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Abstract

We prove the existence of multiple positive solutions of the Dirichlet problem for
the prescribed mean curvature equation in Minkowski space{

−div
(
∇u/

√
1− |∇u|2

)
= f(x, u,∇u) in Ω,

u = 0 on ∂Ω.

Here Ω is a bounded regular domain in RN and the function f = f(x, s, ξ) is ei-
ther sublinear, or superlinear, or sub-superlinear near s = 0. The proof combines
topological and variational methods.
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Keywords and Phrases: mean curvature; Minkowski space; quasilinear elliptic
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non-existence; topological degree; critical point theory.

1 Introduction

Hypersurfaces of prescribed mean curvature in Minkowski space, with coordinates
(x1, . . . , xN , t) and metric

∑N
i=1 dx

2
i − dt2, are of interest in differential geometry and
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applicazioni”, and by University of Trieste, in the frame of the F.R.A. project “Equazioni differenziali
ordinarie: aspetti qualitativi e numerici”.
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in general relativity. In this paper we are concerned with the existence of such a kind
of hypersurfaces which are graphs of solutions of the Dirichlet problem{

−div
(
∇u/

√
1− |∇u|2

)
= f(x, u) in Ω,

u = 0 on ∂Ω.
(1)

We assume throughout that Ω is a bounded domain in RN , with a boundary ∂Ω of
class C2, and f : Ω × R → R satisfies the Carathéodory conditions. By a solution
of (1) we mean a function u ∈ W 2,r(Ω), for some r > N , with ‖∇u‖∞ < 1, which
satisfies the equation a.e. in Ω and vanishes on ∂Ω. These are strong strictly spacelike
solutions of (1) according to the terminology of, e.g., [5, 15, 2, 10].

In [2] and [10] some general solvability results for (1) were proved under the
assumption that the function f is globally bounded. Yet, as all spacelike solutions
are uniformly bounded by the quantity 1

2d(Ω), with d(Ω) the diameter of Ω, one can
always reduce to that situation by truncation. Nevertheless it should be observed
that, if one already knows that problem (1) admits zero as a solution, the results
in [2] and [10] provide no further information. Therefore it may be interesting to
investigate in such cases the existence of nontrivial, in particular positive, solutions.
We point out that, while this topic has been largely discussed in the literature for the
Dirichlet problem associated with various classes of semilinear and quasilinear elliptic
equations (including the prescribed mean curvature equation in Euclidean space), no
result seems to be available for problem (1), at least when Ω is a general domain in
RN .

Our aim here is indeed to extend to a genuine PDE setting what has been obtained
in [6], for the one-dimensional problem, and in [3], [4], [7], for the radially symmetric
problem in a ball. Namely, we will discuss the existence and the multiplicity of positive
solutions of (1), assuming that the function f = f(x, s) is sublinear, or superlinear,
or sub-superlinear near s = 0.

In order to describe our results in a simple fashion, let us write the function f in
the form

f(x, s) = λ a(x)(s+)p + µ b(x)(s+)q, (2)

where λ, µ are non-negative real parameters, a, b : Ω̄ → R are continuous functions,
and p, q are given exponents satisfying 0 < p ≤ 1 < q. The coefficients a, b are
assumed to be simultaneously positive at some point of Ω, but they are allowed to
vanish in parts of Ω or to change sign. The following conclusions are then obtained.

Take µ = 0 in (2). If the exponent p ∈ ]0, 1[ is fixed, we prove that (1) has a
positive solution for every λ > 0. If p = 1, we show that (1) has a positive solution
for all large λ > 0, whereas non-existence of positive solutions is shown to occur for
all sufficiently small λ > 0. It is immediately seen that in both cases the existence of
positive solutions is guaranteed, with the same choices of λ, for any given µ > 0.

Next, take λ = 0 in (2). If the exponent q ∈ ]1,+∞[ is fixed, we prove that (1) has
at least two positive solutions for all large µ > 0. Non-existence of positive solutions
is also established for all sufficiently small µ > 0.
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Lastly, take λ > 0 and µ > 0 in (2). Let the exponents p ∈ ]0, 1[ and q ∈ ]1,+∞[
be given. Then (1) has at least three positive solutions for every large µ > 0 and all
sufficiently small λ > 0.

We point out that in all these statements no restriction is placed on the range of
the exponent q.

Our results should be compared with similar ones obtained in [8] for a class of
semilinear problems, in [9] and in [14] for a class of quasilinear problems driven by the
p-Laplace operator and the mean curvature operator in Euclidean space, respectively.
In these papers some kinds of local analogues to the classical conditions of “sublin-
earity” and of “superlinearity” have been introduced, extending in various directions
some of the results proved in the celebrated work by Ambrosetti, Brezis and Cerami
[1]. We observe however that the multiplicity and the non-existence results we obtain
for (1) are peculiar of this problem, due to the specific structure of the differential
operator, and have no analogue in all the above mentioned cases.

We remark that, unlike in [6] and [7], our approach here is topological. This allows
us to introduce a dependence on the gradient of the solution into the right-hand side
f of the equation, so that we can replace (1) with{

−div
(
∇u/

√
1− |∇u|2

)
= f(x, u,∇u) in Ω,

u = 0 on ∂Ω,
(3)

where again f : Ω × R × RN → R satisfies the Carathéodory conditions. Of course,
this problem has not anymore a variational structure. However, our construction of
the open sets, where we evaluate the degree of the solution operator associated with
(3), relies on the knowledge of the radially symmetric solutions of suitable comparison
problems, whose existence is proved by a minimization argument in [7].

We finally notice that the solvability of problem (3) has been explicitly raised as
an open question in the recent work [13].

