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Abstract

We discuss existence and multiplicity of positive solutions of the Dirichlet problem for
the quasilinear ordinary differential equation

−
(
u′/
√

1 − u′2
)′

= f(t, u).

Depending on the behaviour of f = f(t, s) near s = 0, we prove the existence of either
one, or two, or three, or infinitely many positive solutions. In general, the positivity of
f is not required. All results are obtained by reduction to an equivalent non-singular
problem to which variational or topological methods apply in a classical fashion.
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1 Introduction

In this work we are concerned with the existence and the multiplicity of positive solutions of
the quasilinear two-point boundary value problem−

(
u′/
√

1− u′2
)′

= f(t, u) in ]0, T [,

u(0) = u(T ) = 0.
(1)

This is the one-dimensional version of the Dirichlet problem associated with the Minkowski-
curvature equation {

−div
(
∇u/

√
1− |∇u|2

)
= f(x, u) in Ω,

u = 0 on ∂Ω,
(2)

which, as it is well-known, plays a role in differential geometry and in the theory of relativity.
We refer, for motivations and results, to the classical paper of Bartnik and Simon [2] and to
the references contained therein.

It is worthy to point out that from the results in [2] and [3, Section 3] (see also [8, Section
2.2]) it follows that (2) and (1) have a solution whatever f is. Nevertheless, since in our study
problem (1) generally admits the null solution, it may have some interest to investigate the
existence of non-trivial, in particular positive, solutions.

As a first step we show that problem (1) can always be reduced to an equivalent one,
where the singularity on the left of the equation has been removed and the function on the
right is bounded, actually vanishes outside the rectangle [0, T ] × [−T, T ], and agrees with f
in a right neighbourhood of s = 0. Such a reduction, which is achieved by quite elementary
estimates, is different depending on whether we use topological methods, in fact bifurcation
theory, or variational methods. In the former case we replace the equation in (1) by

−u′′ = g(t, u)h(u′), (3)

where g is bounded and h has compact support. In the latter case, which is slightly more
delicate as we have to preserve the variational structure of the problem, we substitute the
equation in (1) with

−
(
ψ(u′)

)′
= g(t, u), (4)

where ψ is an asymptotically linear increasing homeomorphism from R to R, such that ψ(y) =

y/
√

1− y2 near y = 0, and again g is bounded. It is therefore evident from this discussion
that only conditions near s = 0 are needed for proving the existence of positive solutions.

In order to describe our results, we write the function g, appearing on the right of (3) and
(4), in the form

g(t, s) = λp(t, s) + µq(t, s), (5)

where λ, µ are non-negative real parameters and p, q : [0, T ] × R → R are Carathéodory
functions vanishing outside the rectangle [0, T ]× [−T, T ]. The typical models for p(t, s) and
q(t, s) are functions that behave, in a right neighbourhood of s = 0, as m(t)sp, with p ∈ ]0, 1],
and as n(t)sq, with q ∈ ]1,+∞[, respectively. The coefficients m,n : [0, T ] → R are, say,
continuous and positive somewhere, but they are allowed to change sign. Regarding these
special examples, the following conclusions are obtained.
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Take µ = 0 in (5). If the exponent p ∈ ]0, 1[ is fixed, we prove that the Dirichlet problem
associated with (4), and hence (1), has a positive solution for every λ > 0. Such a solution
is a global minimizer in H1

0 (0, T ), at a negative level, of the corresponding action functional,
which is coercive and bounded from below. If p = 1, we show that the Dirichlet problem
associated with (3), and hence (1), has a positive solution for λ > λ1(m), where λ1(m) is the
positive principal eigenvalue of{

−u′′ = λm(t)u in ]0, T [,

u(0) = u(T ) = 0.

Here the conclusion is achieved by applying the classical Rabinowitz bifurcation theorem.
Non-existence of positive solutions is also shown to occur for λ > 0 small. Actually, it is
immediately seen that in both cases the existence of positive solutions is guaranteed, with the
same choices of λ, for any given µ > 0. The bifurcation diagrams depicted in Figures 1 and 2,
where ‖u‖∞ is plotted against λ for a fixed but generic µ ≥ 0, reflect the expected structure
of the corresponding sets of solutions.

