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Abstract

We study asymptotically positively homogeneous first order systems in the

plane, with boundary conditions which are positively homogeneous, as well.

Defining a generalized concept of Fuč́ık spectrum which extends the usual one

for the scalar second order equation, we prove existence and multiplicity of

solutions. In this way, on one hand we extend to the plane some known results

for scalar second order equations (with Dirichlet, Neumann or Sturm-Liouville

boundary conditions), while, on the other hand, we investigate some other

kinds of boundary value problems, where the boundary points are chosen on

a polygonal line, or in a cone. Our proofs rely on the shooting method.

1 Introduction

In his pioneering paper [23], Svatopluk Fuč́ık provided, in 1976, a first approach

to the study of the Dirichlet problem associated with a second order differential

equation with a nonlinearity of asymmetric type. He considered the model{
x′′ + µx+ − νx− + g(x) = e(t)

x(0) = 0 = x(T ),
(1)

where µ, ν are real parameters, x+ = max{x, 0}, x− = max{−x, 0}, and g : R→ R,

e : [0, T ] → R are continuous functions. In [23, Lemma 2.8], he defined the set Σ

which is now known as the Fuč́ık spectrum, whose elements are the pairs (µ, ν) for

which there is a nontrivial solution to the positively homogeneous problem{
x′′ + µx+ − νx− = 0

x(0) = 0 = x(T ).
(2)

The set Σ is well known in this case, and can be explicitly computed. As shown in

Figure 1, it is the union of a sequence of curves in the plane. Assuming g(x) to have

a sublinear growth, Fuč́ık then proved, in [23, Theorem 2.11], an existence result

for (1), provided that (µ, ν) belongs to some “nonresonance regions” determined by
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Figure 1: The Fuč́ık spectrum for (2), with T = π.

the set Σ. These regions are precisely the connected components of R2 \ Σ which

have nonempty intersection with the diagonal (in Figure 1, they are indicated by

the symbol ∃ ; not to be misunderstood, the diagonal has been drawn only to show

the symmetry of Σ, and does not belong to it. The same will be true for Figures 3,

4, 7, and 9).

This kind of result has been developed and generalized in several directions.

Starting with Dancer [7], different types of boundary conditions were considered,

such as the Neumann or the periodic ones (see also, e.g., [13, 15, 18]). Sturm-

Liouville boundary conditions of the type

ax(0) + bx′(0) = 0 = cx(T ) + dx′(T )

were considered, as well (we refer, for instance, to [11, 28, 34, 35]). The notion of

Fuč́ık spectrum naturally extends to these cases.

There is also a large literature about possible generalizations to partial differ-

ential operators (see, for instance, [9, 24]), but, for the sake of briefness, we prefer
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not entering into this subject.

As observed in [19], when µ, ν > 0, the scalar equation x′′+µx+− νx− = 0 can

be included in the more general framework of planar systems of the type

Ju′ = ∇H(u),

where J =
(

0 −1

1 0

)
is the standard symplectic matrix, and the C1-Hamiltonian

function H : R2 → R is positive and positively homogeneous of degree 2, i.e.,

0 < H(λu) = λ2H(u), for every λ > 0, u ∈ R2 \ {0}. (3)

For such kind of systems, the origin is an isochronous center, i.e., there exists τ > 0

such that all the nontrivial solutions to Ju′ = ∇H(u) wind the origin and are

periodic with minimal period τ . In [19], an existence result was given for the T -

periodic problem associated with the system Ju′ = ∇H(u) + f(t), assuming that

τ is not a submultiple of T (see also [16, 20, 21]). This fact agrees with the usual

picture for the scalar periodic problem, when it is sufficient to assume that (µ, ν)

does not belong to the Fuč́ık spectrum in order to avoid resonance.

The situation for the Dirichlet problem, or, more generally, for Sturm-Liouville

boundary value problems, is substantially different from the periodic case. In the

Dirichlet case, as already noticed in [8, Proposition 1], if µ, ν > 0, it is not sufficient

that the pair (µ, ν) does not belong to the Fuč́ık spectrum to guarantee the existence

of a solution to x′′+µx+−νx− = e(t) satisfying the boundary conditions, but some

regions between the Fuč́ık curves must also be avoided (see Section 3 for further

details).

In this paper, we consider a planar system of the type

Ju′ = ∇H(u) +R(t, u), (4)

together with some boundary conditions including the Sturm-Liouville ones. Here,

H(u) satisfies (3) and R : [0, T ]× R2 → R2 is a continuous function. As a starting

point, we want to generalize to this setting the nonresonance conditions introduced

by Fuč́ık in [23], following the scheme proposed in [19] for the periodic problem.

Concerning the boundary conditions, in view of the positive homogeneity of

H(u), it seems a natural choice to take the boundary points in some cones. Pre-

cisely, we fix a “starting” cone CS and an “arrival” cone CA, and consider (4),

together with the conditions

u(0) ∈ CS , u(T ) ∈ CA.

To the best of our knowledge, such a general setting has not been dealt with yet

in literature, referring to planar positively homogeneous systems. In this way, not
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only we include in our study the Dirichlet problem (also known as “Bolza problem”

in this framework), as well as the Neumann or the Sturm-Liouville ones, but we

can also deal with some kind of nonlinear boundary conditions.

Incidentally, we remark that boundary conditions of Sturm-Liouville type for

planar systems have been considered, e.g, in [36], while, as reviewed in [32], nonlin-

ear boundary conditions for second order scalar equations were already considered

in [1, 2, 14, 17, 25, 31], where the upper and lower solutions method was developed.

We briefly summarize the content of the present article. In Section 2, we will

state a general existence result under a suitable abstract nonresonance condition,

which will be particularized in Section 3, concerning Sturm-Liouville boundary

conditions, and in Section 4, for what we call the “polygonal problem”. This last

situation corresponds to taking the starting and the arrival cones as the gluing of

two half-lines generating from the origin, instead of straight lines. Accordingly, we

will give some examples for the scalar problem, examining in details the associated

Fuč́ık spectra. Contrarily to the case of linear boundary conditions, for which

the Fuč́ık spectrum is symmetric (i.e., (µ, ν) ∈ Σ if and only if (ν, µ) ∈ Σ), this

symmetry disappears when the boundary conditions are nonlinear (see Figures 7

and 9 in Section 4, where some unusual patterns appear).

The main tool in the proof of our existence results is the well-known shooting

method. Since the uniqueness for the Cauchy problems associated with (4) is not

a priori guaranteed, we need to approximate the continuous function R(t, u) with

more regular functions, and then follow a limit procedure.

In the second part of the article, we concentrate on the problem of multiplicity

of solutions. Two different situations are analyzed: in Section 5, in the case when

the origin is a stationary point, we assume a different asymptotic behavior of the

nonlinearity at zero and at infinity. Similar problems have been considered by

many authors (for the periodic problem, for instance, see [3, 4, 30]; for the Dirichlet

problem, we refer, e.g., to [6, 12, 27, 33]). Under these assumptions, the number of

solutions found usually depends on how large is the gap between zero and infinity

(see Theorem 5.2 below). In Section 6, on the other hand, we consider a problem in

dependence of a real parameter. Our main aim is to generalize a theorem by Hart,

Lazer and McKenna [26, Theorem 1], concerning the scalar second order equation.

In this setting, we need to consider linear boundary conditions, in order to exploit

a technique, based on a suitable change of variable, which allows to reformulate the

problem so as to obtain some kind of gap between the rotation numbers of “small”

and “large” solutions. Multiple solutions are then found for large values of the

real parameter. For the periodic problem, results in this spirit were obtained, for

instance, in [10, 22, 29, 37].
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2 A semi-abstract result on cones

Let us denote by P the set of the C1-functions H : R2 → R, with locally Lipschitz

continuous gradient, which are positively homogeneous of degree 2 and positive,

i.e., satisfying (3). As already remarked in the Introduction, if H ∈ P, then there

exists τ > 0 such that all the nontrivial solutions to Ju′ = ∇H(u) are periodic with

minimal period τ . The orbits of such a system, moreover, are star-shaped Jordan

curves around the origin, on which the motion is performed clockwise. Notice that,

setting ζθ = {(ρ cos θ, ρ sin θ) | ρ ≥ 0}, for any θ ∈ R, if α, β are real constants such

that α ≤ β < α + 2π, the time needed by a nontrivial solution to Ju′ = ∇H(u),

starting from the ray ζβ, to reach the ray ζα, is given by∫ β

α

dθ

2H(cos θ, sin θ)
. (5)

Thus, such a time is independent of the starting point on the ray ζβ, thanks to

the positive homogeneity of H(u), and this will often be exploited throughout the

paper.