Notation. We list some additional notation that will be used throughout this paper.
For s ∈ R we write s+ = max{s, 0} and s− = −min{s, 0}. We denote by BR(x0), or
simply by B if no disambiguation is needed, the open ball in RN centered at x0 and
having radius R. For functions u, v : E → R, with E a subset of RN having positive
measure, we write u ≤ v (in E) if u(x) ≤ v(x) a.e. in E, and u < v (in E) if u ≤ v
and u(x) < v(x) in a subset of E having positive measure. A function u such that
u > 0 is called positive. Assume that O is an open bounded set with a boundary ∂O
of class C1; for functions u, v ∈ C1(Ō), we write u� v (in Ō) if u(x) < v(x) for every
x ∈ O and, if u(x) = v(x) for some x ∈ ∂O, then ∂v

∂ν (x) < ∂u
∂ν (x), where ν = ν(x)

denotes the unit outer normal to O at x ∈ ∂O. A function u such that u � 0 is
called strictly positive. We also set C1

0 (Ō) = {u ∈ C1(Ō) : u = 0 on ∂O}. Finally,
we denote by I the identity operator.
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2 Preliminaries

We collect in this section some results that will be repeatedly used in the proof of our
main result. We start with a comparison principle, which is a direct consequence of
[2, Lemma 1.2].

Lemma 2.1. Assume that O is a bounded domain in RN , with a boundary ∂O of
class C1. Suppose that v1, v2 ∈ L∞(O) satisfy v1 ≤ v2. Let, for i = 1, 2, ui ∈W 2,r(O),
for some r > N , be such that ‖∇ui‖∞ < 1 and

−div
(
∇u/

√
1− |∇u|2

)
= vi a.e. in O.

Then
u1 ≤ u2 −min

∂O
(u2 − u1). (4)

Proof. Fix v ∈ L∞(O) and suppose that u ∈ W 2,r(O), for some r > N , is such that
‖∇u‖∞ < 1 and

−div
(
∇u/

√
1− |∇u|2

)
= v a.e. in O. (5)

Let us set
Cu = {z ∈ C0,1(Ō) : ‖∇z‖∞ ≤ 1 and z = u on ∂O}

and define the functional Jv : Cu → R by

Jv(w) =
∫
O

√
1− |∇w|2 dx+

∫
O
vw dx,

for all w ∈ Cu. We claim that u maximizes Jv in Cu. Indeed, pick any z ∈ Cu;
multiplying (5) by u− z and integrating by parts, we get∫

O

∇u · ∇(u− z)√
1− |∇u|2

dx =
∫
O
v(u− z) dx. (6)

By the concavity of the function y 7→
√

1− |y|2, we obtain∫
O

√
1− |∇z|2 dx−

∫
O

√
1− |∇u|2 dx ≤

∫
O

∇u · ∇(u− z)√
1− |∇u|2

dx. (7)

Combining (6) and (7) yields
Jv(z) ≤ Jv(u).

Accordingly, we have that u1 and u2 are maximizers of Jv1 in Cu1 and of Jv2 in Cu2 ,
respectively. Hence Lemma 1.2 in [2] applies, implying that (4) holds.

Next we prove a well-posedness result, which is based on the gradient estimates
obtained in [2, Corollary 3.4, Theorem 3.5].
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Lemma 2.2. Assume that O is a bounded domain in RN , with a boundary ∂O of
class C2, and suppose that v ∈ L∞(O). Then the problem{

−div
(
∇u/

√
1− |∇u|2

)
= v in O,

u = 0 on ∂O
(8)

has a unique solution u ∈W 2,r(O) for all finite r ≥ 1. Moreover, for any given Λ > 0
and r > N , there exist constants ϑ = ϑ(O,Λ) ∈ ]0, 1[ and c = c(O,Λ, r) > 0 such
that, for every v ∈ L∞(O) with ‖v‖∞ ≤ Λ, the following estimates hold:

‖∇u‖∞ < 1− ϑ (9)

and
‖u‖W 2,r ≤ c ‖v‖∞. (10)

Proof. Uniqueness. The uniqueness of solutions of (8) immediately follows from
Lemma 2.1.
Existence. Let Λ > 0 and r > N be fixed. Take a function v ∈ L∞(O), with
‖v‖∞ ≤ Λ. We first assume that v further satisfies v ∈ C0,1(Ō). By [2, Corollary
3.4, Theorem 3.5] there exists a constant ϑ = ϑ(O,Λ) ∈ ]0, 1[ such that any solution
u ∈ C2(O) ∩ C1(Ō) of (8) satisfies (9) and ‖u‖∞ < 1

2d(Ω). Accordingly, we can
modify the differential operator on the left of the equation in (8) in such a way that
[12, Theorem 1] applies, yielding the existence of constants α = α(O,Λ) ∈ ]0, 1] and
c1 = c1(O,Λ) > 0 such that u ∈ C1,α(Ō) and

‖u‖C1,α < c1.

We can suppose α has been taken so small that W 2,r(O) is compactly imbedded into
C1,α(Ō); as a consequence, α and c1 now depend on O,Λ and r too. Let us define

C = {w ∈ C1,α(Ō) : ‖∇w‖∞ < 1− ϑ, ‖w‖C1,α < c1}.

C is an open bounded subset of C1,α(Ō) with 0 ∈ C. Pick any w ∈ C̄ and set, for
i, j = 1, . . . , N ,

aij = δija(|∇w|2) + 2a′(|∇w|2)∂xiw ∂xjw, (11)

where δij is the Kronecker delta and a(s) = (1−s)−
1
2 . Consider the Dirichlet problem

−
N∑

i,j=1

aij∂xixju = v in O,

u = 0 on ∂O.
(12)

Note that the coefficients aij belong to C0,α(Ō) and they are uniformly bounded
in C0,α(Ō), with bound independent of w ∈ C̄ and ultimately depending only on
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O, Λ and r; moreover, the ellipticity constant can be taken equal to 1. According
to the Lr-regularity theory [11, Theorem 9.15, Theorem 9.13], problem (12) has a
unique solution u ∈ W 2,r(O) (depending on v and w) and there exists a constant
c2 = c2(O,Λ, r) > 0 such that

‖u‖W 2,r ≤ c2(‖u‖Lr + ‖v‖Lr).