-

6

λ

T
2

‖u‖∞

Fig. 1. Bifurcation diagram: the case 0 < p < 1, with µ ≥ 0 fixed.

-

6

λλ1(m)

T
2

‖u‖∞

Fig. 2. Bifurcation diagram: the case p = 1, with µ ≥ 0 fixed.
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Take now λ = 0 in (5). If the exponent q ∈ ]1,+∞[ is fixed, we prove that the Dirichlet
problem associated with (4), and hence (1), has at least two positive solutions for every
sufficiently large µ > 0. The action functional is again coercive and bounded from below;
moreover, 0 is a local minimizer and there exists a global minimizer at a negative level.
This yields the existence of a first positive solution, while a second one is a critical point of
mountain pass type at a positive level. Non-existence of positive solutions is also established
for small µ > 0 whenever q(t, s) has finite slope at s = 0. The corresponding bifurcation
diagram, where ‖u‖∞ is plotted against µ, is depicted in Figure 3.

-

6

µ

T
2

‖u‖∞

Fig. 3. Bifurcation diagram: the case q > 1, with λ = 0.

Next take λ > 0 and µ > 0 in (5). Let the exponents p ∈ ]0, 1[ and q ∈ ]1,+∞[ be given.
Then the Dirichlet problem associated with (4), and hence (1), has at least three positive
solutions for every large µ > 0 and small λ > 0. This is achieved by looking at the term
λp(t, s) as a small perturbation, that is capable of slightly modifying the geometry of the
action functional by creating a non-trivial local minimum near 0, yet preserving the two other
critical points the existence whose was established for λ = 0 and large µ > 0. The multiplicity
diagram describing this situation is given in Figure 4.

-

6

at least 1 solution

at least 3 solutions

µ∗ µ

λ

Fig. 4. Two-parameter multiplicity diagram.
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The last theorem of this paper deals with the case where the function g oscillates between a
sublinear and a superlinear behaviour, i.e., between two powers sp and sq, with 0 < p < 1 < q,
as s→ 0+. Such oscillations produce the existence of infinitely many positive solutions. These
are obtained by combining local minimization with the method of lower and upper solutions,
which are in turn constructed via time-mapping estimates.

After completing this paper we became aware of the recent preprint [4], where the existence
of a positive radial solution of (2) in a ball Ω has been discussed, assuming conditions on f
that guarantee the existence of a positive minimizer for the associated action functional at a
negative level: the overlapping of this paper with ours is however very limited.

Notation. We list a few notations that will be used throughout this paper. We set R+
0 =

]0,+∞[. For functions u, v : [0, T ] → R, we write u ≤ v if u(t) ≤ v(t) a.e. in [0, T ], and
u < v if u ≤ v and u(t) < v(t) in a subset of [0, T ] having positive measure. We also set
u+ = max{u, 0} and u− = −min{u, 0}. For functions u, v ∈ C1([0, T ]), we write u � v if
u(t) < v(t) for every t ∈ ]0, T [, u′(0) < v′(0) in case u(0) = v(0) and u′(T ) > v′(T ) in case
u(T ) = v(T ). We set C1

0 ([0, T ]) = {u ∈ C1([0, T ]) : u(0) = u(T ) = 0}.

2 Existence and multiplicity results

In this section we discuss existence and multiplicity of positive solutions of problem (1): the
results are grouped depending on the number of solutions and on the behaviour of the function
f = f(t, s) near s = 0. Throughout we assume

(h1) f : [0, T ] × R → R satisfies the L1-Carathéodory conditions, i.e., for a.e. t ∈ [0, T ],
f(t, ·) : R→ R is continuous, for every s ∈ R, f(·, s) : [0, T ]→ R is measurable, and for
each r > 0 there is γ ∈ L1(0, T ) such that |f(t, s)| ≤ γ(t) for a.e. t ∈ [0, T ] and every
s ∈ [−r, r],

and we set F (t, s) =

∫ s

0

f(t, ξ) dξ.

We say that a function u ∈W 2,1(0, T ) is a solution of (1) if ‖u′‖∞ < 1 and u satisfies the
equation a.e. in [0, T ] and the boundary conditions in (1). Further, it is said to be positive if
u > 0 and strictly positive if u� 0.