With these preliminaries, we now deal with a planar system of the kind

Ju′ = ∇H(u) +R(t, u),

where H ∈ P and R : [0, T ] × R2 → R2 is continuous. Wishing to consider some

kind of nonlinear boundary conditions, it will be natural to choose the boundary

points in a cone, in view of the positive homogeneity of H(u).

Thus, let us first specify what we mean by an admissible cone in the plane.

Definition 2.1. A nonempty closed subset C of R2 is a cone if

[u ∈ C and κ ≥ 0] =⇒ κu ∈ C.

We say that a cone C is admissible if R2 \ C is disconnected.

For every ū ∈ R2, let us denote by u(· ; ū) the solution to{
Ju′ = ∇H(u)

u(0) = ū,
(6)

which is unique and globally defined, since H ∈ P. We define the continuous

function F : R2 → R2 by

F(ū) = u(T ; ū). (7)

It is clear that, if C is a cone, then F(C) is also a cone, since, by homogeneity,

u(· ;κū) = κu(· ; ū), for every κ ≥ 0.
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We now fix two cones CS and CA (the “starting” and the “arrival” cones) and

consider the boundary value problem{
Ju′ = ∇H(u) +R(t, u)

u(0) ∈ CS , u(T ) ∈ CA.
(8)

Let us state our main abstract result.

Theorem 2.2. Let the following assumption hold:

(A) The cone CA is admissible and F(CS) has a nonempty intersection with at

least two different connected components of R2 \ CA.

If, moreover,

lim
|u|→+∞

R(t, u)

|u|
= 0, uniformly in t ∈ [0, T ], (9)

then problem (8) is solvable.

Proof. In view of assumption (A), there exist ū1, ū2 ∈ CS\{0} such that their images

under the map F defined in (7) belong to two different connected components

W1,W2 of R2\CA. Let (Rn)n be a sequence of locally Lipschitz continuous functions

Rn : [0, T ]×R2 → R2 such that Rn(t, u)→ R(t, u) uniformly for (t, u) ∈ [0, T ]×R2.

We consider, for λ ≥ 1, the Cauchy problems{
Ju′ = ∇H(u) +Rn(t, u)

u(0) = λū1 .
(10)

Setting v(t) = 1
λu(t), system (10) is equivalent to the following: Jv′ = ∇H(v) +

Rn(t, λv)

λ
v(0) = ū1 .

(11)

We denote by vλ,n(· ; ū1) the solution to (11). By (9) and the uniform convergence

of Rn(t, u) to R(t, u), we have that

Rn(t, λv)

λ
→ 0, as λ→ +∞ and n→ +∞,

uniformly in t ∈ [0, T ] and v in any compact subset of R2. By continuous depen-

dence, cf. [5] , for every fixed η > 0, there are λ and n sufficiently large such

that

|vλ,n(t; ū1)− u(t; ū1)| ≤ η,

for every t ∈ [0, T ]. SinceW1 is open and u(T ; ū1) ∈ W1, taking η sufficiently small

there exist some sufficiently large λ∗ ≥ 1 and n∗ ≥ 1 such that vλ,n(T ; ū1) belongs
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to W1 for every λ ≥ λ∗ and n ≥ n∗. Analogously, enlarging λ∗ and n∗ if necessary,

we will have that vλ,n(T ; ū2) ∈ W2 for every λ ≥ λ∗ and n ≥ n∗, with the analogous

convention in the notation.

We now fix λ = λ∗ and use the notation vn(t; ū) = vλ∗,n(t, ū). We consider the

continuous path γ : [0, 1]→ CS defined by

γ(s) =

{
(1− 2s)ū1 if s ∈

[
0, 1

2

]
(2s− 1)ū2 if s ∈

[
1
2 , 1
]
.

By continuous dependence on the initial data, the map s 7→ vn(T ; γ(s)) is contin-

uous, for every n ≥ n∗; moreover, vn(T ; γ(0)) ∈ W1 and vn(T ; γ(1)) ∈ W2. Since

CA separates W1 and W2, by continuity this implies that, for every n ≥ n∗, there

exists s∗n such that vn(T ; γ(s∗n)) ∈ CA.

Let un(t) = λ∗vn(t; γ(s∗n)). By the above arguments, (un)n is uniformly bounded.

Passing to a subsequence, we can assume that s∗n → s∗ for some s∗ ∈ [0, 1]. On

the other hand, as un(t) solves the differential equation in (10), we have that (u′n)n
is also uniformly bounded, so that, by Ascoli-Arzelà Theorem, there is a subse-

quence (unk
)k which uniformly converges to some continuous function û(t). Then,

û(0) = γ(s∗) ∈ CS and, passing to the limit in

unk
(t) = unk

(0)− J
∫ t

0
(∇H(unk

(r)) +Rnk
(r, unk

(r))) dr,

we have that û(t) is a solution to the differential equation in (8). Since CA is closed

and un(T ; γ(s∗n)) ∈ CA, being

û(T ) = lim
n→+∞

un(T ; γ(s∗n)),

we have that û(T ) ∈ CA. The proof is thus completed.

As an immediate corollary, under assumption (A) we have existence in the case

when the function R(t, u) appearing in (8) does not depend on u. This fact reminds

a classical feature of nonresonance for the forced system{
Ju′ = ∇H(u) + e(t)

u(0) ∈ CS , u(T ) ∈ CA.

Remark 2.3. The approximation process used above could have been avoided

using the shooting approach without uniqueness developed in [6, Section 2].

3 The planar Sturm-Liouville boundary value problem

We now want to examine how assumption (A) can be rephrased in a more concrete

way, when taking the boundary points on two straight lines in the plane (so that we
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consider Sturm-Liouville boundary conditions). To this aim, fix two lines passing

through the origin, say lS and lA.

Let us follow a nontrivial solution u(t) to the equation Ju′ = ∇H(u), for which

it will be u(t) 6= 0 for every t ∈ R, in view of the uniqueness. Starting from the

vertical positive semi-axis and moving clockwise, at some nonnegative time instant

t0 such a solution will arrive at a point u1 in lS (see Figure 2). We denote by τ1

the least positive time needed by u(t) to arrive at a point u2 in lA, starting from

u1, and, correspondingly, we denote by θ1 the angular width covered in the time

τ1. Continuing in covering the orbit described by u(t), we define σ1 as the least

nonnegative time needed to encounter again lS , starting from u2, and, accordingly,

we denote by θ2 the angular width spanned in the time τ2. In the same way,

we define τ2 as the positive time needed to arrive once more on lA and σ2 as the

remaining nonnegative time to complete a whole revolution (see Figure 2 to visualize

such definitions). In this way, τ = τ1 + σ1 + τ2 + σ2 (and 2θ1 + 2θ2 = 2π). It is

important to underline that, in view of (5), the times τ1, τ2, σ1, σ2 are well-defined

and independent of the choice of u(t); moreover, if the lines lS and lA coincide, then

σ1 = σ2 = 0, θ1 = π and θ2 = 0.

x

y

u(t)

lS

lS

lA

lA

u1 = u(t0) = u(t0 + τ)

u2 = u(t0 + τ1)
u3 = u(t0 + τ1 + σ1)

u4 = u(t0 + τ1 + σ1 + τ2)

Figure 2: Following a solution u(t) to define the times τ1, σ1, τ2, σ2.

We are interested in a nonlinear boundary value problem of the kind{
Ju′ = ∇H(u) +R(t, u)

u(0) ∈ lS , u(T ) ∈ lA,
(12)
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where H ∈ P and R(t, u) is a continuous function. We will prove the following

theorem.

Theorem 3.1. Let R(t, u) satisfy the sublinear growth condition (9), and assume

that there exists a nonnegative integer k such that one of the following nonresonance

assumptions holds: either

(k − 1)τ + τ1 + τ2 + max{σ1, σ2} < T < kτ + min{τ1, τ2}, (13)

or

kτ + max{τ1, τ2} < T < kτ + τ1 + τ2 + min{σ1, σ2}. (14)

Then, problem (12) has a solution.