By [11, Theorem 9.1] there is also a constant c3 = c3(O,Λ, r) > 0 such that

‖u‖∞ ≤ c3‖v‖Lr .

Combining these two estimates yields

‖u‖W 2,r ≤ c ‖v‖Lr (13)

for some constant c = c(O,Λ, r) > 0 (depending only on the indicated quantities).
Moreover, as u ∈ C1,α(Ō), v ∈ C0,1(Ō) and ai,j ∈ C0,α(Ō), for i, j = 1, . . . , N , the
Schauder regularity theory [11, Corollary 6.9] applies locally and allows us to conclude
that u ∈ C2,α(O); hence, in particular, u ∈W 2,r(O) ∩ C2(O).

Let us denote by L : C̄ → C1,α(Ō) the operator which sends each w ∈ C̄ onto the
unique solution u ∈ C1,α(Ō) of (12). Let us verify that L is completely continuous.
We first prove that L has a relatively compact range. Let (wn)n be a sequence in
C̄. By (13) the sequence (L(wn))n is bounded in W 2,r(O). Hence there exists a
subsequence (L(wnk))k which converges weakly in W 2,r(O) and strongly in C1,α(Ō)
to some u ∈ W 2,r(O). The continuity can be verified as follows. Let (wn)n be a
sequence in C̄ converging in C1,α(Ō) to some w ∈ C̄. We want to prove that (L(wn))n
converges in C1,α(Ō) to L(w). Let us consider any subsequence (L(wnk))k of (L(wn))n
and verify that it has a subsequence converging to L(w). Arguing as above, there
exists a subsequence (L(wnkj ))j which converges weakly in W 2,r(O) and strongly in
C1,α(Ō) to some u ∈W 2,r(O). As each unkj = L(wnkj ) satisfies problem (12), we can
pass to the limit, concluding that u is a solution of (12) and hence, by uniqueness,
u = L(w).

We further observe that u is a solution of (8) if and only if u is a fixed point of
L. In order to prove the existence of a fixed point of L, we show that every solution
u ∈ C̄ of

u = tL(u), (14)

for some t ∈ [0, 1], belongs to C. Note that (14) is equivalent to{
−div

(
∇u/

√
1− |∇u|2

)
= tv in O,

u = 0 on ∂O.
(15)

As ‖tv‖∞ ≤ Λ and v ∈ C0,1(Ō), we conclude by the previous argument that any
solution u of (15) is such that u ∈ W 2,r(O) ∩ C2(O), ‖∇u‖∞ < 1− ϑ, ‖u‖C1,α < c1,
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and hence u ∈ C. Accordingly, the Leray-Schauder continuation theorem yields the
existence of a fixed point u ∈ C of L and therefore of a solution of (8), which satisfies
(9) and (13).

The general case of a function v ∈ L∞(O), with ‖v‖∞ ≤ Λ, can be easily dealt
with by approximation. Fix r > N and let (vn)n be sequence in C0,1(Ō) converging
to v in Lr(O) and satisfying ‖vn‖∞ ≤ Λ for all n. The corresponding solutions (un)n
of (8) satisfy (9) and (13). Arguing as above, we can extract a subsequence of (un)n
which converges weakly in W 2,r(O) to a solution u of (8). Clearly, estimate (9) is
valid, possibly reducing ϑ. By the weak lower semicontinuity of the W 2,r-norm, (13)
and hence (10) hold true as well.

By Lemma 2.2 we can define an operator K : L∞(O) → C1
0 (Ō) which sends any

function v ∈ L∞(O) onto the unique solution u ∈ C1
0 (Ō) of (8). Arguing as in the

proof of Lemma 2.2 the following statement can be proved.

Lemma 2.3. Assume that O is a bounded domain in RN , with a boundary ∂O of
class C2. Then K : L∞(O)→ C1

0 (Ō) is completely continuous.

The following results follow from the maximum principle.

Lemma 2.4. Assume that O is a bounded domain in RN , with a boundary ∂O of
class C2. Then, for any given Λ > 0, there exists a constant d = d(O,Λ) > 0 such
that, for every v ∈ L∞(O) with ‖v‖∞ ≤ Λ, the solution u of (8) satisfies

‖u+‖∞ ≤ d ‖v+‖∞.

Proof. As already observed in the proof of Lemma 2.2, u satisfies (12), where now
the coefficients aij , for i, j = 1, . . . , N , are given by (11) with w replaced by u. Then
[11, Theorem 9.1] immediately yields the conclusion.

Lemma 2.5. Assume that O and O0 are bounded domains in RN , with boundaries
∂O, ∂O0 of class C2, satisfying Ō0 ⊂ O. Let v ∈ L∞(O) be such that v > 0 in O0

and suppose that the solution u of (8) satisfies u ≥ 0 in O. Then min
Ō0

u > 0.

Proof. As already observed in the proof of Lemma 2.2, u satisfies (12). Then the
strong maximum principle (see, e.g., [16, Theorem 3.27]) implies that u(x) > 0 for
every x ∈ O0. Suppose that u(x0) = 0 at some x0 ∈ ∂O0 ⊂ O. By the Hopf boundary
lemma (see, e.g., [16, Lemma 3.26]), we have ∂u

∂ν (x0) < 0, thus contradicting the
assumption u ∈ C1(Ō) and u ≥ 0 in O.

Lemma 2.6. Assume that O is a bounded domain in RN , with a boundary ∂O of
class C2. Fix a constant k ≥ 0. Let v ∈ L∞(O) be such that v > 0 in O and let u be
a solution of {

−div
(
∇u/

√
1− |∇u|2

)
+ ku = v in O,

u = 0 on ∂O.
Then u� 0.
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Proof. The conclusions follow as in the proof of Lemma 2.5 from the strong maximum
principle and the Hopf boundary lemma.

