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Abstract

We study the rate of convergence of the Markov chain Xn+1 = AXn +Bn (mod p),

where A is an integer matrix with nonzero eigenvalues, p is real and positive, and {Bn}

is a sequence of independent and identically distributed real random vectors. With

some hypotheses on the law of Bn, the sequence {Xn} converges to a random vector

uniformly distributed in [0, p)k. The rate of convergence is geometric and depends on

A, p, k, and the distribution of Bn. Moreover, if A has an eigenvalue that is a root

of 1, then n = O
(
p2
)

steps are necessary to have Xn sampling from a nearly uniform

law.

Key words and phrases. Continuous Markov chains; uniform ergodicity; generating

random vectors; rate of convergence.

1 Introduction

In the mathematical literature, many authors studied the asymptotic behavior of the

following affine random recursion on Z:

Xn+1 = aXn +Bn (mod p), (1)
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whereX0 = x0 ∈ Z, a ∈ Z∗, p ∈ N∗, and {Bn} is a sequence of independent and identically

distributed integer random variables. It is easy to prove that {Xn} is a Markov chain that

converges in law to the uniform distribution on Zp.

In the papers of Aldous and Diaconis (1986), Chung et al. (1987), and Hildebrand

(1990 and 1993), the authors study the rate of convergence of the chain, by utilizing the

Fourier analysis, a theory developed also in Diaconis (1988), Helleloid (2007), Rosenthal

(1995), and Serre (1977).

When in the recursion (1) Bn is replaced by a fixed integer b, then the recursion is

deterministic. The historical aim of this study has been the production of pseudorandom

numbers on computers (see, for example, Knuth’s book (1981)), for particular values of p.

In Asci (2001) and next in Hildebrand and McCollum (2008), there is the extension of

the previous results to the higher-dimensional case, that is the study of the Markov chain

on Zk of the form

Xn+1 = AXn + Bn (mod p),

where A ∈Mk(Z)∩GLk(Q), p ∈ N∗. However, in the last two works only some particular

cases are considered. The general case is studied by Asci in two papers (Asci 2009a and

Asci 2009b), where several results are obtained, depending on the size of the complex

eigenvalues of A. In Asci 2009a, it is proved that, with some assumptions on p and on

the distribution of Bn, and without any assumptions on A, n = O(p2) steps are sufficient

to have Xn sampling from a nearly uniform distribution on Zkp. Moreover, if A has an

eigenvalue of size 1, then O
(
p2
)

steps are also necessary. In Asci 2009b, it is shown that,

if |λi| 6= 1 for all eigenvalues λi, then n = O
(
(ln p)2

)
steps are sufficient and n = O(ln p)

steps are necessary to reach the uniform distribution.

In this paper the continuous k− dimensional case is considered, that is the recursion

on Rk defined by

Xn+1 = AXn + Bn (mod p), (2)

where X0 = x0 ∈ Rk, A ∈ Mk(Z) ∩ GLk(Q), p ∈ R+, and {Bn} is a sequence of

independent and identically distributed real random vectors.

The aim of our work is to prove that, with some assumptions on the law of Bn, the

sequence {Xn} converges with geometric rate to a random vector uniformly distributed in
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[0, p)k (Theorem 3.3). Moreover, we quantify the rate of convergence in terms of A, p, k,

and the law of Bn, and prove that, if A has an eigenvalue that is a root of 1, then O
(
p2
)

steps are necessary to achieve randomness (Theorem 3.4). We point out that our paper is

mainly theoretical: we consider the recursion (2) in the most general context and provide

some tools for further studies and applications.

In section 2, we recall some definitions and general results about homogeneous Markov

chains, and we prove that the uniform distribution in [0, p)k is invariant for the chain

{Xn}. In section 3, we prove the irreducibility and the uniform ergodicity of the chain.

In section 4, we expose some ideas for further study.

2 Preliminary results

In order to study the asymptotic behavior of the random sequence (2), we can suppose

Xn ∈ [0, p)k. Indicate by Ln,x0 and µ, ∀n ∈ N, the laws of Xn and Bn, respectively, and

by U the random vector with uniform distribution on [0, p)k; moreover, for any n ∈ N,

let Yn be the random vector defined by the recursion Yn+1 = AYn + Bn, Y0 = x0, and

indicate by µn,x0 its law.