Remark 2.1 Let us define φ : ]− 1, 1[→ R by setting

φ(y) = y/
√

1− y2. (6)

Note that, as φ−1 is globally Lipschitz in R, for any function u ∈W 1,1(0, T ) with ‖u′‖∞ < 1,
we have u ∈W 2,1(0, T ) if and only if φ(u′) ∈W 1,1(0, T ).

2.1 Existence of at least one positive solution

The case of infinite slope

Theorem 2.1. Assume (h1),

(h2) there exist a, b, with 0 ≤ a < b ≤ T , such that lim inf
s→0+

F (t, s)

s2
> −∞ uniformly a.e. in

[a, b],
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(h3) there exist c, d, with a < c < d < b, such that lim sup
s→0+

∫ d

c

F (t, s)

s2
dt = +∞,

(h4) f(t, 0) ≥ 0 for a.e. t ∈ [0, T ].

Then problem (1) has at least one positive solution.

Proof. Step 1. An equivalent formulation. Let us define f̃ : [0, T ]×R→ R by setting, for a.e.
t ∈ [0, T ],

f̃(t, s) =


0 if |s| ≥ T ,
f(t, s) if 0 < s ≤ T/2,
linear if −T < s < 0 or T/2 < s < T .

Observe that, within the context of positive solutions, problem (1) is equivalent to the same
problem with f replaced by f̃ . Indeed, if u is a positive solution, then ‖u′‖∞ < 1 and hence
‖u‖∞ < T/2. In the sequel of the proof we shall replace f with f̃ ; however, for the sake of
simplicity in the notation, the modified function f̃ will still be denoted by f . Clearly, such a
function satisfies all the properties assumed in the statement of the theorem. Furthermore,
by (h1) there exists γ ∈ L1(0, T ) such that

|f(t, s)| ≤ γ(t) (7)

for a.e. t ∈ [0, T ] and every s ∈ R. Set σ = φ′
(
φ−1(‖γ‖L1)

)
and define, for y ∈ R,

ψ(y) =


σ ·
(
y + φ−1(‖γ‖L1)

)
− ‖γ‖L1 if y < −φ−1(‖γ‖L1),

φ(y) if |y| ≤ φ−1(‖γ‖L1),

σ ·
(
y − φ−1(‖γ‖L1)

)
+ ‖γ‖L1 if y > φ−1(‖γ‖L1).

(8)

Set also

Ψ(y) =

∫ y

0

ψ(ξ) dξ (9)

and observe that
1
2y

2 ≤ Ψ(y) ≤ 1
2σy

2 (10)

for every y ∈ R.

Claim. A function u ∈ W 2,1(0, T ) is a positive solution of (1) if and only if it is a positive
solution of the problem {

−
(
ψ(u′)

)′
= f(t, u) in ]0, T [,

u(0) = u(T ) = 0.
(11)

Suppose that u is a positive solution of (1). Then u′(τ) = 0 for some τ ∈ [0, T ]. Integrating
the equation in (1) between τ and t ∈ [0, T ], we obtain

|φ(u′(t))| =
∣∣∣ ∫ t

τ

f(ξ, u) dξ
∣∣∣ ≤ ‖γ‖L1

and hence
|u′(t)| ≤ φ−1(‖γ‖L1).
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Therefore φ(u′(t)) = ψ(u′(t)) in [0, T ] and we conclude that u is a positive solution of (11).
Suppose now that u is a positive solution of (11). Arguing as above we see that

|u′(t)| ≤ ψ−1(‖γ‖L1),

and therefore ψ(u′(t)) = φ(u′(t)) in [0, T ]. In particular ‖u′‖∞ < 1 and we conclude that u is
a positive solution of (1).

Step 2. Existence of a positive solution. We define the functional I : H1
0 (0, T )→ R by setting

I(v) =

∫ T

0

Ψ(v′) dt−
∫ T

0

F (t, v) dt. (12)

I is C1 and weakly lower semicontinuous. By (7) we can find a constant cf > 0 such that∫ T

0

F (t, v) dt ≤ cf

for all v ∈ H1
0 (0, T ). Hence, using (10), we easily see that I is coercive and bounded from

below. Consequently there exists u ∈ H1
0 (0, T ) such that

I(u) = min
v∈H1

0 (0,T )
I(v).