Proof. Setting CS = lS and CA = lA, we have to prove that assumption (A) holds,

so to apply Theorem 2.2.

We focus on the case when condition (13) is assumed. Consider a nontrivial solution

u(t) = u(t; ū) to the Cauchy problem{
Ju′ = ∇H(u)

u(0) = ū ∈ lS ,

and the corresponding function F : R2 → R2 defined in (7). Using polar coordi-

nates, we can write u(t) = ρ(t)(cos θ(t), sin θ(t)), for some continuously differen-

tiable functions ρ(t) > 0, θ(t) ∈ R. Hence,

−θ′ = 2H(cos θ, sin θ),

yielding ∫ θ(0)

θ(T )

dθ

2H(cos θ, sin θ)
= T.

By (13) and the definition of θ1 and θ2, we get

2(k − 1)π + θ1 + θ2 + θ1 < θ(0)− θ(T ) < 2kπ + θ1,

so that, since θ1 + θ2 = π,

π < θ(0)− θ(T )− 2(k − 1)π − θ1 < 2π.

Hence, following the solution u(t) when t varies from 0 to T , we cover an angular

width greater than (2k − 1)π + θ1 and smaller than 2kπ + θ1, where θ1 has been

defined above. It follows that the points F(ū) and F(−ū) lie in two different

connected components of R2 \ lA.

In the case when (14) is assumed, we analogously get

0 < θ(0)− θ(T )− 2kπ − θ1 < π,

giving the conclusion with a similar argument.
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In order to clarify the assumptions of Theorem 3.1, let us make some consider-

ations about the autonomous problem{
Ju′ = ∇H(u)

u(0) ∈ lS , u(T ) ∈ lA,
(15)

for H ∈ P. It follows directly from the above definitions that such a problem has

a nontrivial solution if and only if, for some nonnegative integer k,

T − kτ ∈ {τ1, τ2, τ1 + σ1 + τ2, τ2 + σ2 + τ1}. (16)

We thus denote by S the set of those H ∈ P for which there exists a nonnegative

integer k such that (16) holds. The set S generalizes to the plane the classical

notion of Fuč́ık spectrum, which was originally introduced for the equation

x′′ + µx+ − νx− = 0, (17)

being µ, ν positive parameters. In this case,

τ =
π
√
µ

+
π√
ν
, (18)

and the Fuč́ık spectrum is defined as the set Σ of the couples (µ, ν) such that the

Sturm-Liouville boundary value problem (15), with u = (x, x′) and

H(x, y) =
1

2
(y2 + µ(x+)2 + ν(x−)2), (19)

has nontrivial solutions.

For instance, in the particular case of the Dirichlet problem, where lS = lA =

{u = (x, y) ∈ R2 | x = 0}, we have σ1 = σ2 = 0, and

τ1 =
π
√
µ
, τ2 =

π√
ν
,

so that the Fuč́ık spectrum Σ can be easily computed (see [23]), giving rise to the

sequence of curves which has been depicted in Figure 1. On the other hand, in the

case of the Neumann problem, where lS and lA both coincide with the horizontal

axis, we have σ1 = σ2 = 0, and

τ1 = τ2 =
1

2

(
π
√
µ

+
π√
ν

)
=
τ

2
,

and also in this case the corresponding Fuč́ık spectrum can be easily determined.
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These two examples carry a substantial difference: while for Neumann boundary

conditions it is enough to assume that H ∈ P \ S in order to apply Theorem 3.1,

this is not the case for the Dirichlet problem, as shown in [8, Proposition 1]. In

particular, for the Dirichlet problem, we need the two stronger conditions (13) and

(14), namely either

kτ < T < kτ + min{τ1, τ2},

or

kτ + max{τ1, τ2} < T < (k + 1)τ.

Notice that these two assumptions also avoid the existence of T -periodic solutions

to (15), case which would give rise to resonance, as well, since lS = lA. As a conse-

quence of Theorem 3.1, we thus obtain Fuč́ık’s original result [23, Theorem 2.11].

We conclude the section with two pictures of the Fuč́ık spectra for the asym-

metric equation (17), referring, respectively, to the problems{
x′′ + µx+ − νx− = 0

x(0) = 0, x(T ) + x′(T ) = 0,

{
x′′ + µx+ − νx− = 0

x(0) + x′(0) = 0, x′(T ) = 0.

Using (5), it is readily seen that, in the first case, we have

τ1 =
π

2
√
µ

+
1
√
µ

arctan
1
√
µ
, σ1 =

π

2
√
µ
− 1
√
µ

arctan
1
√
µ
,

τ2 =
π

2
√
ν

+
1√
ν

arctan
1√
ν
, σ2 =

π

2
√
ν
− 1√

ν
arctan

1√
ν
.

In the second one, it is

τ1 =
τ

2
− 1
√
µ

arctan
1
√
µ
, σ1 =

1√
ν

arctan
1√
ν
,

τ2 =
τ

2
− 1√

ν
arctan

1√
ν
, σ2 =

1
√
µ

arctan
1
√
µ
.

Thus, in these two cases, condition (16) is quite easy to verify. Moreover, let us

observe the following qualitative difference: while in the first case the first curves of

the spectrum are two straight lines, parallel to the coordinate axes, like for Dirichlet

boundary conditions, in the second one such straight lines disappear (see Figure 4).

This is due to the fact that any solution of (15), with H(u) given by (19), has to

cross both the half-plane where x is positive and the one where x is negative.

As in the classical case introduced by Fuč́ık, the regions for which there exists a

solution are the connected components of R2 \Σ which have nonempty intersection

with the diagonal.
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Figure 3: The Fuč́ık spectrum for (17), with x(0) = 0, x(π) + x′(π) = 0.

4 The polygonal problem

In this section, we consider more general boundary conditions fitting in the setting

of Theorem 2.2. We choose, as the starting and the arrival cones, two polygonal

(piecewise linear) lines pS and pA which are the union of two half-lines emanating

from the origin. For simplicity, we will assume that 0 is the only point of intersection

of pS and pA. Obviously, each of these polygonal lines divides the plane into two

connected regions.

We want to study the boundary value problem{
Ju′ = ∇H(u) +R(t, u)

u(0) ∈ pS , u(T ) ∈ pA.
(20)

We need to consider two cases, depending on the mutual positions of pS and pA.

Case 1: the polygonal line pS crosses both the connected regions of the plane sep-

arated by pA. The situation is similar to the one in Section 3. As before, we follow

12



Figure 4: The Fuč́ık spectrum for (17), with x(0) + x′(0) = 0, x′(π) = 0.

a nontrivial solution u(t) to the equation Ju′ = ∇H(u), starting again from the

vertical positive semi-axis and moving clockwise. In this way, at some nonnegative

time instant t0, u(t) will arrive at a point u1 in pS , and we denote by τ1 the least

time needed by u(t) to arrive at a point u2 in pA, starting from u1. Continuing

in covering the orbit described by u(t), we then define σ1 as the least time needed

to encounter again pS , starting from u2, and, similarly, we define τ2 and σ2 as the

times needed to arrive once more on pA and pS . The only difference with the Sturm-

Liouville boundary value problem lies in the fact that the four angles determined by

the intersection of pS and pA will all be different, in general (see Figure 5). Aside

from such a difference, this case can be treated exactly as the previous one, so that

we have the following result.

Theorem 4.1. In the above configuration, the statement of Theorem 3.1 holds the

same for problem (20).