Henceforth, ∀x ∈ Rk, we will indicate by [x] and {x} the vectors whose components

are, respectively, the integer parts of the components of x, and the fractional parts of

the components of x. Moreover, we will indicate by B(k), by B([0, p)k), and by Leb(k),

respectively, the Borel σ-algebra on Rk, the Borel σ-algebra on [0, p)k, and the Lebesgue

measure on Rk. Finally, for any random vector X, we will indicate by LX its law and by

fX its probability density function, if it exists.

Remark 2.1. ∀n ∈ N, we have:

Yn = Anx0 +
n−1∑
i=0

AiBn−1−i.

Moreover, since A ∈Mk(Z), we have Xn = Yn (mod p); consequently, ∀B ∈ B([0, p)k):

Ln,x0(B) =
∑
h∈Zk

µn,x0(B + ph). (3)
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Define the variation distance between two probability measures ϕ and ψ on some

measurable space (E, E), in the following way:

||ϕ− ψ|| = 1
2

sup
f∈F

|Eϕ[f ]− Eψ[f ]| = sup
A∈E

|ϕ(A)− ψ(A)|, (4)

where F ≡ {f : E −→ C : f is E-measurable, |f(x)| ≤ 1 ∀x ∈ E}, and we say that a

sequence {Xn} of random variables converges in total variation to a random variable X if

lim
n→+∞

‖LXn − LX‖ = 0.

Moreover, recall that, if {Xn} is a homogeneous Markov chain on (E, E), and if

Pnx0
(A) = P (Xn ∈ A|X0 = x0), ∀A ∈ E , then {Xn} is called:

1. ϕ-irreducible, if there is a measure ϕ on (E, E) such that, ∀x0 ∈ E and ∀A ∈ E such

that ϕ(A) > 0, there is n = n(x0, A) ∈ N∗ such that Pnx0
(A) > 0.

2. Uniformly ergodic, if

lim
n→+∞

sup
x0∈E

‖Pnx0
− π‖ = 0, (5)

where π is a probability measure on (E, E).

Our purpose is to prove (5) for π = LU, in the case (E, E) = ([0, p)k,B([0, p)k)),

Pnx0
= Ln,x0 . We will use the following results, whose proofs can be found for example

in Meyn and Tweedie (2005), Theorem 16.2.4, Proposition 10.1.1, and Theorem 10.0.1,

respectively:

Theorem 2.2. If a homogeneous Markov chain {Xn} on the state space (E, E) verifies

Pmx0
(A) ≥ ρm(A), ∀x0 ∈ E, ∀A ∈ E ,

where m ∈ N, ρm is a measure on (E, E) (that is E is a small set: see the definition in

Meyn and Tweedie (2005), page 109), then:

‖Pnx0
− π‖ ≤ (1− ρm(E))[

n
m ] , ∀x0 ∈ E, ∀n ∈ N, (6)

where π is a probability measure on (E, E).

Proposition 2.3. If a homogeneous Markov chain {Xn} on the state space (E, E) is

ϕ-irreducible and has an invariant probability measure, then {Xn} is recurrent.
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Theorem 2.4. If a homogeneous Markov chain {Xn} on the state space (E, E) is

recurrent, then it has a unique invariant measure.

Let λ be a finite measure on
(
Rk,B(Rk)

)
; define the Fourier transform λ̂ : Rk −→ C

by:

λ̂(α) =
∫
Rk

exp
(

2πi
p
〈x, α〉

)
dλ(x).

We have the following two results, whose proofs are similar to those of Lemmas 3.1

and 3.3 in Asci (2001).