Clearly, u ∈ W 2,1(0, T ) and is a solution of problem (11). To check that u ≥ 0, we test the
equation in (11) against u−. Using the fact that f(t, s) ≥ 0 for a.e. t ∈ [0, T ] and every s ≤ 0,
we get ∫ T

0

ψ((u−)′)(u−)′ dt ≤ 0,

thus yielding u− = 0 by the monotonicity of ψ. We finally verify that u 6= 0. Let ζ ∈ H1
0 (0, T )

be such that 0 ≤ ζ ≤ 1, ζ(t) = 0 for every t ∈ [0, a]∪ [b, T ] and ζ(t) = 1 for every t ∈ [c, d]. By
assumptions (h2) and (h3) there exist a constant K > 0 and a strictly decreasing sequence
(cn)n satisfying

lim
n→+∞

cn = 0,

lim
n→+∞

∫ d

c

F (t, cn)

c2n
dt = +∞, (13)

F (t, cnζ(t)) ≥ −Kc2nζ(t)2 for a.e. t ∈ [a, b] and all n.

We easily compute, using also (10),

I(cnζ) =

∫ T

0

Ψ(cnζ
′) dt−

∫ T

0

F (t, cnζ) dt

≤ c2n
(

1
2σ‖ζ

′‖2L2 −
∫ d

c

F (t, cn)

c2n
dt+K‖ζ‖2L2

)
.

Hence, we infer
I(u) ≤ I(cnζ) < 0

for all large n, yielding u 6= 0.
Therefore we conclude that u is a positive solution of (11) and hence, by the Claim in

Step 1, u is a positive solution of (1).
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Example 2.1. Take p ∈ ]0, 1[ and q ∈ ]1,+∞[. Let m,n : [0, T ]→ R be continuous functions,
with m+ > 0. Then Theorem 2.1 yields the existence of a positive solution of the problem−

(
u′/
√

1− u′2
)′

= m(t)up + n(t)uq in ]0, T [,

u(0) = u(T ) = 0.

The case of finite non-zero slope

Let us introduce the weighted eigenvalue problem{
−u′′ = λm(t)u in ]0, T [,

u(0) = u(T ) = 0,
(14)

where it is assumed that

(h5) m ∈ L∞(0, T ) is such that m+ > 0.

Denote by K : L1(0, T )→ C1
0 ([0, T ]) the operator which sends any function v ∈ L1(0, T ) onto

the unique solution w ∈W 2,1(0, T ) of{
−w′′ = v in ]0, T [,

w(0) = w(T ) = 0.

Let L : L1(0, T ) → C1
0 ([0, T ]) be defined by L(u) = K(mu). Both K and L are completely

continuous and (14) is equivalent to
u = λL(u),

so that the eigenvalues of (14) are precisely the characteristic values of L.

Lemma 2.2. Assume (h5). Then the non-negative eigenvalues of problem (14) form a se-
quence (λn(m))n such that

(0 <)λ1(m) < · · · < λn(m) < . . . .

The eigenspace corresponding to the minimum eigenvalue λ1(m) is spanned by an eigenfunc-
tion ϕ1 with ϕ1 � 0. Moreover, the algebraic multiplicity of λ1(m) as a characteristic value of
L is 1. Finally, all eigenfunctions corresponding to any eigenvalue λn(m) with n > 1 change
sign.

This result is standard: its proof essentially follows from [7] and [6]. Note that in [6]
the weight function m was supposed to be continuous, but turning to the current hypothesis
requires only minor changes.

Theorem 2.3. Assume (h5),

(h6) f : [0, T ] × R → R satisfies the L∞-Carathéodory conditions, i.e., for a.e. t ∈ [0, T ],
f(t, ·) : R → R is continuous, for every s ∈ R, f(·, s) : [0, T ] → R is measurable, and
for each r > 0 there exists γ ∈ L∞(0, T ) such that |f(t, s)| ≤ γ(t) for a.e. t ∈ [0, T ] and
every s ∈ [−r, r],

(h7) lim
s→0+

f(t, s)

s
= m(t) uniformly a.e. in [0, T ].