The proof can be done as for Theorem 3.1, except for the fact that, instead of the
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x

y

u(t)

pS

pS

pA

pA

u1 = u(t0) = u(t0 + τ)

u2 = u(t0 + τ1)u3 = u(t0 + τ1 + σ1)

u4 = u(t0 + τ1 + σ1 + τ2)

Figure 5: The situation described in Case 1.

antipodal points ū and −ū, one has to take two points on the two different half-lines

of pS . As one can expect, the picture concerning the Fuč́ık spectrum, in this case,

can be similar to the one of the Sturm-Liouville boundary value problem. However,

if the polygonal lines are chosen so as to mix the two situations briefly described

at the end of the previous section, some curious phenomena can appear. To give

an idea, let us consider the scalar asymmetric equation (17), with the boundary

conditions

{x′(0) = 0, x(0) ≥ 0} or {x(0) + x′(0) = 0, x(0) ≤ 0}, (21)

and

{x(T )− x′(T ) = 0, x′(T ) ≥ 0} or {x(T ) + x′(T ) = 0, x′(T ) ≤ 0}. (22)

We clarify such boundary conditions in Figure 6. The Fuč́ık spectrum is defined

exactly as in the previous section. Recalling (18), a direct computation gives, in

this case,

τ1 =
1
√
µ

arctan
1
√
µ
, σ1 =

τ

2
− 1
√
µ

arctan
1
√
µ

+
1√
ν

arctan
1√
ν
,

and

τ2 =
τ

2
− 1
√
µ

arctan
1
√
µ
− 1√

ν
arctan

1√
ν
, σ2 =

1
√
µ

arctan
1
√
µ
.
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u(t)
pA

pS

pA

pS

u1 = u(t0) = u(t0 + τ)

u2 = u(t0 + τ1)

u3 = u(t0 + τ1 + σ1)

u4 = u(t0 + τ1 + σ1 + τ2)

Figure 6: A “snapshot” of the boundary conditions (21), (22) for eq. (17).

We thus obtain, for the Fuč́ık spectrum Σ, the curves depicted in Figure 7; notice

the asymmetry coming from the fact that the four times τ1, σ1, τ2, σ2 are generally

not obtainable one from the other by simply exchanging µ and ν (as it is the case for

the Sturm-Liouville boundary value problem). The regions for which there exists a

solution are not so intuitively clear as in the classical case. Referring to Figure 7,

starting from the origin and proceeding along the diagonal, in R2 \Σ one enters the

existence regions alternatively, being them the first, the third, the fifth, . . . .

Case 2: the polygonal line pS is all contained (except for the origin) into only

one of the two connected regions of the plane separated by pA. Once again, we

follow a nontrivial solution u(t) to Ju′ = ∇H(u) starting from the vertical positive

semi-axis, but, to simplify the notation, it is convenient to proceed in a slightly

different way. We define τ̂1 as the least time needed by u(t) to start from pS
and arrive at pA moving clockwise. Assume that this has been done starting from

u1 ∈ pS and arriving at u2 ∈ pA, covering an angular width θ̂1. From there on, we

resume our path along the orbit, defining τ̂2 as the positive time to arrive again

on pA (at some point u3) starting from u2; we denote by θ̂2 the amplitude of the

corresponding angular region. We further define τ̂3 as the time to reach pS in a

point u4, starting at u3 (and θ̂3 as the angle covered in such a time), and τ̂4 as the

time to reach again pS , starting from u4 (and θ̂4 correspondingly). In view of the

15



Figure 7: The Fuč́ık spectrum for (17), with (21), (22), for T = π
2 .

mutual positions of pS and pA, it is guaranteed that τ̂1 + τ̂2 + τ̂3 + τ̂4 = τ ; on the

other hand, θ̂1 + θ̂2 + θ̂3 + θ̂4 = 2π. We depict this situation in Figure 8.

We now state the following result.

Theorem 4.2. Let R(t, u) satisfy the sublinear growth condition (9), and assume

that there exists a nonnegative integer k such that one of the following nonresonance

assumptions holds:

kτ + τ̂1 + max{τ̂2, τ̂4} < T < kτ + τ̂1 + τ̂2 + τ̂4, (23)

or

kτ + τ̂1 < T < kτ + τ̂1 + min{τ̂2, τ̂4}. (24)

Then, problem (20) has a solution.

Proof. We consider a nontrivial solution u(t) to the Cauchy problem{
Ju′ = ∇H(u)

u(0) = ū ∈ pS ,

16



x

y

u(t)

pA

pS

pS

pA

u2 = u(t0 + τ̂1)

u3 = u(t0 + τ̂1 + τ̂2)u4 = u(t0 + τ̂1 + τ̂2 + τ̂3)

u1 = u(t0) = u(t0 + τ)

Figure 8: The situation described in Case 2.

and the corresponding function F : R2 → R2 defined in (7). Passing to polar

coordinates, it is possible to write u(t) = ρ(t)(cos θ(t), sin θ(t)).

Similarly as in the proof of Theorem 3.1, it is possible to see that (23) implies

max{θ̂2, θ̂4} < θ(0)− θ(T )− 2kπ − θ̂1 < θ̂2 + θ̂4.

This means that points belonging to different half-lines of pS are mapped, through

the map F , into different connected components of R2 \ pA. In particular, F(u1)

(where u1 is as above) will lie in the region - delimited by pA - which contains pS ,

while F(u4) will belong to the interior of its complementary.

When (24) is assumed, we obtain

0 < θ(0)− θ(T )− 2kπ − θ̂1 < min{θ̂2, θ̂4},

giving rise to the opposite situation.

In both cases, assumption (A) is thus satisfied and we conclude in view of Theo-

rem 2.2.

We point out that, in this situation, the resonance phenomenon is quite different.

In particular, as a counterpart of conditions (23) and (24), it is readily seen that

the problem {
Ju′ = ∇H(u)

u(0) ∈ pS , u(T ) ∈ pA

17



has a (nontrivial) solution if and only if, for some integer k,

T − kτ ∈ {τ̂1, τ̂1 + τ̂2, τ̂4 + τ̂1, τ̂4 + τ̂1 + τ̂2}.

As an example, let us consider the scalar second order equation (17), with the

boundary conditions

{x′(0) = 0, x(0) ≥ 0} or {x(0) = 0, x′(0) ≥ 0}, (25)

and

{x(T ) = 0, x′(T ) ≤ 0} or {x′(T ) = 0, x(T ) ≤ 0}. (26)

This means that a solution to such a problem will start on one positive semi-axis

and arrive on a negative one, no matter which. In this case, we will have

τ̂1 = τ̂4 =
π

2
√
µ
, τ̂2 = τ̂3 =

π

2
√
ν
,

and the Fuč́ık curves overlap in a quite curious way, as shown in Figure 9. Notice

that, as already visible in Figure 7, due to the nonlinear boundary conditions, the

existence regions do not correspond to those having nonempty intersections with

the diagonal.

5 Multiplicity of solutions in terms of the gap between

zero and infinity

In this section, we provide an abstract multiplicity result for systems exhibiting a

different behavior at zero and at infinity, and we use it to deduce multiplicity of

solutions in some particular cases.

As in Section 2, let us fix two cones CS and CA. We are interested in the following

boundary value problem: {
Ju′ = F (t, u)

u(0) ∈ CS , u(T ) ∈ CA,
(27)

being F : [0, T ] × R2 → R2 continuous, locally Lipschitz continuous in its second

variable, and satisfying

F (t, 0) ≡ 0.

Hence, u(t) ≡ 0 trivially satisfies (27). Moreover, we will assume that there exist

H0, H∞ ∈ P such that

lim
|u|→0

F (t, u)−∇H0(u)

|u|
= 0, (28)
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Figure 9: The Fuč́ık spectrum for (17), with (25), (26), for T = π
2 .

lim
|u|→+∞

F (t, u)−∇H∞(u)

|u|
= 0. (29)

Given ū ∈ R2, let us denote by u0(t; ū) and u∞(t; ū), respectively, the solutions to

the Cauchy problems{
Ju′ = ∇H0(u)

u(0) = ū,

{
Ju′ = ∇H∞(u)

u(0) = ū.
(30)

We will write the starting and the arrival cones as union of half-lines: precisely,

CS =
⋃
α∈IS

ηαS , CA =
⋃
β∈IA

ηβA,

where IS and IA are sets of indexes, possibly infinite and uncountable, ηαS and ηβA
are half-lines emanating from the origin and the above unions are disjoint (except
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for the origin). Moreover, we define the nonnegative integers nα,β0 , nα,β∞ as follows:

denoting by ûα the only point in ηαS with |ûα| = 1,

nα,β0 = #{t ∈ ]0, T [ | u0(t, ûα) ∈ ηβA}, (31)

and

nα,β∞ = #{t ∈ ]0, T [ | u∞(t, ûα) ∈ ηβA}. (32)

The numbers nα,β0 , nα,β∞ just count the intersections of the solutions to the au-

tonomous systems (30), starting on the half-line ηαS , with the half-line ηβA.