We conclude with an existence result for the radially symmetric problem taken
from [7].

Proposition 2.7. Let us consider the Dirichlet problem{
−div

(
∇u/

√
1− |∇u|2

)
= ν up in B,

u = 0 on ∂B,
(16)

where B is an open ball in RN and ν > 0, p > 0 are given. The following conclusions
hold:

(i) if p ∈ ]0, 1[, then for every ν > 0 problem (16) has at least one (radially sym-
metric) solution u ∈ C2(B̄) satisfying u� 0 in B̄;

(ii) if p ≥ 1, then there exists ν∗ > 0 such that, for every ν > ν∗, problem (16) has
at least one (radially symmetric) solution u ∈ C2(B̄) satisfying u� 0 in B̄.

Proof. Looking for radially symmetric solutions of (16) we consider the one-dimen-
sional problem −

(
rN−1u′/

√
1− (u′)2

)′
= ν rN−1up in ]0, R[,

u′(0) = 0, u(R) = 0,
(17)

where R is the radius of the ball B. An a-priori estimate devised in [6] and [7] allows
to reduce (17) to an equivalent non-singular problem. Then positive solutions can be
found as minimizers of the associated action functional. In particular, if p ∈ ]0, 1[,
applying [7, Proposition 3.4] yields the existence, for every ν > 0, of a positive solution
of (17). If p ≥ 1, applying [7, Proposition 3.3] yields the existence of ν∗ > 0 such
that, for every ν > ν∗, there is a positive solution of (17). These solutions give rise
to positive solutions of (16). It is observed in [7, Remark 3.4] that all such solutions
belong to C2(B̄). Finally, Lemma 2.6 implies that they are strictly positive in B̄.

3 Existence and multiplicity results

Let us consider the Dirichlet problem (3) with f(x, s, ξ) = λa(x, s, ξ) + µb(x, s, ξ),
that is {

−div
(
∇u/

√
1− |∇u|2

)
= λa(x, u,∇u) + µb(x, u,∇u) in Ω,

u = 0 on ∂Ω.
(18)

We assume that λ ≥ 0, µ ≥ 0,
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(h1) Ω is a bounded domain in RN , with a boundary ∂Ω of class C2,

and

(h2) a, b : Ω× [0, 1
2d(Ω)]× B̄1(0)→ R satisfy the Carathéodory conditions and

ess sup
Ω×[0, 12d(Ω)]×B̄1(0)

|a| < +∞ and ess sup
Ω×[0, 12d(Ω)]×B̄1(0)

|b| < +∞.

We look here for positive (strong strictly spacelike) solutions u of (18). We recall that
u is positive if it is non-trivial and non-negative, i.e., u > 0. In some cases we will be
able to show that it is strictly positive, i.e., u� 0.

The following assumptions will be considered:

(a1) there exist an open ball B ⊆ Ω, a1 > 0 and p1 ∈ ]0, 1[ such that a1s
p1 ≤ a(x, s, ξ)

for a.e. x ∈ B, all s ∈ [0, 1
2d(Ω)] and all ξ ∈ B̄1(0);

(a2) 0 ≤ a(x, 0, ξ) for a.e. x ∈ Ω and all ξ ∈ B̄1(0);

(a3) there exist a2 > 0 and p2 ∈ ]0, 1[ such that a(x, s, ξ) ≤ a2s
p2 for a.e. x ∈ Ω, all

s ∈ [0, 1
2d(Ω)] and all ξ ∈ B̄1(0);

(b1) there exist an open ball B ⊆ Ω, b1 > 0 and q1 ∈ [1,+∞[ such that b1sq1 ≤
b(x, s, ξ) for a.e. x ∈ B, all s ∈ [0, 1

2d(Ω)] and all ξ ∈ B̄1(0);

(b2) 0 ≤ b(x, 0, ξ) for a.e. x ∈ Ω and all ξ ∈ B̄1(0);

(b3) there exist b2 > 0 and q2 ∈ ]1,+∞[ such that b(x, s, ξ) ≤ b2s
q2 for a.e. x ∈ Ω,

all s ∈ [0, 1
2d(Ω)] and all ξ ∈ B̄1(0).

Theorem 3.1. Assume (h1) and (h2). The following conclusions hold:

(i) if µ = 0 and (a1) and (a2) are satisfied, then for every λ > 0 problem (18) has
at least one positive solution;

(ii) if λ = 0 and (b1) and (b2) are satisfied, then there exists µ∗ > 0 such that, for
every µ > µ∗, problem (18) has at least one positive solution;

(iii) if λ = 0 and (b1), (b2) and (b3) are satisfied, then there exists µ∗ > 0 such that,
for every µ > µ∗, problem (18) has at least two positive solutions;

(iv) if (a1), (a2), (a3), (b1), (b2) and (b3) are satisfied, B denoting the same ball
in (a1) and (b1), then there exist µ∗ > 0 and a function λ(·) : ]µ∗,+∞[ → R
such that, for every µ > µ∗ and all λ ∈ ]0, λ(µ)[, problem (18) has at least three
positive solutions.
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Proof. Step 1. An equivalent problem. Fix λ ≥ 0 and µ ≥ 0. Assume (h1), (h2),
and (a2) in case λ > 0, (b2) in case µ > 0. Define the functions ā, b̄, f̄ : Ω ×
[−1

2d(Ω), 1
2d(Ω)]× B̄1(0)→ R by setting, for a.e. x ∈ Ω and all ξ ∈ B̄1(0),

ā(x, s, ξ) =

{
a(x, 0, ξ) if −1

2d(Ω) ≤ s < 0,
a(x, s, ξ) if 0 ≤ s ≤ 1

2d(Ω),

b̄(x, s, ξ) =

{
b(x, 0, ξ) if −1

2d(Ω) ≤ s < 0,
b(x, s, ξ) if 0 ≤ s ≤ 1

2d(Ω),

and
f̄ = λā+ µb̄.