Lemma 2.5. Suppose that X0 = x0 ∈ Rk, α ∈ Rk. Then, ∀n ∈ N:

µ̂n,x0(α) = exp
(

2πi
p
〈Anx0, α〉

) n−1∏
j=0

µ̂
(
tAjα

)
. (7)

Moreover, if α ∈ Zk:

L̂n,x0(α) = µ̂n,x0(α); (8)

|L̂n,x0(α)|2 =
n−1∏
j=0

∫
Rk

∫
Rk

cos
(

2π
p

〈
x− y, tAjα

〉)
dµ(x)

 dµ(y)

 . (9)

Proof. ∀n ∈ N, we have:

µ̂n,x0(α) =
∫
Rk

exp
(

2πi
p
〈x, α〉

)
dµn,x0(x) = E

[
exp

(
2πi
p
〈Yn, α〉

)]

= E

[
exp

(
2πi
p

〈
Anx0 +

n−1∑
i=0

AiBn−1−i, α

〉)]

= exp
(

2πi
p
〈Anx0, α〉

) n−1∏
j=0

∫
Rk

exp
(

2πi
p
〈Ajx, α〉

)
dµ(x)

= exp
(

2πi
p
〈Anx0, α〉

) n−1∏
j=0

∫
Rk

exp
(

2πi
p
〈x,tAjα〉

)
dµ(x)

= exp
(

2πi
p
〈Anx0, α〉

) n−1∏
j=0

µ̂
(
tAjα

)
.
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Moreover, if α ∈ Zk, from (3) we have:

L̂n,x0(α) =
∫
Rk

exp
(

2πi
p
〈x, α〉

)
dLn,x0(x)

=
∑
h∈Zk

 ∫
[0,p)k+ph

exp
(

2πi
p
〈x + ph, α〉

)
dµn,x0(x)


=
∫
Rk

exp
(

2πi
p
〈x, α〉

)
dµn,x0(x) = µ̂n,x0(α).

This implies

|L̂n,x0(α)|2 = |µ̂n,x0(α)|2

=
n−1∏
j=0

(
µ̂
(
tAjα

)
µ̂ (tAjα)

)

=
n−1∏
j=0

∫
Rk

exp
(

2πi
p
〈x,tAjα〉

)
dµ(x)

∫
Rk

exp
(
−2πi

p
〈y,tAjα〉

)
dµ(y)



=
n−1∏
j=0

∫
Rk

∫
Rk

exp
(

2πi
p
〈x− y,tAjα〉

)
dµ(x)

 dµ(y)



=
n−1∏
j=0

∫
Rk

∫
Rk

cos
(

2π
p
〈x− y,tAjα〉

)
dµ(x)

 dµ(y)

 . 2

Lemma 2.6. Let α ∈ Zk − {0}. Then, ∀n ∈ N:

‖Ln,x0 − LU‖ ≥
1
2

∣∣∣L̂n,x0(α)
∣∣∣ .

Proof. From (4), we have:

‖Ln,x0 − LU‖ =
1
2

sup
‖f‖∞≤1

|ELn,x0
[f ]− EU [f ] |.

For all α ∈ Zk − {0}, define the following function f : Rk −→ C:

f(x) = exp
(

2πi
p
〈x, α〉

)
.
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Since ‖f‖∞ = 1, we obtain:

‖Ln,x0 − LU‖ =
1
2
|ELn,x0

[f ]− EU [f ] |

=
1
2

∣∣∣∣∣∣
∫
Rk

exp
(

2πi
p
〈x, α〉

)
dLn,x0(x)− 1

pk

∫
Rk

exp
(

2πi
p
〈x, α〉

)
1[0,p)k(x)dx

∣∣∣∣∣∣
=

1
2

∣∣∣L̂n,x0(α)− L̂U (α)
∣∣∣ .

Moreover, since α ∈ Zk − {0}, there exists j0 ∈ {1, ..., k} such that αj0 ∈ Z − {0};

then:

L̂U (α) =
1
pk

k∏
j=1

 p∫
0

exp
(

2πi
p
xjαj

)
dxj


=

1
pk

∏
j∈{1,...,k}−j0

 p∫
0

exp
(

2πi
p
xjαj

)
dxj

 p∫
0

exp
(

2πi
p
xj0αj0

)
dxj0 .

Observe that

p∫
0

exp
(

2πi
p
xj0αj0

)
dxj0 =

exp (2παj0i)− 1
2πi
p αj0

= 0

⇒ L̂U (α) = 0,

from which

‖Ln,x0 − LU‖ ≥
1
2

∣∣∣L̂n,x0(α)
∣∣∣ . 2

Henceforth, by using the formula (6), we will quantify the rate of convergence of the

Markov chain (2); moreover, by using Lemmas 2.5 and 2.6, we will find a lower bound for

‖Ln,x0 − LU‖. We start by proving the invariance of the uniform distribution on [0, p)k

for the chain.