We can now state the following.

Lemma 5.1. For α ∈ IS, β ∈ IA fixed, there exist at least |nα,β∞ − nα,β0 | nontrivial

solutions to {
Ju′ = F (t, u)

u(0) ∈ ηαS , u(T ) ∈ ηβA.
(33)

Proof. We consider the Cauchy problem{
Ju′ = F (t, u)

u(0) = ūα,

with ūα ∈ R2 \ {0}, and denote by u(t; ūα) its solution. Since F (t, 0) ≡ 0, in view

of the uniqueness it is possible to write u(t; ūα) = ρ(t; ūα)(cos θ(t; ūα), sin θ(t; ūα)),

from which, in view of (3) and Euler’s identity, we have the equation for the angle

θ = θ(t; ūα):

−θ′ = 〈F (t, u)|u〉
|u|2

= 2H0(cos θ, sin θ) +
〈R0(t, u)|u〉
|u|2

,

where R0(t, u) = F (t, u)−∇H0(u). By continuous dependence, from (28) we deduce

that, for |ūα| small, the last term gives a negligible contribution, so that we can

infer that the number of intersections of u(t; ūα) with ηβA for t ∈ ]0, T [ is equal

to nα,β0 . Similarly, by the “elastic property”, since F (t, u) has an at most linear

growth, we have that if |ūα| is sufficiently large, then u(t; ūα) remains sufficiently

far from the origin for every t ∈ [0, T ], and the number of intersections of u(t; ūα)

with ηβA for t ∈ ]0, T [ is equal to nα,β∞ .

We now exploit the continuous dependence of θ(t; ūα) on the initial datum ūα, to

infer that, moving ūα on ηαS , we will find |nα,β∞ − nα,β0 | points ūαi ∈ ηαS such that

u(T ; ūαi ) ∈ ηβA, giving the desired conclusion.

With these preliminaries, we can now state the following result.
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Theorem 5.2. Problem (27) has at least∑
α∈IS

∑
β∈IA

|nα,β∞ − nα,β0 | (34)

nontrivial solutions.

Proof. It suffices to repeat the reasoning in the proof of Lemma 5.1 for every couple

of half-lines ηαS , ηβA. Since, for every α ∈ IS , β ∈ IA, we find |nα,β∞ − nα,β0 | initial

conditions in ηαS yielding to a solution to problem (33), the thesis follows.

Observe that the sum appearing in (34) is well defined, since it is a sum of

positive integers. Notice moreover that the number of solutions found through

Theorem 5.2 could be infinite.

Remark 5.3. The statement of Theorem 5.2 holds the same if we weaken condi-

tions (28) and (29) into the following ones, respectively:

lim
|u|→0

[
〈F (t, u)|u〉
|u|2

− 2H0

(
u

|u|

)]
= 0,

lim
|u|→+∞

[
〈F (t, u)|u〉
|u|2

− 2H∞

(
u

|u|

)]
= 0,

up to requiring that F (t, u) has an at most linear growth in the variable u.

We now apply Theorem 5.2 to give a few corollaries concerning the problems

treated in the previous sections.

Corollary 5.4. Let lS , lA be two lines through the origin. Moreover, let k > m

be two positive integers, and H0, H∞ ∈ P. Denoting by τ0, τ0
1 , σ

0
1, τ

0
2 , σ

0
2 the times

defined in Section 3 for the Sturm-Liouville boundary value problem, relative to the

system Ju′ = ∇H0(u), and using the same convention for H∞, assume that

(k − 1)τ0 + τ0
1 + τ0

2 + max{σ0
1, σ

0
2} < T < kτ0 + min{τ0

1 , τ
0
2 },

and

mτ∞ + max{τ∞1 , τ∞2 } < T < mτ∞ + τ∞1 + τ∞2 + min{σ∞1 , σ∞2 }.

Assume that F (t, u) satisfies (28) and (29), and F (t, 0) ≡ 0. Then, the problem{
Ju′ = F (t, u)

u(0) ∈ lS , u(T ) ∈ lA
(35)

has at least 4(k −m)− 2 nontrivial solutions.
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Proof. It suffices to notice that, writing lS = η1
S ∪ η2

S , lA = η1
A ∪ η2

A, where ηiS , η
i
A,

i = 1, 2, are half-lines emanating from the origin, in such a way that the first

half-line encountered starting on l1S and moving clockwise is η1
A, one has

n1,1
0 = n1,2

0 = n2,1
0 = n2,2

0 = k,

n1,1
∞ = n2,2

∞ = m+ 1, n1,2
∞ = n2,1

∞ = m.

The conclusion follows.

It is clear that several combinations of the conditions of the previous sections

are possible, giving various different results of multiplicity. For example, we could

have the following.

Corollary 5.5. Let lS , lA be two lines through the origin. Moreover, let k > m

be two positive integers, and H0, H∞ ∈ P. Using the same notation as in Corol-

lary 5.4, assume that

kτ0 + max{τ0
1 , τ

0
2 } < T < kτ0 + τ0

1 + τ0
2 + min{σ0

1, σ
0
2},

and

mτ∞ + max{τ∞1 , τ∞2 } < T < mτ∞ + τ∞1 + τ∞2 + min{σ∞1 , σ∞2 }.

Assume that F (t, u) satisfies (28) and (29), and F (t, 0) ≡ 0. Then, problem (35)

has at least 4(k −m) nontrivial solutions.

Concerning the polygonal problem, we will limit our attention to the case when

the mutual positions of the two polygonal lines pS and pA are as in Case 2 of

Section 4.

Corollary 5.6. Let pS , pA be two polygonal lines through the origin as in Section 4,

Case 2. Moreover, let k > m be two positive integers, and H0, H∞ ∈ P. With an

analogous convention for the notation as in the previous corollaries, suppose that

kτ0 + τ̂0
1 + max{τ̂0

2 , τ̂
0
4 } < T < kτ0 + τ̂0

1 + τ̂0
2 + τ̂0

4 ,

and

mτ∞ + τ̂∞1 < T < mτ∞ + τ̂∞1 + min{τ̂∞2 , τ̂∞4 }.

Assume that F (t, u) satisfies (28) and (29), and F (t, 0) ≡ 0. Then, the problem{
Ju′ = F (t, u)

u(0) ∈ pS , u(T ) ∈ pA,

has at least 4(k −m) + 2 nontrivial solutions.
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Proof. In this case, setting pS = p1
S ∪ p2

S , where p1
S is the half-line of pS which is

closer to pA with respect to the clockwise motion, and pA = p1
A ∪ p2

A, where p1
A is

the first half-line of pA which is encountered by p1
S after a clockwise rotation, one

has

n1,1
0 = n1,2

0 = n2,1
0 = k + 1, n2,2

0 = k, n1,1
∞ = m+ 1, n1,2

∞ = n2,1
∞ = n2,2

∞ = m,

yielding the desired conclusion.

In the above corollaries, we always assumed conditions of nonresonance type.

Clearly, other types of corollaries of Theorem 5.2 can be easily obtained, without

this restriction, at the expense of finding a lower number of solutions (see, e.g.,

[4, 6]).

Remark 5.7. We could extend Theorem 5.2 assuming a more general control on

F (t, u), namely

F (t, u) = γ0(t, u)∇H(1)
0 (u) + (1− γ0(t, u))∇H(2)

0 (u) +R0(t, u)

in a neighborhood of 0, and

F (t, u) = γ∞(t, u)∇H(1)
∞ (u) + (1− γ∞(t, u))∇H(2)

∞ (u) +R∞(t, u)

at infinity, where H
(i)
0 , H

(i)
∞ ∈ P, i = 1, 2, satisfy H

(1)
0 ≤ H

(2)
0 , H

(1)
∞ ≤ H

(2)
∞ , the

functions γ0(t, u), γ∞(t, u) are continuous, taking values between 0 and 1, and the

functions R0(t, u), R∞(t, u) are negligible. The multiplicity result then comes from

similar estimates on the gap of the angular speeds at zero and infinity (see, e.g.,

[4, 21]). For briefness, we do not enter into the details.