9

Then there exists λ∗ ∈ ]0, λ1(m)] such that, for all λ ∈ ]0, λ∗[, the problem−
(
u′/
√

1− u′2
)′

= λf(t, u) in ]0, T [,

u(0) = u(T ) = 0
(15)

has no positive solutions and, for all λ > λ1(m), it has at least one strictly positive solution.

Proof. Step 1. An equivalent formulation. Let us define a function f̃ : [0, T ] × R → R by
setting, for a.e. t ∈ [0, T ],

f̃(t, s) =


f(t, s) if 0 ≤ s ≤ T/2,
0 if s ≥ T ,
linear if T/2 < s < T ,

−f̃(t,−s) if s < 0.

Like in Step 1 of the proof of Theorem 2.1, we see that, within the context of positive solutions,
problem (15) is equivalent to the same problem with f replaced by f̃ . Clearly, f̃ satisfies all the
properties assumed in the statement of the theorem. Furthermore, f̃(t, ·) is an odd function
for a.e. t ∈ [0, T ]. In the sequel of the proof we shall replace f with f̃ ; however, for the sake
of simplicity, the modified function f̃ will still be denoted by f . Next, let us define h : R→ R
by setting

h(y) =

{
(1− y2)3/2 if |y| ≤ 1,

0 if |y| > 1.

Claim. A function u ∈ W 2,1(0, T ) is a positive solution of (15) if and only if it is a positive
solution of the problem {

−u′′ = λf(t, u)h(u′) in ]0, T [,

u(0) = u(T ) = 0.
(16)

To verify this it is enough to assume (h1) in place of (h6). It is clear that a positive solution
u ∈ W 2,1(0, T ) of (15) is a positive solution of (16) as well. Conversely, suppose that u ∈
W 2,1(0, T ) is a positive solution of (16). We aim to show that ‖u′‖∞ < 1. Assume by
contradiction that this is not the case. Then we can easily find an interval [a, b] ⊆ [0, T ] such
that, either u′(a) = 0, 0 < |u′(t)| < 1 in ]a, b[ and |u′(b)| = 1, or |u′(a)| = 1, 0 < |u′(t)| < 1
in ]a, b[ and u′(b) = 0. Suppose the former case occurs (in the latter one the argument would
be similar). The function u satisfies the equation

−
(
φ(u′)

)′
= λf(t, u)

in [a, b[. For each t ∈ ]a, b[, integrating over the interval [a, t] and using (h1), we obtain

|φ(u′(t))| ≤ λ
∫ t

a

γ(ξ) dξ,

with γ ∈ L1(0, T ) such that |f(t, s)| ≤ γ(t) for a.e. t ∈ [0, T ] and every s such that |s| ≤ ‖u‖∞.
Hence we get

|u′(t)| ≤ φ−1(λ‖γ‖L1)

for every t ∈ [a, b[. Since φ−1(λ‖γ‖L1) < 1, taking the limit as t → b− we obtain the
contradiction |u′(b)| < 1. Therefore ‖u′‖∞ < 1 and, as a consequence, u is a positive solution
of (15).
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Step 2. A bifurcation result. By (h6) and (h7) we can write, for a.e. t ∈ [0, T ] and every
s ∈ R,

f(t, s) = (m(t) + l(t, s))s,

where l : [0, T ]× R→ R satisfies the L∞-Carathéodory conditions and

lim
s→0

l(t, s) = 0 (17)

uniformly a.e. in [0, T ]. Let us set, for convenience, k(y) = h(y)− 1, for y ∈ R. We have

lim
y→0

k(y)

y
= 0. (18)

Define the operator H : R× C1
0 ([0, T ])→ C1

0 ([0, T ]) by

H(λ, u) = λK
((
l(·, u) + (m+ l(·, u))k(u′)

)
u
)
.