Proposition 2.7. Suppose that X and Y are two independent random vectors in Rk,

and A ∈ Mk(Z) ∩ GLk(Q); if X is uniformly distributed in the interval [0, p)k, then the

random vector T = AX + Y (mod p) is uniformly distributed in [0, p)k.
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Proof. ∀ z ∈ Rk, we have:

fAX(z) =
1

|det(A)|pk
1A[0,p)k(z),

from which, if Z = AX (mod p):

fZ(z) =

∑
h∈Zk

fAX(z + ph)

 1[0,p)k(z)

=
1

|det(A)|pk
·
∣∣∣{h ∈ Zk : z + ph ∈A[0, p)k

}∣∣∣ 1[0,p)k(z).

Suppose that there exist z, x ∈ [0, p)k and h ∈ Zk such that z + ph ∈ A[0, p)k,

x + ph /∈ A[0, p)k, and define:

t = sup
{
t ∈ [0, 1] : t(x + ph)+(1− t)(z + ph) ∈ A[0, p)k

}
,

y1 = t(x + ph)+(1− t)(z + ph).

Observe that x1 = A−1(y1) belongs to the affine space H1 generated by 2k−1 vertices of

the interval [0, p)k. Consider the remaining 2k−1 vertices of [0, p)k, indicate by H2 the

affine space that they generate, and define x2 as the projection of x1 into H2; finally,

define y2 = Ax2. Since H1 and H2 are parallel, so are AH1 and AH2, and consequently

z− (y1 − y2) + ph /∈ A[0, p)k, x− (y1 − y2) + ph ∈ A[0, p)k.

Since y1 − y2 = A(x1 − x2) = ph, for some h ∈ Zk, we have:∣∣∣{h ∈ Zk : z + ph ∈A[0, p)k
}∣∣∣ = ∣∣∣{h ∈ Zk : x + ph ∈A[0, p)k

}∣∣∣ , ∀ z,x ∈ [0, p)k,

from which

fZ(z) =
c

|det(A)|pk
1[0,p)k(z), ∀ z ∈ Rk, for some c ∈ N,

and so

fZ(z) =
1
pk

1[0,p)k(z), ∀ z ∈ Rk.

Then, the law of Z + Y has a density g, with respect to the measure Leb(k), given by:

g(z) =
1
pk

∫
Rk

1[0,p)k(z− x)dLY (x) =
1
pk

∫
Rk

1z−[0,p)k(x)dLY (x), ∀ z ∈ Rk.
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Finally, if T = AX + Y (mod p), since T = Z + Y (mod p), ∀ z ∈ Rk, we have:

fT(z) =

∑
h∈Zk

g(z + ph)

 1[0,p)k(z) =
1
pk

∑
h∈Zk

∫
Rk

1z+ph−[0,p)k(x)dLY (x)

 1[0,p)k(z)

=
1
pk

∫
Rk

dLY (x)

 1[0,p)k(z) =
1
pk

1[0,p)k(z). 2

3 Convergence in total variation to the uniform distribution

on [0, p)k

Proposition 3.1. Suppose that A ∈ Mk(Z) ∩ GLk(Q), µ(B) ≥ α
∫
B

1[−a,a]k(x)dx, ∀B ∈

B(k), where a, α ∈ R+; then, ∀m ∈ N, ∀ ε ∈
[
0, 1

2

]
, ∀B ∈ B(k), and ∀ (t0, t1, ..., tm) ∈

Nm+1 such that ti 6= tj ∀ i 6= j, we have:

P

(
m∑
i=0

AiBti ∈ B

)
≥ ϕm(B), (10)

where ϕm is the measure on (Rk,B(k)) with density, with respect to the measure Leb(k),

given by:

fm(x) =
(

2aε
k

)km αm+1

|det(A)|
m(m+1)

2

1[
−

(
m(1−2ε)

k
+1

)
a,

(
m(1−2ε)

k
+1

)
a
]k(x), ∀x ∈ Rk. (11)

In particular:

P

(
m∑
i=0

AiBm−i ∈ B

)
≥ ϕm(B).