In the same spirit, other kinds of controls on the angular speed could be con-

sidered. For instance, in the case of a problem like{
x′′ + f(t, x) = 0

x(0) = 0 = x(T ),
(36)

following [6] we could assume that f(t, 0) ≡ 0,

a0(t) ≤ lim inf
|x|→0

f(t, x)

x
≤ lim sup

|x|→0

f(t, x)

x
≤ b0(t),

and

a∞(t) ≤ lim inf
|x|→+∞

f(t, x)

x
≤ lim sup
|x|→+∞

f(t, x)

x
≤ b∞(t),

for suitable functions a0(t), a∞(t), b0(t), b∞(t). Denoting by λn(γ) the n-th eigen-

value of the Dirichlet problem {
x′′ + λγ(t)x = 0

x(0) = 0 = x(T ),
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it was proved in [6, Theorem 1.1] that, if there exist two integers m ≤ n such that

λn(a0) < 1 < λm(b∞), (37)

then there are 2(n−m+ 1) solutions to (36).

Comparing with our previous results, in the case when the above functions

a0, a∞, b0, b∞ are constant, let

H
(1)
0 (x, y) =

1

2
(y2 + λ̂nx

2), H(2)
∞ (x, y) =

1

2
(y2 + λ̂mx

2),

where λ̂1 < λ̂2 < . . . are the usual eigenvalues of the Dirichlet problem on [0, T ].

We observe that (37) is then equivalent to

b∞ < λ̂m ≤ λ̂n < a0. (38)

Let us denote by η1
S = η1

A the positive vertical semi-axis, and by η2
S = η2

A the

negative one. Using the same notation as in (31), (32), from (38) we deduce that

n1,1
0 ≥

⌊ n
2

⌋
, n1,2

0 ≥
⌈ n

2

⌉
, n2,1

0 ≥
⌈ n

2

⌉
, n2,2

0 ≥
⌊ n

2

⌋
,

and

n1,1
∞ ≤

⌊
m− 1

2

⌋
, n1,2

∞ ≤
⌈
m− 1

2

⌉
, n2,1

∞ ≤
⌈
m− 1

2

⌉
, n2,2

∞ ≤
⌊
m− 1

2

⌋
.

Here, for a real number a, the symbol bac denotes the largest integer less than or

equal to a, while dae denotes the least integer greater than or equal to a. Arguing

as in the proofs of Lemma 5.1 and Theorem 5.2, we then find at least

2

(⌊ n
2

⌋
−
⌊
m− 1

2

⌋
+
⌈ n

2

⌉
−
⌈
m− 1

2

⌉)
nontrivial solutions. This number can be checked to be exactly equal to 2(n−m+1),

thus agreeing with [6, Theorem 1.1].

We conclude this section by observing that, as in [6], we could characterize the

nontrivial solutions obtained by their nodal properties. For briefness, we will not

enter into details.

6 Multiplicity in dependence of a real parameter

In this section, we consider the issue of giving multiplicity results for a Sturm-

Liouville boundary value problem, depending on a real parameter. Let lS , lA be

two fixed lines passing through the origin. We will deal with the problem{
Ju′ = ∇H(u) +R(t, u) + sv∗(t)

u(0) ∈ lS , u(T ) ∈ lA,
(39)
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with s a positive parameter and v∗(t) a fixed continuous function. Moreover, we

will suppose that R(t, u) fulfills the sublinear growth assumption (9), and H(u)

satisfies some nonresonance hypothesis.

We will still denote by τ, τi, σi, with i = 1, 2, the times introduced in Section 3.

Moreover, τA, τi,A, σi,A, with i = 1, 2, will refer to the times, defined as in Section 3,

associated with the linear problem{
Ju′ = Au
u(0) ∈ lS , u(T ) ∈ lA,

where A is a symmetric 2× 2 matrix.

We can now state the main result of this section.

Theorem 6.1. Let H ∈ P satisfy, for a suitable nonnegative integer k,

(k − 1)τ + τ1 + τ2 + max{σ1, σ2} < T < kτ + min{τ1, τ2}. (40)

Moreover, assume that there exist a function w∗ : R→ R2 solving{
Jw′ = ∇H(w) + v∗(t)

w(0) ∈ lS , w(T ) ∈ lA,

such that 0 /∈ W∗ = {w∗(t) : t ∈ [0, T ]}, and two positive definite symmetric

matrices A ≤ B satisfying

〈A(u− v)|u− v〉 ≤ 〈∇H(u)−∇H(v)|u− v〉 ≤ 〈B(u− v)|u− v〉, (41)

for every u, v ∈ W∗. Assume also that A, B fulfill, for a suitable nonnegative integer

m,

mτA + max{τ1,A, τ2,A} < T < mτB + τ1,B + τ2,B + min{σ1,B, σ2,B}. (42)

Lastly, suppose that R(t, u) satisfies the sublinear growth condition (9). Then, there

exists s∗ > 0 such that, for every s ≥ s∗, problem (39) has at least

2|2(m− k) + 1|+ 1

solutions.

The proof is similar to the one for the T -periodic problem given in [22, Theo-

rem 1.1]. First, we change variables in (39), setting

λ =
1

s
, y = λu− w∗.

In this way, for λ ∈ ]0,+∞[ , problem (39) is equivalent to{
Jy′ = ∇H(y + w∗(t))−∇H(w∗(t)) + f(t, y;λ)

y(0) ∈ lS , y(T ) ∈ lA,
(43)
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where

f(t, y;λ) =

 λR
(
t,

1

λ
(y + w∗(t))

)
if λ 6= 0

0 if λ = 0.

In view of (9), we have

lim
λ→0+

f(t, y;λ) = 0, (44)

uniformly in t ∈ [0, T ] and y ∈ B(0, r), being B(0, r) the open ball centered at 0

with radius r > 0. Thus, f(t, y;λ) is continuous up to λ = 0.

The next two statements are crucial in order to find a first solution to (39) for λ

small enough, via topological methods. In the following, we will denote by B∞(0, r)

the open ball in L∞(0, T ), centered in 0 and with radius r > 0, and by B∞(0, r) its

closure.

Lemma 6.2. There exists r∗ > 0 such that, if y(t) solves{
Jy′ = ∇H(y + w∗(t))−∇H(w∗(t))

y(0) ∈ lS , y(T ) ∈ lA,
(45)

and y ∈ B∞(0, r∗), then y(t) ≡ 0.

Proof. If there were a sequence (yn)n ∈ B∞(0, 1/n) of nontrivial solutions to (45),

by uniqueness it would be yn(t) 6= 0 for every t ∈ [0, T ], and we could write

yn(t) = ρn(t)(cos θn(t), sin θn(t)),

so that

−θ′n(t) =
〈∇H(yn + w∗(t))−∇H(w∗(t))|yn〉

|yn|2
. (46)

Fix n̄ sufficiently large; in view of the strict inequalities in (42), we are able to find

two matrices Â, B̂, with 0 < Â ≤ A ≤ B ≤ B̂, such that, replacing A with Â and

B with B̂, (42) is still satisfied and (41) holds for every u, v ∈ {w∗(t) + x : t ∈
[0, T ], |x| ≤ 1/n̄}. Therefore, since yn ∈ B∞(0, 1/n̄) for n ≥ n̄, from (46) we deduce∫ θn(T )

θn(0)

dθ

〈B̂(cos θ, sin θ)|(cos θ, sin θ)〉
≤ T ≤

∫ θn(T )

θn(0)

dθ

〈Â(cos θ, sin θ)|(cos θ, sin θ)〉
.

Hence, in view of (42), it follows that

2mπ + θ1 < θn(0)− θn(T ) < (2m+ 1)π + θ1, (47)

where θ1 is as in Section 3. This implies that it is not possible that yn̄(0) ∈ lS and

yn̄(T ) ∈ lA at the same time, a contradiction.
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Lemma 6.3. For every δ > 0, there exists λ∗ = λ∗(δ) such that, for every λ ∈
[0, λ∗(δ)], there is a solution yλ to (43), satisfying

‖yλ‖∞ ≤ δ.

Proof. In view of Lemma 6.2, it turns out that, for λ = 0, y0(t) ≡ 0. We would

like to continue such a solution in a neighborhood of λ = 0. Let L : D(L) ⊂
C0([0, T ]) → C0([0, T ]), with D(L) = {u ∈ C1([0, T ]) | u(0) ∈ lS , u(T ) ∈ lA}, be

defined by Lu = Ju′, and let Nλ be the Nemytzkii operator associated with the

right-hand side of the equation in (43). If α does not belong to the spectrum of L,

we can define Φ : C([0, T ])× [0, 1]→ C([0, T ]) by

Φ(y, λ) = (L− αI)−1(Nλy − αy).