The modified functions ā and b̄ share the assumed properties of a and b, respectively.
Notice that any non-trivial solution u of the Dirichlet problem{

−div
(
∇u/

√
1− |∇u|2

)
= λā(x, u,∇u) + µb̄(x, u,∇u) in Ω,

u = 0 on ∂Ω,
(19)

is positive. Indeed, as f̄(x, s, ξ) ≥ 0 for a.e. x ∈ Ω, all s ∈ [−1
2d(Ω), 0] and all

ξ ∈ B̄1(0), multiplying the equation in (19) by u− ∈ C0,1(Ω̄) and integrating by
parts, we have

0 ≤
∫

Ω
f̄(x, u,∇u)u− dx =

∫
Ω

∇u · ∇(u−)√
1− |∇u|2

dx = −
∫

Ω

|∇(u−)|2√
1− |∇(u−)|2

dx ≤ 0

and hence ∇(u−) = 0 a.e. in Ω. As u− = 0 on ∂Ω, we conclude that u− = 0 in Ω.
Therefore a function u is a positive solution of (18) if and only if it is a non-trivial
solution of (19).

We set
D = {u ∈ C1

0 (Ω̄) : ‖∇u‖∞ < 1}

and let Nλ,µ : D̄ → L∞(Ω) be the superposition operator associated with f̄ , that is,

Nλ,µ(u) = f̄(·, u,∇u).

By (h2) Nλ,µ is continuous and has a bounded range. Hence, by Lemma 2.3, the
operator Tλ,µ : D̄ → C1

0 (Ω̄), defined by

Tλ,µ = K ◦ Nλ,µ,

is completely continuous. Clearly, a function u is a positive solution of (18) if and
only if u ∈ D and is a non-trivial fixed point of Tλ,µ.
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Step 2. Proof of (i). Take µ = 0 and fix λ > 0. Assume (h1), (h2), (a1) and (a2).
For sake of simplicity, the operators Nλ,0 and Tλ,0 will be denoted by N and T ,
respectively. Set

Λa = λ‖ā‖∞
and let ϑa ∈ ]0, 1[ be the constant ϑa = ϑ introduced in Lemma 2.2, with Λ = Λa.

Let us consider the Dirichlet problem{
−div

(
∇u/

√
1− |∇u|2

)
= λa1u

p1 in B,

u = 0 on ∂B,
(20)

with B, a1 and p1 defined in (a1). Without restrictions, we can suppose that B̄ ⊂ Ω.
By Proposition 2.7 there exists a solution α ∈ C2(B̄) of (20) satisfying ‖α‖∞ ≤ 1

2d(Ω)
and α� 0 in B̄. Let us extend α to a function α̃ ∈ C1(Ω̄) satisfying ‖∇α̃‖∞ ≤ 1 and

−1
2d(Ω) < α̃(x) < 0

for all x ∈ Ω̄ \ B̄. We define the open bounded subset of C1
0 (Ω̄)

U0 = {u ∈ C1
0 (Ω̄) : u� α̃, ‖∇u‖∞ < 1− ϑa}

and v0 ∈ L∞(Ω) by setting, for a.e. x ∈ Ω,

v0(x) = λā
(
x, α̃(x),∇α̃(x)

)
.

Observe that v0 ≥ 0 in Ω, by definition of ā, v0 > 0 in B, by (a1), and ‖v0‖∞ ≤ Λa.
Let z0 be the solution of the Dirichlet problem{

−div
(
∇u/

√
1− |∇u|2

)
= v0 in Ω,

u = 0 on ∂Ω.

Notice that, by Lemma 2.6, z0 � 0 in Ω̄.

Claim. T has no fixed points on ∂U0 and

deg(I − T ,U0, 0) = 1.

We first prove that
deg(I − z0,U0, 0) = 1.

It suffices to show that z0 belongs to U0. The condition ‖∇z0‖∞ < 1− ϑa is satisfied
by the definition of ϑa. It remains to prove that z0 � α̃ in Ω̄. Since z0 ≥ 0 in Ω and
α̃(x) < 0 for all x ∈ Ω̄ \ B̄, we only need to verify that z0(x) > α(x) for all x ∈ B̄.
Since z0 � 0 in Ω̄, we have min

B̄
z0 > 0. Moreover, as λa1α

p1 ≤ v0 in B by (a1), we

get, by Lemma 2.1,
α(x) ≤ z0(x)−min

∂B
z0 < z0(x),
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for all x ∈ B̄.
Next we consider the homotopy H : [0, 1]× D̄ → C1

0 (Ω̄) defined by

H(t, u) = K
(
tN (u) + (1− t)v0

)
.

By the properties of the operators K and N , H is completely continuous. Observe
that

H(0, u) = z0 and H(1, u) = T (u),

for all u ∈ D̄. Fix now t ∈ [0, 1] and suppose that u ∈ Ū0 is a fixed point of H(t, ·).
We will prove that u ∈ U0. Since u is a fixed point of H(t, ·), u is a solution of{

−div
(
∇u/

√
1− |∇u|2

)
= tλā(x, u,∇u) + (1− t)v0 in Ω,

u = 0 on ∂Ω.

