=s+1;N

@

@vi
�
Z
�1

d3xj
1

m
F(int)(xi;xj; t)ps+1(x1; :::;xs;xj; t; �):

(84)
(4) Axiom CSM-#4 (like-particles): In the case of an ensemble of N like

particles pN(x; t; �) is endowed with the symmetry property

pN((x1; :::;xN) ; t; �) = pN((x1; :::;xN)
0 ; t; �); (85)

(x1; :::;xN)
0 denoting an arbitrary permutation of (x1; :::;xN) : It follows

that in this case (84) becomes

Cs(ps+1) = �
@

@vi
�As(ps+1); (86)

whereAs(ps+1) � (N�s)
R
�1

d3xs+1
1
m
F(int)(xi;xs+1; t)ps+1(x1; :::;xs;xs+1; t; �):

� Axiom CSM-#5 (moments, �uid �elds and �uid equations): Let us require
that fpNog is prescribed so that:
A) the statistical entropies associated to the s-body PDFs ps

S(ps) = �K2
s

Z
�s

dxps ln ps (87)

(s-body BS entropy) are de�ned for all t 2 I and all s = 1; N; with Ks

denoting suitable real constants and letting K2
1 = 1.

B) pN(x; t; �) is summable on �N so that for all (r1;t) 2 
� I there exist
the velocity moments of the form:Z

U
d3v1Gi(r1;v1;t; �)p1(r1;v1;t; �) = Zi(r1;t; �); (88)

where for i = 1; n, Gi(r1;v1;t; �) and Zi(rk;t; �) denote respectively suitable
weight functions and �uid �elds. Thus, in particular, we shall require that
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(at least) the following velocity moments are de�ned8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

�(r1; t; �) = mn(r1; t; �) � mN
R
U d

3v1p1(r1;v1;t; �);

V(r1; t; �) =
1

n(r1;t;�)
N
R
U d

3v1p1(r1;v1;t; �);

P1(r1; t; �) = mN
R
U d

3v1
u21
3
p1(r1;v1;t; �);

�(r1; t; �) � mN
R
U d

3v1u1u1p1(r1;v1;t; �);

Q(r1; t; �) � mN
R
U d

3v1u1
u21
3
p1(r1;v1;t; �);

PL(r1; t; �) � mN
R
U d

3v1
h
1
m
F(ext)(x1; t)p1(r1;v1;t; �) +As(fs+1)

i
;

QT (r1; t; �) � 2
3
mN

R
U d

3v1u1 �
h
1
m
F(ext)(x1; t)p1(r1;v1;t; �) +As(fs+1)

i
;

(89)
with u1 denoting the relative velocity u1 = v1 �V(r1; t; �): Here �(r1; t; �)
and n(r1; t; �) are respectively the mass and number densities; V(r1; t; �)
the �uid velocity; P1(r1; t; �) and �(r1; t; �) the scalar and tensor pressures;
Q(r1; t; �) the relative heat �ux; while PL(r1; t; �) and QT (r1; t; �) are re-
spectively the linear momentum and energy density exchange rates.
C) As a consequence of A, for fGi(r1;v1;t; �)g =

n
mN;mNv1;mN

u21
3

o
the following moment equations

@

@t
�+

@

@r1
� [�V] = 0; (90)

�

"
@

@t
V +V

@

@r1
V

#
+r � � = PL (91)

@

@t
P1 +

@

@r1
� [VP1] +r �Q+

2

3
rV:� = QT ; (92)

are identi�ed with themass continuity, linear momentum and scalar pres-
sure �uid equations.

7.1 Implications

Axioms CSM-#1-#5 imply the following elementary propositions:

PROPOSITION B.1 - PEM for pN(x; t; �)

In validity of Axioms CSM-#1-#5 pN(t) � pN(x; t; �) satis�es identically
PEM for all t 2 I; i.e., pN(t) solution of the integral Liouville equation (78)
maximizes the N-body BS-entropy S(pN(t)); so that

�S(p0N(t))jpN (t) = 0 (93)
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must hold for arbitrary variations �pN(t) = pN(t) � p0N(t) with pN(t) and
p0N(t) � p0N(x; t; �) both belonging to fpN(t)g and pN(t) such that

�2S(p0N(t))
���
pN (t)

< 0: (94)

PROOF

We �rst notice that by construction the functional class fpN(to)g prescribed in
Axiom CSM-#2 must be such that the N�body BS-entropy S(p0N(t)) exists
8t 2 I and for p0N(t) = pN(t) � pN(x; t; �) solution of Eq.(78). Then, fpN(t)g
can be identi�ed with the set of strictly positive real functions p0N(t) which
admit the N�body BS-entropy S(p0N(t)) and such that one of them coincides
with pN(t) itself. Hence, introducing the functional

S1(p
0
N(t); �(t)) = S(p

0
N(t)) + �S(p

0
N(t)); (95)

�S(p0N(t)) =
Z
�N

dx�0(x; t; �) [p0N(x; t; �)� pN(x; t; �)] (96)

to be considered variational both with respect to p0N(x; t; �); an arbitrary el-
ement of fpN(t)g ; and �0(x; t; �); a suitable smooth real function (Lagrange
multiplier), it follows that �S(p0N(t)) vanishes identically for the extremal
functions p0N(t) = pN(t) and �

0(x; t; �) = �(x; t; �); with �(x; t; �) to be suit-
ably determined: Hence, the variational equation (93) is equivalent to impose

�S(p0N(t); �
0(t))jpN (t);�(t) = 0;

which implies the Euler-Lagrange equations

�S1(p
0
N(t); �(t))

��(t)
= p0N(x; t; �)� pN(x; t; �) = 0; (97)

�S1(p
0
N(t); �(t))

�p0N(t)
= �K2

N [1 + ln p
0
N(x; t; �)]� �(x; t; �) = 0: (98)

Hence, since �(x; t; �) [in Eq.(98)] can always be de�ned consistent with
Eq.(97) it follows that pN(x; t; �) is indeed extremal for S(p0N(t)). In a similar
way it is immediate to prove also the inequality (94). Q.E.D.