In this way, (43) is equivalent to the fixed point problem

Φ(y, λ) = y.

Moreover, in view of (44), we have that

lim
λ→0+

Φ(y;λ) = Φ(y; 0),

uniformly in y ∈ B∞(0, r∗), where r∗ > 0 is as above.

We are now going to compute the Leray-Schauder degree

deg (Φ(· ;λ)− I,B∞(0, r∗)),

showing that it is different from 0. To this aim, we first notice that, with the same

proof as in [22, Lemma 2.2], we can deduce that there exists λ∗ > 0 such that there

are no solutions to (43) on the boundary of B∞(0, r∗), for λ ∈ [0, λ∗]. We then pass

to consider the problem Jy′ = σ(∇H(y + w∗(t))−∇H(w∗(t))) +
(1− σ)

2
(A + B)y

y(0) ∈ lS , y(T ) ∈ lA.

Since A ≤ B, we can use the same argument as the one to obtain (47), to deduce

that this problem has only the trivial solution in B∞(0, r∗). By the homotopy

invariance of the topological degree and the previous considerations, it follows that

deg (Φ(· ;λ)− I,B∞(0, r∗)) = deg (Φ(· ; 0)− I,B∞(0, r∗))

= deg

(
(L− αI)−1

(A + B
2
− αI

)
− I,B∞(0, r∗)

)
6= 0,

since the operator involved in the last degree is linear and invertible.
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We are now ready to conclude the proof of the lemma. So far, for every λ ∈ [0, λ∗],

we have found a solution yλ to (43), belonging to B∞(0, r∗). We want to prove that

lim
λ→0+

‖yλ‖∞ = 0. (48)

By contradiction, assume that there exist ε > 0, (tn)n in [0, T ] and (λn)n in [0, 1],

with λn → 0, such that, for every n,

|yλn(tn)| ≥ ε.

Since (yλn)n is bounded in L∞(0, T ), being yλn ∈ B∞(0, r∗), the sequence yλn(tn)

is bounded, so there exists ȳ such that, up to subsequences,

yλn(tn)→ ȳ; (49)

obviously, |ȳ| ≥ ε. Moreover, we can assume, for a subsequence, that tn → t̄ ∈ [0, T ].

We now consider, for every n, the Cauchy problem{
Jy′ = ∇H(y + w∗(t))−∇H(w∗(t)) + f(t, y;λ)

y(tn) = yλn(tn).
(50)

By uniqueness, (50) is solved by yλn(t); moreover, in view of (49), we can infer, by

continuous dependence, that

lim
n→+∞

yλn(t) = ŷ(t),

uniformly in t ∈ [0, T ], where ŷ(t) solves{
Jy′ = ∇H(y + w∗(t))−∇H(w∗(t))

y(t̄) = ȳ.

It follows that ŷ ∈ B∞(0, r∗), ŷ(t̄) = ȳ 6= 0, ŷ(0) ∈ lS , ŷ(T ) ∈ lA, so that ŷ is a

nontrivial solution to (45). This contradicts Lemma 6.2.

We now change variables, by setting

z = y − yλ,

which transforms problem (43) into the following one:{
Jz′ = g(t, z;λ)

z(0) ∈ lS , z(T ) ∈ lA,
(51)

where

g(t, z;λ) = ∇H(z+yλ(t)+w∗(t))−∇H(yλ(t)+w∗(t))+f(t, z+yλ(t);λ)−f(t, yλ(t);λ).
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With the goal of applying a shooting method to prove Theorem 6.1, we are now

going to consider the Cauchy problem{
Jz′ = g(t, z;λ)

z(0) = z̄ ∈ lS .
(52)

We will denote by z(t, z̄;λ) the solution to such a problem. We will count, similarly

as in Section 5, the number of intersections of such a solution with the arrival line

lA; precisely, we define

n(z(t, z̄;λ)) = #{t ∈ ]0, T [ | z(t, z̄;λ) ∈ lA}.

We first state a lemma concerning the limit case λ = 0. In view of (44), (48) and

the Lipschitz continuity of ∇H, we have

lim
λ→0+

g(t, z;λ) = g(t, z; 0) = ∇H(z + w∗(t))−∇H(w∗(t)), (53)

uniformly for every t ∈ [0, T ] and every z ∈ B(0, r), with r > 0.

Lemma 6.4. Let r∗ > 0 be as in Lemma 6.2. There exist two positive constants r̂,

r̄, with 4r̂ < r̄ < r∗/4, such that, if z̄ ∈ R2 satisfies

|z̄| = r̄,

then the solution z(t) to the Cauchy problem{
Jz′ = ∇H(z + w∗(t))−∇H(w∗(t))

z(0) = z̄
(54)

satisfies, for every t ∈ [0, T ],

4r̂ ≤ |z(t)| ≤ r∗

4
.

The proof can be found in [22, Lemma 2.4] and is essentially based on Gronwall’s

Lemma, which can be used thanks to the Lipschitz continuity of ∇H(u).

We are now going to display the gap between “small” and “large” solutions

to (52), in order to apply the shooting method and find multiple solutions to the

original problem (39). The following lemma gives an estimate for the number of

intersections of “small” solutions to (52) with the line lA.

Lemma 6.5. Let r̄ > 0 be as in the previous lemma. Then, there exists λ1 ∈ ]0, λ∗]

such that, if |z̄| = r̄, every solution z(t, z̄;λ) to (52), with λ ∈ [0, λ1], satisfies

n(z(t, z̄;λ)) = 2m+ 1.
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Proof. We first focus on (54), to show that n(z(t, z̄; 0)) = 2m + 1. In view of

Lemma 6.4, if |z̄| = r̄, then z(· , z̄; 0) belongs to B∞(0, r∗/4), so that, reasoning

on (46) as in Lemma 6.2, we can use (42) to argue that z(t, z̄; 0) meets lA exactly

2m+ 1 times in the time interval ]0, T [ , in view of (47).

We now turn our attention to the solution z(t, z̄;λ) to (52), with a fixed z̄ such that

|z̄| = r̄. By continuous dependence, in view of (53), we have that z(t, z̄;λ) will stay

near z(t, z̄; 0), for λ > 0 sufficiently small. Using Lemma 6.4, there exists λ0 > 0

such that, for every t ∈ [0, T ] and λ ∈ ]0, λ0], we have

|z(t, z̄;λ)| ≤ r∗

2
.

Moreover, by (48), we can assume that ‖yλ‖∞ ≤ r∗/2 for every λ ∈ ]0, λ0]. Thus,

we can control the angle as in the proof of Lemma 6.2 and, since the inequalities

in (47) are strict, we deduce

n(z(t, z̄;λ)) = 2m+ 1,

for every λ ∈ ]0, λ0].

Finally, in view of the continuous dependence and the compactness of ∂B(0, r̄) ⊂
R2, we can find λ1 > 0 as in the statement.

We now fix λ ∈ ]0, λ1]. The following lemma gives an estimate for the number

of intersections of “large” solutions to (52) with the line lA.

Lemma 6.6. There exists R̄λ > r̄ such that, if |z̄| = R̄λ, the solution z(t, z̄;λ) to

(52) satisfies

n(z(t, z̄;λ)) = 2k.

Proof. Let us take z̄ ∈ R2 sufficiently far from the origin. By uniqueness, the

usual system of polar coordinates is well defined for z(t, z̄;λ). Writing z(t, z̄;λ) =

ρ(t, z̄;λ)(cos θ(t, z̄;λ), sin θ(t, z̄;λ)), we are led to the usual equation for θ′(t) =

θ′(t, z̄;λ):

−θ′(t) =
〈∇H(z + yλ(t) + w∗(t))|z〉

|z|2
− 〈∇H(yλ(t) + w∗(t))|z〉

|z|2
+

+
〈f(t, z + yλ(t);λ)|z〉

|z|2
− 〈f(t, yλ(t);λ)|z〉

|z|2
.