Clearly, H is completely continuous and, by (17) and (18),

lim
‖u‖C1→0

‖H(λ, u)‖C1

‖u‖C1

= 0,

uniformly with respect to λ varying in bounded intervals. Observe that, for any λ, the couple
(λ, u) ∈ R× C1

0 ([0, T ]), with u > 0, is a solution of the equation

u = λL(u) +H(λ, u) (19)

if and only if u is a positive solution of (15). We say that a solution (λ, u) ∈ R × C1
0 ([0, T ])

of (19) is non-trivial if u 6= 0. Denote by S the closure in R × C1
0 ([0, T ]) of the set of all

non-trivial solutions (λ, u) of (19) with λ > 0. Note that the set {u ∈ C1
0 ([0, T ]) : (λ, u) ∈ S}

is bounded in C1
0 ([0, T ]). Moreover, for every λ̄ > 0 there exists a constant M > 0 such that

‖u‖W 2,∞ ≤M (20)

for all (λ, u) ∈ S with λ ∈ [0, λ̄]. Theorem 1.3 in [10] yields the existence of a maximal closed
connected set C in S such that (λ1(m), 0) ∈ C and at least one of the following conditions
holds:

(i) C is unbounded in R× C1
0 ([0, T ]),

(ii) there exists a characteristic value λ̂(m) of L, with λ̂(m) 6= λ1(m), such that (λ̂(m), 0) ∈
C.

In what follows we prove several properties which will eventually lead to the conclusion.

Claim 1. Suppose (λ̂, 0) ∈ S, then λ̂ is a characteristic value of L. Let
(
(λn, un)

)
n

be a

sequence of non-trivial solutions of (19), converging to (λ̂, 0) in R × C1
0 ([0, T ]). Setting, for

all n, vn = un/‖un‖C1 , we have

vn = λnL(vn) +
H(λn, un)

‖un‖C1

. (21)

As (vn)n is bounded in C1
0 ([0, T ]) and L is completely continuous, there exist w ∈ C1

0 ([0, T ])
and a subsequence of (vn)n, that we denote in the same way, such that lim

n→+∞
L(vn) = w in

C1
0 ([0, T ]). Hence we conclude by (21) that lim

n→+∞
vn = λ̂w in C1

0 ([0, T ]). Therefore we have

w = λ̂L(w), with ‖λ̂w‖C1 = 1, and in particular w 6= 0. Accordingly, λ̂ is a characteristic
value of L.
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Claim 2. There exists ε > 0 such that S ⊂ [ε,+∞[ × C1
0 ([0, T ]). By contradiction, we can

suppose that there exists a sequence
(
(λn, un)

)
n

of non-trivial solutions of (19), converging

in R × C1
0 ([0, T ]) to some (0, u) ∈ R × C1

0 ([0, T ]). Arguing as in the proof of Claim 1, we
set vn = un/‖un‖C1 and conclude that, possibly passing to a subsequence, lim

n→+∞
vn = 0 in

C1
0 ([0, T ]), which contradicts ‖vn‖C1 = 1.

Claim 3. (λ, u) ∈ C if and only if (λ,−u) ∈ C. This follows from the fact that f , and hence
H, is odd with respect to the second variable.

In the sequel we denote by P the positive cone in C1
0 ([0, T ]), i.e., P = {u ∈ C1

0 ([0, T ]) :
u ≥ 0}, by intP its interior and by ∂P its boundary.

Claim 4. There exists a neighbourhood U of (λ1(m), 0) in R × C1
0 ([0, T ]) such that, for

all (λ, u) ∈ C ∩ U , either (λ, u) = (λ1(m), 0), or u ∈ intP , or −u ∈ intP . Assume, by
contradiction, that there is a sequence

(
(λn, un)

)
n

in C \{(λ1(m), 0)} converging to (λ1(m), 0)

in R×C1
0 ([0, T ]) and such that, for every n, both un 6∈ intP and −un 6∈ intP . By Lemma 2.2

and Claim 1, without loss of generality we can assume that un 6= 0 for all n. Then, setting
vn = un/‖un‖C1 and arguing as in the proof of Claim 1, we conclude that, possibly passing
to a subsequence, lim

n→+∞
L(vn) = w in C1

0 ([0, T ]), with w = λ1(m)L(w) and w 6= 0. By

Lemma 2.2, we conclude that either w ∈ intP , or −w ∈ intP , and hence either un ∈ intP or
−un ∈ intP for infinitely many n, which is a contradiction.