Proof. In order to prove the formula (10), proceed by induction on m; if m = 0,

the statement is true by assumption. Suppose that the statement is true for m; then, for

9



m+ 1, ∀B ∈ B(k):

P

(
m+1∑
i=0

AiBti ∈ B

)
=

L m∑
i=0

AiBti

∗ LAm+1Btm+1

 (B)

=
∫
Rk

1B(z)d

L m∑
i=0

AiBti

∗ LAm+1Btm+1

 (z) =
∫
R2k

1B(x + y)d

L m∑
i=0

AiBti

⊗ LAm+1Btm+1

 (x,y)

=
∫
Rk

∫
Rk

1B(x + y)dLAm+1Btm+1
(y)

 dL m∑
i=0

AiBti

(x)

≥
∫
Rk

∫
Rk

1B(x + y)dLAm+1Btm+1
(y)

 dϕm(x) (by the inductive assumption). (12)

Observe that, ∀C ∈ B(k), we have:

LAm+1Btm+1
(C) = P

(
Btm+1 ∈

(
Am+1

)−1
C
)
≥ α

∫
(Am+1)−1C

1[−a,a]k(x)dx

= α

∫
{x∈Rk:Am+1x∈C}

1Am+1[−a,a]k
(
Am+1x

)
dx =

α

|det(A)|m+1

∫
C

1Am+1[−a,a]k(y)dy.

Then, from (12) and (11):

P

(
m+1∑
i=0

AiBti ∈ B

)
≥ α

|det(A)|m+1

∫
Rk

∫
Rk

1B(x + y)1Am+1[−a,a]k(y)dy

 dϕm(x)

=
α

|det(A)|m+1

∫
Rk

∫
Rk

1B(z)1Am+1[−a,a]k(z− x)dz

 fm(x)dx

=
(

2aε
k

)km αm+2

|det(A)|
(m+1)(m+2)

2

∫
Rk

∫
B

1Am+1[−a,a]k(z− x)dz

 1Im(x)dx

(where Im = [−sm, sm]k =
[
−
(
m(1− 2ε)

k
+ 1
)
a,

(
m(1− 2ε)

k
+ 1
)
a

]k
)

=
(

2aε
k

)km αm+2

|det(A)|
(m+1)(m+2)

2

∫
B

Leb(k)
((

z−Am+1[−a, a]k
)
∩ Im

)
dz, (13)

where the last equality follows from Tonelli’s theorem.

SetD =
{
x ∈ Rk:

k∑
i=1
|xi| ≤ 1

}
. We haveAm+1[−a, a]k ⊃ Am+1

{
x ∈ Rk:

k∑
i=1
|xi| ≤ a

}
=

aAm+1D; moreover, D is the convex hull of the set

E =
{
x ∈ Rk : |xi| = 1, for some i ∈ {1, ..., k}, xj = 0 ∀ j 6= i

}
,
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and so Am+1D is the convex hull of Am+1E, by linearity. Since det(A) 6= 0, ∀x ∈

E we have Am+1x 6= 0; this implies Am+1D ⊃ E, and so Am+1D ⊃ D, from which

Am+1[−a, a]k ⊃ aD =
{
x ∈ Rk:

k∑
i=1
|xi| ≤ a

}
⊃
[
−a
k ,

a
k

]k.
Consider the function gm : Im+1 −→ R+ defined by

gm(z) = Leb(k)
((

z−
[
−a
k
,
a

k

]k)
∩ Im

)
,∀ z ∈ Im+1.

The previous arguments and formula (13) imply

P

(
m+1∑
i=0

AiBti ∈ B

)
≥
(

2aε
k

)km αm+2

|det(A)|
(m+1)(m+2)

2

∫
B

gm(z)1Im+1(z)dz. (14)

Set Vm+1 =
{
z = (z1, ..., zk) ∈ Rk : zi ∈ {sm+1,−sm+1},∀ i = 1, ..., k

}
⊂ ∂(Im+1). It

is easy to prove that, ∀ z ∈ Im+1 and ∀ z ∈ Vm+1, we have

gm(z) ≥ gm(z) =
(a
k
− (sm+1 − sm)

)k
=
(

2aε
k

)k
.