(55)

We notice that, for |z| → +∞, the second and the fourth term in the right-hand

side vanish, since ‖yλ + w∗‖∞ is bounded. For what concerns the third summand,

writing explicitly its expression we have

〈f(t, z + yλ(t);λ)|z〉
|z|2

= λ
〈R(t, 1

λ(z + yλ(t) + w∗(t)))|z〉
|z|2

.
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In view of (9), fixed ε > 0 there exists Cε > 0 such that |R(t, u)| ≤ Cε + ε|u| for

every t ∈ [0, T ], and every u ∈ R2. Hence, the third term in (55) goes to 0 when

|z| → +∞, as well. To estimate the remaining part, we write it as

〈∇H(z + yλ(t) + w∗(t))|z〉
|z|2

=
〈∇H(z + yλ(t) + w∗(t))−∇H(z)|z〉

|z|2
+
〈∇H(z)|z〉
|z|2

(56)

and observe that the Lipschitz continuity of ∇H(u) gives |∇H(z+ yλ(t) +w∗(t))−
∇H(z)| ≤ L|yλ(t) + w∗(t)|, for a suitable constant L > 0, so that the first term of

the right-hand side in (56) vanishes for |z| → +∞. By Euler’s identity, this implies

that

−θ′(t) = 2H(cos θ(t), sin θ(t)) + h(t, z(t)), (57)

where h is a function satisfying h(t, z(t)) → 0, uniformly in t ∈ [0, T ], when

min[0,T ] |z(t)| → +∞. As a consequence, there exists a number M > 0 such that, if

|z(t, z̄;λ)| > M for every t ∈ [0, T ], then, in view of (57) and the strict inequalities

in (40), z(t, z̄;λ) encounters exactly 2k times the line lA. It is now possible to

find R̄λ > M through the “elastic property”, which ensures that, if we start with

|z̄| = R̄λ, it will be |z(t, z̄;λ)| > M for every t ∈ [0, T ].

We are now ready to conclude the proof of Theorem 6.1. Let l1S be one of the

two half-lines of lS , starting from the origin. In view of Lemmas 6.5 and 6.6 and

the continuous dependence on the initial datum, there will be |2(m−k)+1| distinct

points z̄i,λ ∈ l1S such that the solution z(t, z̄i,λ;λ) to (52) satisfies z(T, z̄i,λ;λ) ∈ lA,

thus solving (51). Notice that, for λ = 0, the points z̄i,0 do not coincide with the

origin. Returning to the original variable u through the inverse change of variable

z(t) = λu(t)− yλ(t)− w∗(t),

we find the corresponding (all distinct) starting points ūi,λ = z̄i,λ + yλ(0) + w∗(0)

yielding to a solution to (39). In particular, since z(0) ∈ l1S , z(T ) ∈ lA, it will be

u(0, ūi,λ;λ) ∈ lS , u(T, ūi,λ;λ) ∈ lA. The same reasoning could be done on the other

half-line of lS . Taking into account the further solution yλ(t) found in Lemma 6.3

which, we recall, for λ = 0 is identically 0, we see that, for λ sufficiently small, yλ(t)

does not coincide with any of the other solutions found. The proof of Theorem 6.1

is thus complete.

Remark 6.7. It has been essential to deal with linear boundary conditions, other-

wise problems (43) and (51) would not have been equivalent to our original bound-

ary value problem.

Remark 6.8. We have chosen to present a particular result of multiplicity, relying

on conditions (40) and (42). At the end of the section, we will briefly pass through

other combinations of the nonresonance conditions introduced in Section 3.
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Remark 6.9. We briefly compare Theorem 6.1 with a result by Hart, Lazer and

McKenna [26, Theorem 1], concerning the scalar Dirichlet problem{
x′′ + g(x) = h(t) + s sin(t)

x(0) = 0 = x(π),
(58)

where g : R → R is a C1-function. Using the notation therein, we set a =

limξ→−∞ g
′(ξ) and b = limξ→+∞ g

′(ξ), and assume a < b. Moreover, we fix

l = lS = lA = {(x, y) ∈ R2 | x = 0}. Writing the equation as a first order

system, we have that (58) is equivalent to the problem{
Ju′ = ∇H(u) +R(t, u) + sv∗(t)

u(0) ∈ l, u(π) ∈ l,

where u = (x, x′), H(u) = 1
2(b(x+)2+a(x−)2+(x′)2), v∗(t) = (− sin t, 0) and R(t, u)

is a bounded function which can be computed explicitly. Thus, it turns out that

the choice

A = B =

(
b 0

0 1

)
makes the control (41) true in the whole set {w∗(t) | t ∈ [0, π]} , where

w∗(t) =
1

b− 1
(sin t, cos t)

(notice that sin(t)/(b−1) solves the equation x′′+ bx+−ax− = sin t, for t ∈ [0, π]).

We are going to show that Theorem 6.1 agrees with [26, Theorem 1]; not to confuse

the notations, we will write the integer numbers appearing in that theorem with

their original letters, but in Gothic style. Thus, m+ (resp. m−) will be the number

of zeros of a solution to x′′ + bx+ − ax− = 0, with x(0) = 0, x′(0) > 0 (resp.

x(0) = 0, x′(0) < 0), in ]0, π[ . Moreover, it is assumed in [26] that there exists a

positive integer n such that

n2 < b < (n + 1)2, n ∈ N.

Observe now that assumption (40) becomes here

kτ < π < kτ + min{τ1, τ2},

so that m+ = m− = 2k. On the other hand, a comparison with condition (42)

yields n = 2m + 1. Thus, since the assumption a < b implies 2n > m+ + m− and

thus m ≥ k, we find the same number of solutions than in [26], i.e.,

2n− (m+ + m−) + 1 = 2(2m+ 1)− 4k + 1 = 4(m− k) + 3.

Finally, notice that, in [26], also the case of a negative parameter s has been con-

sidered. This situation can be recovered by the change of variable x̃(t) = −x(t)

in (58).
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For the sake of completeness, we now combine the nonresonance conditions given

in Section 3 in different ways, and state the corresponding multiplicity results.

Theorem 6.10. Assume that H ∈ P satisfies, for a suitable nonnegative integer

k,

kτ + max{τ1, τ2} < T < kτ + τ1 + τ2 + min{σ1, σ2} (59)

instead of (40). Then, under all the other assumptions of Theorem 6.1, prob-

lem (39) has at least

4|m− k|+ 1

solutions.

It is interesting to observe that, if m = k, Theorem 6.1 provides at least three

solutions, while in Theorem 6.10 we only find a single solution, the one given by

the topological degree argument. This can be explained by the fact that, roughly

speaking, assuming together (40) and (42) implies that a gap between “small” and

“large” solutions is already present even if k,m are equal, since “large” solutions

starting on a fixed half-line of lS intersect the arrival line lA a number of times

equal to 2k, while “small” ones intersect it 2m+ 1 times. In this last theorem, on

the contrary, the number of intersections of “large” solutions starting on a fixed

half-line of lS , with lA, is equal to 2k + 1.

Acting on condition (42), on the other hand, we have the following counterparts

of Theorems 6.1 and 6.10.

Theorem 6.11. Assume that H ∈ P satisfies (40), and that A, B fulfill, for a

nonnegative integer m,

(m− 1)τA + τ1,A + τ2,A + max{σ1,A, σ2,A} < T < mτB + min{τ1,B, τ2,B}, (60)

instead of (42). Then, under all the other assumptions of Theorem 6.1, prob-

lem (39) has at least

4|m− k|+ 1

solutions.

Theorem 6.12. Assume that H ∈ P satisfies (59) and A,B fulfill (60). Then,

under all the other assumptions of Theorem 6.1, problem (39) has at least

2|2(m− k)− 1|+ 1

solutions.
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Remark 6.13. Comparing with the periodic boundary value problem, the number

of solutions found, e.g., in [4, 10, 22, 29], is given in term of the gap between

the behavior at 0 and at +∞, similarly as in Corollary 5.5, or with a similar

interpretation, after a change of variables involving a real parameter, as shown in

the proof of Theorem 6.1. Indeed, every complete turn around the origin makes the

number n(z(t, z̄;λ)) defined above increase of two unities, so that the final number

of solutions found, e.g., in Theorems 6.10 and 6.11 corresponds to the gap between

the rotation numbers of “small” and “large” solutions.
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