Claim 5. Assume (λ, u) ∈ C and u ∈ ∂P . Suppose further that (λ, u) is the limit of a sequence(
(λn, un)

)
n

in C, with un > 0 for all n. Then (λ, u) = (λ1(m), 0). We first show that u = 0.
Suppose, by contradiction, that u > 0. By (h6) we can take c > 0 such that

λ(m(t) + l(t, u))h(u′) + c ≥ 1

a.e. in [0, T ]. Hence we get

−u′′ + cu =
(
λ(m(t) + l(t, u))h(u′) + c

)
u

a.e. in [0, T ]. As
(
λ(m+ l(·, u))h(u′) + c

)
u > 0, the strong maximum principle yields u� 0,

contradicting u ∈ ∂P . Therefore we conclude that u = 0. We next show that λ = λ1(m).
By Claim 1, λ is a characteristic value of L. Setting vn = un/‖un‖C1 and arguing as in the
proof of Claim 1, we conclude that, possibly passing to a subsequence, lim

n→+∞
L(vn) = w in

C1
0 ([0, T ]), where w is an eigenfunction of (14) associated with λ. Since w > 0, we conclude

that λ = λ1(m).

Claim 6. For all (λ, u) ∈ C, either u ∈ intP , or −u ∈ intP , or (λ, u) = (λ1(m), 0). Set

E = {(λ, u) ∈ C : u 6∈ intP,−u 6∈ intP, (λ, u) 6= (λ1(m), 0)}.

By Claim 4, E is a closed subset of C. Let us verify that E is open in C. Suppose this is not
the case. Then there exist (λ, u) ∈ E and a sequence

(
(λn, un)

)
n

in C \ E converging to (λ, u).
We may assume that un ∈ intP for all n; hence, by Claim 5, we obtain (λ, u) = (λ1(m), 0),
contradicting the fact that (λ, u) ∈ E . As C is connected and (λ1(m), 0) ∈ C \ E , we conclude
that E = ∅.

We are now in position of getting the conclusions of the theorem. By Claim 6 we have
that, if (λ̂(m), 0) ∈ C, then λ̂(m) = λ1(m) and hence condition (ii) above does not hold.
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Consequently, condition (i) is valid and therefore, by (20), C is unbounded with respect to λ.
Hence, using Claim 2, we infer that for all λ > λ1(m) problem (15) has at least one non-trivial
solution. From Claim 3 and Claim 6 we deduce that at least one of those solutions belongs
to intP . Thus we conclude that, for all λ > λ1(m), problem (15) has at least one strictly
positive solution.

Finally, let Λ be the set of all λ > 0 such that problem (15) has at least one positive
solution and define λ∗ = inf Λ. By Claim 2 we obtain λ∗ > 0. Then we conclude that, for all
λ ∈ ]0, λ∗[, problem (15) has no positive solutions.

Remark 2.2 If in addition to all the assumptions of Theorem 2.3 we suppose that

(h8) 0 ≤ f(t, s) ≤ m(t)s for a.e. t ∈ [0, T ] and every s ∈ [0,+∞[,

then we see that λ∗ = λ̂1(m). Indeed, fix λ > 0 for which there exists a positive, and hence

strictly positive, solution u of (15). Set m̃ = f(t,u)
u h(u′) a.e. in [0, T ]. By (h6), (h8) and the

definition of h, we have that m̃ ∈ L∞(0, T ) and m̃ > 0. Notice that u is a positive solution of
the problem {

−u′′ = λm̃(t)u in ]0, T [,

u(0) = u(T ) = 0.

Lemma 2.2 implies that λ = λ1(m̃). On the other hand, from (h8) we have m̃ ≤ m a.e. in
[0, T ]. Hence, the monotone dependence of eigenvalues on weights (cf. [7, Proposition 4])
yields λ1(m̃) ≥ λ1(m), i.e. λ ≥ λ1(m).

Remark 2.3 Assume (h1) and

(h9) lim sup
s→0+

f(t, s)

s
< +∞ uniformly a.e. in [0, T ].

Then there exists λ∗ > 0 such that, for all λ ∈ ]0, λ∗[, problem (15) has no positive solutions.
By contradiction, suppose that there exists a decreasing sequence (λn)n such that lim

n→+∞
λn =

0 and, for each n, problem (15), with λ = λn, has at least one positive solution un. We easily
see, using (h6) too, that

lim
n→+∞

‖un‖W 2,1 = 0.