Observe that
tλā(x, s, ξ) + (1− t)v0(x) ≥ 0

for a.e. x ∈ Ω, all s ∈ [−1
2d(Ω), 0] and all ξ ∈ B̄1(0). Arguing as in Step 1, we see

that u ≥ 0 in Ω. Moreover, as

tλā(·, u,∇u) + (1− t)v0 > 0

in B, by Lemma 2.5 we deduce that

min
B̄

u > 0. (21)

Let us prove that u � α̃ in Ω̄. As above we observe that, since u ≥ 0 in Ω and
α̃(x) < 0 for all x ∈ Ω̄ \ B̄, we only need to verify that u(x) > α(x) for all x ∈ B̄.
Note that, using (a1) and u ∈ Ū0, we have

tλā(·, u,∇u) + (1− t)v0 ≥ tλa1u
p1 + (1− t)λā

(
·, α,∇α

)
≥ λa1α

p1

in B. Applying Lemma 2.1 and recalling (21), we get

α(x) ≤ u(x)−min
∂B

u < u(x)

for all x ∈ B̄.
Furthermore, as

‖tλā(·, u,∇u) + (1− t)v0‖∞ ≤ Λa,

Lemma 2.2 yields
‖∇u‖∞ < 1− ϑa.

In conclusion, u ∈ U0. The homotopy invariance of the degree implies that

deg(I − T ,U0, 0) = deg(I − z0,U0, 0) = 1.
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This concludes the proof of the claim.

Therefore, for every λ > 0, there exists a non-trivial fixed point u of the operator
T in U0, i.e., there exists a positive solution u of (18) satisfying u� α̃ in Ω̄.

Step 3. Proof of (ii). The proof is essentially the same as the proof of (i) in Step 2.
Take λ = 0 and µ > 0. Assume (h1), (h2), (b1) and (b2). For sake of simplicity, the
operators N0,µ and T0,µ will be denoted simply by N and T , respectively. Set

Λb = µ‖b̄‖∞

and let ϑb ∈ ]0, 1[ be the constant ϑb = ϑ introduced in Lemma 2.2, with Λ = Λb.
Let us consider the Dirichlet problem{

−div
(
∇u/

√
1− |∇u|2

)
= µb1u

q1 in B,

u = 0 on ∂B,
(22)

with B, b1 and q1 defined in (b1). Again, we can suppose that B̄ ⊂ Ω. By Proposi-
tion 2.7 there exists a constant µ∗ > 0 such that, for any µ > µ∗, problem (22) has
at least one solution α1 ∈ C2(B̄) satisfying α1 � 0 in B̄ and ‖α1‖∞ ≤ 1

2d(Ω). As in
Step 2, we extend α1 to a function α̃1 ∈ C1(Ω̄) satisfying ‖∇α̃1‖∞ ≤ 1 and

−1
2d(Ω) < α̃1(x) < 0

for all x ∈ Ω̄ \ B̄. We define the open bounded set

U1 = {u ∈ C1
0 (Ω̄) : u� α̃1, ‖∇u‖∞ < 1− ϑb}

and v1 ∈ L∞(Ω) by setting, for a.e. x ∈ Ω,

v1(x) = µb̄
(
x, α̃1(x),∇α̃1(x)

)
.

The proof continues exactly as in Step 2, by showing that T has no fixed points on
∂U1 and

deg(I − T ,U1, 0) = 1.

Therefore we conclude that, for all µ > µ∗, there exists a non-trivial fixed point u of
T in U1, i.e., there exists a positive solution u of (18) satisfying u� α̃1 in Ω̄.

Step 4. Proof of (iii). Take λ = 0 and µ > 0. Assume (h1), (h2), (b1), (b2) and
(b3). Note that (b1) and (b3) together imply q1 > 1. As in Step 3, the operators N0,µ

and T0,µ will be denoted simply by N and T , respectively. Let µ∗ be the constant,
whose existence was proved in Step 3, such that problem (18) has at least one positive
solution for all µ > µ∗. Fix µ > µ∗ and let u1 ∈ U1 be a corresponding solution. Let
us prove the existence of a second positive solution.

For each r > 0 we set

Ur2 = {u ∈ C1
0 (Ω̄) : ‖u‖∞ < r, ‖∇u‖∞ < 1− ϑb},
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with ϑb defined in Step 3.

Claim. There exists r̂ > 0 such that, for each r ∈ ]0, r̂], T has no fixed points on ∂Ur2
and

deg
(
I − T ,Ur2 , 0

)
= 1.

Consider the homotopy H : [0, 1]× D̄ → C1
0 (Ω̄) defined by

H(t, u) = K
(
tN (u)

)
.

By the properties of the operators K and N , H is completely continuous. We have

H(0, u) = 0 and H(1, u) = T (u),

for all u ∈ D̄. Fix t ∈ [0, 1] and suppose that u ∈ Ūr2 is a fixed point of H(t, ·). We
will prove that u ∈ Ur2 . Since u is a fixed point of H(t, ·), u is a solution of{

−div
(
∇u/

√
1− |∇u|2

)
= tµb̄(x, u,∇u) in Ω,

u = 0 on ∂Ω.
(23)

Multiplying the equation in (23) by u and integrating by parts, we obtain by (b3)

‖∇u‖2L2 ≤
∫

Ω

∇u · ∇u√
1− |∇u|2

dx =
∫

Ω
tµb̄(x, u,∇u)u dx

≤ µb2
∫

Ω
|u|q2+1 dx ≤ µb2rq2−1

∫
Ω
u2 dx ≤ µb2cP rq2−1 ‖∇u‖2L2 ,

where cP > 0 is the Poincaré constant. Hence there exists r̂ > 0 sufficiently small such
that, for every r ∈ ]0, r̂], we have ‖∇u‖L2 = 0 and therefore u = 0. The homotopy
invariance of the degree implies that

deg(I − T ,Ur2 , 0) = 1.

This concludes the proof of the claim.

We finally set
U3 = {u ∈ C1

0 (Ω̄) : ‖∇u‖∞ < 1− ϑb}.

Using the definition of ϑb and arguing as above, we easily see that

deg(I − T ,U3, 0) = 1.