PROPOSITION B.2 - H-theorems for PEM for S(p1(t))

Let us assume that the vector �eld F [see Eq.(72)] is such that 8t 2 I

@

@t
S(pN(t)) = 0 (99)
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(constant H-theorem for S(pN)): Then in validity of Axiom CSM-#5, 8t 2 I

@

@t
S(p1(t)) � 0: (100)

In particular, if the binary forces F(int)(xi;xj; t) vanish identically, namely
8(xi;xj; t)

F(int)(xi;xj; t) = 0; (101)
it follows that:

A) the factorization condition:

pN(x; t; �) =
Y
i=1;N

pN(xi; t; �); (102)

B) the constant H-theorem for S(p1) :

@

@t
S(p1(t)) � 0 (103)

both hold identically.

PROOF

The proof follows from the inequality

S(pN(t)) � �
Z
�N

dxpN(x; t; �) ln
Y
i=1;N

p1(xi; t; �):

Then, thanks to Axiom CSM-#4 and the constant H-theorem for S(pN)
[Eq.(99)] it follows that

S(pN(t)) � NS(p1(t))
which implies the inequality (100). The proof of Eqs.(102) and (103) follow
respectively by noting that in case of validity of Eq.(101):

- the N-body Liouville streaming operator LN(1; :::N) takes the form (10);

- thanks to the (99), (72), (73) and again invoking Axiom CSM-#4, since

@

@t
S(pN(t)) = �N

Z
�1

dx1p1(x1; t; �)
@

@v1
� F(ext)(x1; t) � 0; (104)

it follows that

@

@t
S(p1(t)) = �

Z
�1

dx1p1(x1; t; �)
@

@v1
� F(ext)(x1; t) � 0 (105)
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holds identically. Q.E.D.

Finally, let us consider the case in which the mass (and number) density is
constant in 
� I, i.e.

�(r1; t; �) = mn(r1; t; �) � mN
Z
U
d3v1p1(r1;v1;t; �) � �o; (106)

with �o � mno > 0: Then the following proposition holds:

PROPOSITION B.3 - Multipoint velocity PDFs fs:

In validity of the constraint equation (106) if follows that denoting for s = 1; N

fs(x1; ::::;xs;t; �) =
N

no
ps(x1; :::;xs;t; �); (107)

fs(x1; ::::;xs;t; �) are velocity PDFs, namely satisfy the normalization condi-
tions

Z
U
d3v1::::

Z
U
d3vsfs(x1; ::::;xs;t; �) = 1: (108)

As a consequence for s = N; fN(x1; ::::;xN ;t; �) satis�es the N-body Liouville
equation

LN(1; :::N)fN(x1; ::::;xN ; t; �) = 0: (109)

PROOF (omitted)

8 Appendix C - Requirements of IKT

In this Appendix we recall the basic assumptions of IKT [10�14]:

1) the 1-point velocity PDF f1 � f1(r1;u1;t; �) [with u1= v1�V(r1; t) and
x1=(r1;v1) 2 �1] is required to be a solution of a Liouville equation (6) with
suitable vector �eld F(x1; t) ;

26



2) in agreement with Axioms #1, #2 and #3 the moments of f1(r1;u1;t; �)
are prescribed so that that the equationsZ

U

d3v1v1f1(r1;u1;t; �) = V(r;t; �); (110)

�o

Z
U

d3v1
u1
3
f1(r1;u1;t; �) =p1(r1; t; �) �

1

2
�ov

2
th; (111)

S(f1) � �
Z
�1

dx1f1(r1;u1;t; �) ln f1(r1;u1;t; �) = ST ; (112)

hold identically in 
� I [Eqs.(110) and (111)] or I [Eq.(112)];

3) the pseudo-pressure po(t) [see Eq.(1)] is prescribed in order to satisfy iden-
tically Eq.(112) and the entropy constraint set by Axiom #3 [Eq.(13)], i.e.,
the requirement

S(f1(t)) = S(f1(to)) (113)

to be ful�lled for all t; to 2 I;

4) the vector �eld F(x1; t) in Eq. (6) is prescribed in such a way that the same
equation:

a) admits as a particular solution the Gaussian kinetic equilibrium, namely
the PDF

f1(r1;u1;t; �) = fM(r1;u1;t; �) =
1

�3=2v3th
exp

(
� u

2
1

v2th

)
; (114)

b) yields solely, by means of its velocity-moment equations for fGig �
f�o; �ov1; �ou21=3g ; the closed set of �uid equations coinciding with the in-
compressibility and NS equations (50) and (51).
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