Then, from formula (14):

P

(
m+1∑
i=0

AiBti ∈ B

)
≥
(

2aε
k

)k(m+1) αm+2

|det(A)|
(m+1)(m+2)

2

∫
B

1Im+1(z)dz,

that is the formula (10) for m+ 1. In particular, if ti = m− i, ∀ i ∈ {0, 1, ...,m}, we have:

P

(
m∑
i=0

AiBm−i ∈ B

)
≥ ϕm(B). 2

The following proposition prove that the state space [0, p)k is a small set.

Proposition 3.2. Suppose thatA ∈Mk(Z)∩GLk(Q), p ∈ R+, µ(B) ≥ α
∫
B

1[b,c]k(x)dx,

∀B ∈ B(k), for some b, c ∈ R such that c − b = δ ∈ R+, and for some α ∈ R+; then,

there exist m0 = m0(p, k, δ) ∈ N∗ and a decreasing sequence {σm}m≥1 ⊂ (0, 1), where

σm = σm(k, δ, α, |det(A)|), such that, ∀m ≥ m0, ∀x0 ∈ [0, p)k, and ∀C ∈ B([0, p)k), we

have

Lm,x0(C) ≥ σm
pk
Leb(k)(C).
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Proof. Set b = (b, ..., b) ∈ Rk, c = (c, ..., c) ∈ Rk, Cn = Bn − b+c
2 , ∀n ∈ N; then,

∀m ∈ N∗, ∀x0 ∈ [0, p)k, and ∀B ∈ B(k), we have:

Ym = Amx0 +
m−1∑
i=0

AiBm−1−i = Amx0 +
m−1∑
i=0

Ai
b + c

2
+
m−1∑
i=0

AiCm−1−i

=⇒ P (Ym ∈ B) = P

(
m−1∑
i=0

AiCm−1−i ∈ B −Amx0 −
m−1∑
i=0

Ai
b + c

2

)
.

Observe that P (Cn ∈ B) ≥ α
∫
B

1[− δ
2
, δ
2 ]

k(x)dx, ∀n ∈ N; then, from Proposition 3.1,

∀ ε ∈
[
0, 1

2

]
, we have:

P (Ym ∈ B) ≥
(
εδ

k

)k(m−1) αm

|det(A)|
(m−1)m

2

∫
B−Amx0−

m−1∑
i=0

Ai b+c
2

1[−γm,γm]k(x)dx

=
(
εδ

k

)k(m−1) αm

|det(A)|
(m−1)m

2

∫
B

1
Amx0+

m−1∑
i=0

Ai b+c
2

+[−γm,γm]k
(t)dt, (15)

where γm =
(

(m−1)(1−2ε)
k + 1

)
δ
2 .

Suppose ε = 1
4 and set m0 = max

{[
2pk
δ

]
, 1
}

; ∀m ≥ m0, we have:

γm =
(
m− 1

2k
+ 1
)
δ

2
≥ (m+ 1)δ

4k
≥ p

2

[
(m+ 1)δ

2kp

]
≥ p

2
.

Set p = (p, ..., p) ∈ Rk, y = (y1, ..., yk) = Amx0 +
m−1∑
i=0

Ai b+c
2 − 1

2

[
(m+1)δ

2kp

]
p; then, from

formula (15):

P (Ym ∈ B) ≥
(
δ

4k

)k(m−1) αm

|det(A)|
(m−1)m

2

∫
B

1
y+

[
0,p

[
(m+1)δ

2kp

]]k(t)dt.

12



Moreover, ∀C ∈ B([0, p)k), we have:

P (Xm ∈ C) ≥
∑

i∈
{

0,...,
[

(m+1)δ
2kp

]}k

P

(
Ym ∈

(
C + p

[
y
p

]
+ pi

))

≥
∑

i∈
{

0,...,
[

(m+1)δ
2kp

]}k

(
δ

4k

)k(m−1) αm

|det(A)|
(m−1)m

2

·Leb(k)
((

C + p

[
y
p

]
+ pi

)
∩

(
y +

[
0, p

[
(m+ 1)δ

2kp

]]k))

=
(
δ

4k

)k(m−1) αm

|det(A)|
(m−1)m

2

Leb(k)

(
D ∩

(
pz +

[
0, p

[
(m+ 1)δ

2kp

]]k))
(16)

(by the translation invariance of the Lebesgue measure),

where

D =
⋃

i∈
{

0,...,
[

(m+1)δ
2kp

]}k

C + pi, z = (z1, ..., zk) =
{

y
p

}
∈ [0, 1)k.