Let us fix r ∈ ]0,min{‖α̃1‖∞, r̂}], with α̃1 defined in Step 3. Notice that the sets U1

and Ur2 previously defined are disjoint and both contained in U3. Let us define

Wr = U3 \ (U1 ∪ Ur2 ).
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As T has no fixed point in ∂U1 ∪ ∂Ur2 ∪ ∂U3, by the excision and the additivity
properties of the degree, we have

deg(I − T ,U3, 0) = deg(I − T ,U3 \ (∂U1 ∪ ∂Ur2 ), 0)
= deg(I − T ,U1, 0) + deg(I − T ,Ur2 , 0) + deg(I − T ,Wr, 0)

and hence
deg(I − T ,Wr, 0) = −1.

In particular, there exists a fixed point u2 of T such that ‖u2‖∞ > r and for which
the condition u2 � α̃1 in Ω̄ does not hold. Therefore u2 is a positive solution of
(18) which differs from u1. We conclude that, for all µ > µ∗, there exist at least two
positive solutions of (18).

Step 5. Proof of (iv). Take λ > 0 and µ > 0. Assume (h1), (h2), (a1), (a2), (a3), (b1),
(b2) and (b3), B denoting the same ball in (a1) and (b1). Suppose also that B̄ ⊂ Ω.
As already noticed in Step 4, we have q1 > 1. Let µ∗ be the constant, introduced in
Step 3, such that problem (18), with λ = 0, has at least one positive solution for all
µ > µ∗. Fix µ > µ∗, set

Λ = ‖ā‖∞ + µ‖b̄‖∞
and let ϑ ∈ ]0, 1[ be the constant introduced in Lemma 2.2. Let us take an open ball
B2, with B̄2 ⊂ B, and consider, for λ ∈ ]0, 1], the Dirichlet problem{

−div
(
∇u/

√
1− |∇u|2

)
= λa1u

p1 in B2,

u = 0 on ∂B2.
(24)

By Proposition 2.7 there exists a solution αλ2 ∈ C2(B̄2) of (24) satisfying αλ2 � 0 in
B̄2 and ‖αλ2‖∞ ≤ 1

2d(Ω).
Fix r > N and denote by c′0 > 0 the constant, dependent on Λ, B2 and r, whose

existence follows from Lemma 2.2, with O = B2, such that

‖u‖∞ ≤ c′0‖v‖∞

holds for all v ∈ L∞(B2) satisfying ‖v‖∞ ≤ Λ. Similarly, denote by c′′0 > 0 the
constant, dependent on Λ, Ω and r, whose existence follows from Lemma 2.2, with
O = Ω, such that

‖u‖∞ ≤ c′′0‖v‖∞
holds for any v ∈ L∞(Ω) satisfying ‖v‖∞ ≤ Λ. Set

c1 = Λ max{c′0, c′′0}

and
rλ = λ(c1 + 1).
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Observe that, since by (a1)
‖a1(αλ2)p1‖∞ ≤ Λ,

we have
‖αλ2‖∞ ≤ c′0Λλ ≤ c1λ.

As in Step 3, let α1 be a solution of the Dirichlet problem{
−div

(
∇u/

√
1− |∇u|2

)
= µb1u

q1 in B,

u = 0 on ∂B.

Since α1 � 0 in B̄, we have min
B̄2

α1 > 0. Therefore we can take λ̄ ∈ ]0, 1] such that,

for all λ ∈ ]0, λ̄[,
rλ < min

B̄2

α1.

For all λ ∈ ]0, λ̄[ we extend α1 to a function α̃λ1 ∈ C1(Ω̄) and αλ2 to a function
α̃λ2 ∈ C1(Ω̄) such that ‖∇α̃λ1‖∞ ≤ 1, ‖∇α̃λ2‖∞ ≤ 1,

‖α̃λ2‖L∞(Ω) ≤ rλ,

−1
2d(Ω) < α̃λ2(x) < α̃λ1(x) < 0

for all x ∈ Ω̄ \ B̄ and
−1

2d(Ω) < α̃λ2(x) < 0

for all x ∈ B̄ \ B̄2.
We define, for every λ ∈ ]0, λ̄[, the open bounded sets

Vλ1 = {u ∈ C1
0 (Ω̄) : u� α̃λ1 , ‖∇u‖∞ < 1− ϑ}

and
Vλ2 = {u ∈ C1

0 (Ω̄) : u� α̃λ2 , ‖u‖∞ < rλ, ‖∇u‖∞ < 1− ϑ}.

We also set, for a.e. x ∈ Ω,

vλ1 (x) = µb̄
(
x, α̃λ1(x),∇α̃λ1(x)

)
and

vλ2 (x) = λā
(
x, α̃λ2(x),∇α̃λ2(x)

)
.

For every λ ∈ ]0, λ̄[ let zλ1 be the solution of the Dirichlet problem{
−div

(
∇u/

√
1− |∇u|2

)
= vλ1 in Ω,

u = 0 on ∂Ω.
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Arguing as in the Claim of Step 2, we easily verify that Tλ,µ has no fixed points on
∂Vλ1 and

deg(I − Tλ,µ,Vλ1 , 0) = 1.

For every λ ∈ ]0, λ̄[ let zλ2 be the solution of the Dirichlet problem{
−div

(
∇u/

√
1− |∇u|2

)
= vλ2 in Ω,

u = 0 on ∂Ω.

Claim. There exists λ(µ) ∈ ]0, λ̄] such that, for all λ ∈ ]0, λ(µ)[, Tλ,µ has no fixed
points on ∂Vλ2 and

deg(I − Tλ,µ,Vλ2 , 0) = 1.

We first prove that
deg(I − zλ2 ,Vλ2 , 0) = 1.

It suffices to show that zλ2 ∈ Vλ2 . Arguing as in Step 2, we easily see that ‖∇zλ2 ‖∞ <
1− ϑ and zλ2 � αλ2 in Ω̄. Furthermore we have, as remarked above,

‖zλ2 ‖∞ ≤ c′′0Λλ ≤ c1λ < rλ.