Observe that, ∀ i = 1, ..., k, since

[0, pzi] + p

[
(m+ 1)δ

2kp

]
=
[
p

[
(m+ 1)δ

2kp

]
, pzi + p

[
(m+ 1)δ

2kp

]]
,

by definition of D we have

Leb(k)

D ∩

i−1∏
j=1

[
pzj , pzj + p

[
(m+ 1)δ

2kp

]]
× [0, pzi]×

k∏
j=1+1

[
pzj , pzj + p

[
(m+ 1)δ

2kp

]]
= Leb(k)

D ∩

i−1∏
j=1

[
pzj , pzj + p

[
(m+ 1)δ

2kp

]]
×
[
p

[
(m+ 1)δ

2kp

]
, pzi + p

[
(m+ 1)δ

2kp

]]

×
k∏

j=1+1

[
pzj , pzj + p

[
(m+ 1)δ

2kp

]] .

This implies

Leb(k)

(
D ∩

(
pz +

[
0, p

[
(m+ 1)δ

2kp

]]k))

= Leb(k)

(
D ∩

(
(0, pz2, ..., pzk) +

[
0, p

[
(m+ 1)δ

2kp

]]k))
.

13



By iterating the argument for i = 2, ..., k, we have

Leb(k)

(
D ∩

(
pz +

[
0, p

[
(m+ 1)δ

2kp

]]k))

= Leb(k)

(
D ∩

[
0, p

[
(m+ 1)δ

2kp

]]k)
=
[
(m+ 1)δ

2kp

]k
Leb(k)(C).

Then, from formula (16):

P (Xm ∈ C) ≥
(
δ

4k

)k(m−1) αm

|det(A)|
(m−1)m

2

[
(m+ 1)δ

2kp

]k
Leb(k) (C)

≥
(
δ

4k

)k(m−1) αm

|det(A)|
(m−1)m

2

(
(m+ 1)δ

2kp

)k
Leb(k) (C) =

σm
pk
Leb(k)(C),

where σm = σm(k, δ, α, |det(A)|) = (m+ 1)k
((

δ

4k

)k
α

)m
1

|det(A)|
(m−1)m

2

∈ (0, 1).

Finally, suppose m ≥ 1 and observe that δkα ≤ 1, since otherwise, by assumption, it

would be the case that µ(Rk) ≥ δkα > 1; we have:

σm+1(k, δ, α, |det(A)|) = (m+ 2)k
((

δ

4k

)k
α

)m+1
1

|det(A)|
m(m+1)

2

=
(
m+ 2
m+ 1

)k
· δ

kα

(4k)k
1

|det(A)|m
· (m+ 1)k

((
δ

4k

)k
α

)m
1

|det(A)|
(m−1)m

2

≤
(

m+ 2
4(m+ 1)

)k
σm(k, δ, α, |det(A)|) ≤ σm(k, δ, α, |det(A)|). (17)

Then, {σm}m≥1 is a decreasing sequence. 2

Theorem 3.3. Suppose that A ∈ Mk(Z) ∩GLk(Q), p ∈ R+, µ(B) ≥ α
∫
B

1[b,c]k(x)dx,

∀B ∈ B(k), for some b, c ∈ R such that c − b = δ ∈ R+, and for some α ∈ R+;

then, the Markov chain {Xn} in (2) is Leb(k)-irreducible; moreover, there exist ρ =

ρ(p, k, δ, α, |det(A)|) ∈ R+ and τ = τ(p, k, δ, α, |det(A)|) ∈ (0, 1) such that, ∀n ∈ N

and ∀x0 ∈ [0, p)k, we have

‖Ln,x0 − LU‖ ≤ ρτn. (18)

Consequently, {Xn} is uniformly ergodic.