Next we consider the homotopy H : [0, 1]× D̄ → C1
0 (Ω̄) defined by

H(t, u) = K
(
tNλ,µ(u) + (1− t)vλ2

)
.

By the properties of the operators K and Nλ,µ, H is completely continuous. Observe
that

H(0, u) = zλ2 and H(1, u) = Tλ,µ(u),

for all u ∈ D̄.
Fix now t ∈ [0, 1] and suppose that u ∈ V̄λ2 is a fixed point of H(t, ·). We will

prove that u ∈ Vλ2 . Arguing as in Step 2 we easily verify that u ≥ 0 in Ω and

min
B̄2

u > 0. (25)

Let us prove that u � α̃λ2 in Ω̄. Since u ≥ 0 in Ω and α̃λ2(x) < 0 for all x ∈ Ω̄ \ B̄2,
we only need to verify that u(x) > αλ2(x) for all x ∈ B̄2. Note that

tf̄(·, u,∇u) + (1− t)vλ2 ≥ tλa1u
p1 + (1− t)λā

(
·, αλ2 ,∇αλ2

)
≥ λa1(αλ2)p1

in B2. Applying Lemma 2.1 and recalling that (25) holds, we get

αλ2(x) ≤ u(x)−min
∂B2

u < u(x)

for all x ∈ B̄2.
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Furthermore, as ∥∥∥tf̄(·, u,∇u) + (1− t)vλ2
∥∥∥
∞
≤ Λ,

Lemma 2.2 yields
‖∇u‖∞ < 1− ϑ.

Finally, we verify that ‖u‖∞ < rλ if λ is sufficiently small. Since both

‖u‖∞ ≤ rλ

and
‖α̃λ2‖L∞(Ω) ≤ rλ

hold, we have

tf̄(·, u,∇u) + (1− t)vλ2 ≤ t
(
λa2‖u‖p2∞ + µb2‖u‖q2∞

)
+ (1− t)λa2‖α̃λ2‖p2∞

≤ t
(
a2(c1 + 1)p2λp2+1 + µb2(c1 + 1)q2λq2

)
+ (1− t)a2(c1 + 1)p2λp2+1

≤ a2(c1 + 1)p2λp2+1 + µb2(c1 + 1)q2λq2 ≤ c2λ
1+ε

in Ω, where c2 > 0 is a constant independent of λ and ε = min{p2, q2 − 1}. Applying
Lemma 2.4, we obtain

‖u‖∞ ≤ c3λ
1+ε,

where c3 > 0 is a constant independent of λ. Let λ(µ) ∈ ]0, λ̄[ be such that λ(µ) ≤(
c1+1
c3

) 1
ε . Then, for each λ ∈ ]0, λ(µ)[, the inequality ‖u‖∞ < rλ holds and, hence,

u ∈ Vλ2 . The homotopy invariance of the degree implies then that

deg(I − Tλ,µ,Vλ2 , 0) = 1.

This concludes the proof of the claim.

Observe that Vλ1 and Vλ2 are disjoint because of the choice of λ. Therefore problem
(18) has at least two positive solutions u1 and u2, such that u1 � α̃λ1 and ‖u2‖∞ < rλ.
To conclude the proof we define, for all λ ∈ ]0, λ(µ)[,

Vλ3 = {u ∈ C1
0 (Ω̄) : u� α̃λ2 , ‖∇u‖∞ < 1− ϑ}.

We also set
Wλ = Vλ3 \ (Vλ1 ∪ Vλ2 ).

Fix λ ∈ ]0, λ(µ)[. Arguing as in the first part of the previous claim, we easily verify
that

deg(I − Tλ,µ,Vλ3 , 0) = 1.

By the excision and the additivity properties of the degree, we obtain

deg(I − Tλ,µ,Wλ, 0) = −1.
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In particular, there exists a fixed point u3 of Tλ,µ such that ‖u3‖∞ > rλ and for which
the condition u3 � α̃λ1 in Ω̄ does not hold. Therefore u3 is a positive solution of (18)
which differs both from u1 and from u2. We conclude that, for every µ > µ∗ and all
λ ∈ ]0, λ(µ)[, problem (18) has at least three positive solutions.

Remark 3.1 Assume (h1), (h2) and

(b4) there exists b3 > 0 such that b(x, s, ξ) ≥ −b3s for a.e. x ∈ Ω, all s ∈ [0, 1
2d(Ω)]

and all ξ ∈ B̄1(0).

Let u be a positive solution of the problem{
−div

(
∇u/

√
1− |∇u|2

)
= µb(x, u,∇u) in Ω,

u = 0 on ∂Ω,
(26)

for some µ > 0. Then u is strictly positive. Indeed, rewrite the equation in (26) as

−div
(
∇u/

√
1− |∇u|2

)
+ ku = µb(x, u,∇u) + ku

with k = µb3 +1. As the right-hand side of the equation is positive, Lemma 2.6 yields
the conclusion.

The following non-existence result for problem (26) holds.

Proposition 3.2. Assume (h1), (h2) and

(b5) there exists b4 > 0 such that b(x, s, ξ) ≤ b4s for a.e. x ∈ Ω, all s ∈ [0, 1
2d(Ω)]

and all ξ ∈ B̄1(0).

Then there exists µ∗ > 0 such that, for every µ ∈ ]0, µ∗[, problem (26) has no positive
solutions.

Proof. Let u be a positive solution of (26) for some µ > 0. Multiplying the equation
in (26) by u and integrating by parts, we easily obtain by (b5)

‖∇u‖2L2 ≤ µb4
∫

Ω
u2 dx ≤ µb4cP ‖∇u‖2L2 ,

where cP > 0 is the Poincaré constant. This implies that µ ≥ (b4cP )−1.
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