Proof. From Proposition 3.2, there exist m0 = m0(p, k, δ) ∈ N∗ and a sequence

{σm}m≥1 ⊂ (0, 1), where σm = σm(k, δ, α, |det(A)|), such that, ∀m ≥ m0, ∀x0 ∈ [0, p)k,
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and ∀C ∈ B([0, p)k), we have Lm,x0(C) ≥ σm

pk Leb
(k)(C); then, if Leb(k)(C) > 0, we

have Lm,x0(C) > 0, and so {Xn} is Leb(k)-irreducible. Moreover, from Theorem 2.2,

for m = m0, there exists a probability distribution πm0 on ([0, p)k,B([0, p)k)) such that

‖Lm,x0 − πm0‖ ≤ ρτn, ∀n ∈ N and ∀x0 ∈ [0, p)k, where τ = τ(p, k, δ, α, |det(A)|) =

(1− σm0)
1

m0 ∈ (0, 1), ρ = ρ(p, k, δ, α, |det(A)|) =
1

1− σm0

∈ R+.

Finally, since {Xn} is Leb(k)-irreducible and since πm0 is invariant for {Xn} (see for

example Meyn and Tweedie (2005), page 237), from Proposition 2.3 {Xn} is recurrent

and so, from Theorem 2.4, it has a unique invariant measure. Since LU is invariant by

Proposition 2.7, we have πm0 = LU, that is the formula (18). 2

Theorem 3.4. Suppose that the matrix A has an eigenvalue λ ∈ C such that λl = 1,

for some l ∈ N∗ (hence, so does the matrix tA), and that ‖Bn‖∞ ∈ L2 for all n ∈ N.

Then, there exist γ ∈ R+ such that, for all p ∈ N, p sufficiently large, and for all n ∈ N,

we have:

||Ln,x0 − LU || ≥
1
2

exp
(
−γn
p2

)
.

Consequently, if also the assumptions of Theorem 3.3 hold, O
(
p2
)

steps are needed to

reach the uniform distribution.

Proof. The assumption on λ implies tAlx = x for some x ∈ Ck − {0}, and so

(tAl − I)x = 0, which implies x ∈ Qk − {0}; then there exists α ∈ Zk − {0} such

that tAlα = α. Then, for all j ∈ N, there exists i ∈ {0, 1, ..., l−1} such that tAjα = tAiα.

Moreover, from Lemmas 2.5 and 2.6, ∀ n ∈ N:

‖Ln,x0 − LU‖ ≥
1
2

∣∣∣L̂n,x0(α)
∣∣∣

=
1
2

n−1∏
j=0

∫
Rk

∫
Rk

cos
(

2π
p
〈x− y,tAjα〉

)
dµ(x)

 dµ(y)

1/2

.

Since cosx ≥ 1− x2

2
∀ x ∈ R, we have:

∫
Rk

∫
Rk

cos
(

2π
p
〈x− y,tAjα〉

)
dµ(x)

 dµ(y) ≥ 1− γ

p2
,
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where γ = 2π2k4 ‖α‖2
∞ max
i∈{0,1,...,l−1}

∥∥tA∥∥2i

∞

∫
Rk

∫
Rk

‖x−y‖2
∞ dµ(x)

 dµ(y) ∈ R+. More-

over, there exists d ∈ R+ such that 1 − x ≥ exp(−2x) > 0, ∀ x ∈ [0, d]. For all p

sufficiently large, we can suppose that
γ

p2
∈ [0, d]; hence:

||Ln,x0 − LU || ≥
1
2

(
1− γ

p2

)n/2
≥ 1

2
exp

(
−γn
p2

)
. 2

4 Problems for further study

From Theorem 3.3, the rate of convergence of the recursion (2) to the uniform law is

geometric and depends on A, p, k, and the law of Bn; this is true for any integer matrix

with nonzero eigenvalues. Moreover, if A has an eigenvalue that is a root of 1, a lower

bound of the variation distance between Ln,x0 and LU is obtained from Theorem 3.4, and

we can establish that the number of steps necessary to reach the uniform distribution

is O
(
p2
)
. Our idea is that, without any assumptions on A, n = O

(
p2
)

steps are also

sufficient. This result should agree with the discrete case studied in Asci 2009a. We hope

to prove it and to develop some applications in a further paper.
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