Assumption (h9) yields the existence of constants δ > 0 and c > 0 such that f(t, s) ≤ cs, for
a.e. t ∈ [0, T ] and every s ∈ [0, δ]. Take n such that ‖un‖∞ ≤ δ and cλn < (π/T )2. Then we
obtain

−u′′n(t) = λnf
(
t, un(t)

)
h
(
u′n(t)

)
≤ λncun(t),

for a.e. t ∈ [0, T ], which in turn yields∫ T

0

|u′n|2dt ≤ λnc
∫ T

0

|un|2dt.

A contradiction follows from the Poincaré inequality.
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2.2 Existence of at least two positive solutions

The case of zero slope

Theorem 2.4. Suppose that

(h10) g : [0, T ]× R→ R satisfies the L1-Carathéodory conditions

and set G(t, s) =

∫ s

0

g(t, ξ) dξ. Assume further

(h11) there exists w ∈ H1
0 (0, T ), with w > 0 and ‖w′‖∞ < 1, such that

∫ T

0

G(t, w) dt > 0,

(h12) lim sup
s→0+

G(t, s)

s2
≤ 0 uniformly a.e. in [0, T ],

(h13) g(t, 0) = 0 for a.e. t ∈ [0, T ].

Then there exists µ∗ > 0 such that, for all µ > µ∗, the problem−
(
u′/
√

1− u′2
)′

= µg(t, u) in ]0, T [,

u(0) = u(T ) = 0,
(22)

has at least two positive solutions.

Proof. Arguing as in Step 1 of the proof of Theorem 2.1, we can replace g with the function
g̃ : [0, T ]× R→ R defined by

g̃(t, s) =


0 if s ≤ 0 or s ≥ T ,
g(t, s) if 0 < s ≤ T/2,
linear if T/2 < s < T ,

and observe once more that, within the context of positive solutions of (22), problem (22)
is equivalent to the same problem with g replaced by g̃. In the sequel of the proof we shall
replace g with g̃, however, for the sake of simplicity in the notation, the modified function g̃
will still be denoted by g. Clearly, such a function satisfies all the properties assumed in the
statement of the theorem.

Let w ∈ H1
0 (0, T ) be the function with the properties described in (h11) and let µ∗ be such

that ∫ T

0

Φ(w′) dt− µ∗
∫ T

0

G(t, w) dt = 0, (23)

where, for y ∈ ]− 1, 1[, Φ(y) =

∫ y

0

φ(ξ)dξ and φ has been defined in (6). Let us fix now

µ > µ∗. By (h10) there exists γ ∈ L1(0, T ) such that

µ|g(t, s)| ≤ γ(t)

for a.e. t ∈ [0, T ] and every s ∈ R. Without restriction we may also assume that

φ(‖w′‖∞) < ‖γ‖L1 .
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We define ψ as in (8), Ψ as in (9), and Iµ : H1
0 (0, T )→ R by setting

Iµ(v) =

∫ T

0

Ψ(v′) dt− µ
∫ T

0

G(t, v) dt.

Iµ is C1 and weakly lower semicontinuous; moreover, it is coercive and bounded from below.
Let u1 ∈ H1

0 (0, T ) be such that

Iµ(u1) = min
v∈H1

0 (0,T )
Iµ(v)

and observe that, by (23),
Iµ(u1) < 0. (24)

Note that u1 ∈W 2,1(0, T ) and is a non-trivial solution of the problem{
−
(
ψ(u′)

)′
= µg(t, u) in ]0, T [,

u(0) = u(T ) = 0.
(25)

Using the fact that g(t, s) = 0 for a.e. t ∈ [0, T ] and every s ≤ 0, and arguing as in the proof
of Theorem 2.1, we see that any solution u of (25) satisfies u ≥ 0. In particular u1 is a positive
solution of (25). A second solution u2 can be found using the mountain pass theorem (see,
e.g., [1]). Note that the coercivity of Iµ implies that the Palais-Smale condition holds. Let
us check that the functional has a mountain pass geometry near the origin. Take ε > 0 such
that

1
2 − µε

(
T
π

)2
> 0,

By assumption (h12) there exists r such that 0 < r < ‖u1‖H1
0

and

G(t, s) ≤ εs2

for a.e. t ∈ [0, T ] and every s ∈ [0, r]. Let c∞ > 1 be such that

‖v‖∞ ≤ c∞ ‖v‖H1
0

(26)

for all v ∈ H1
0 (0, T ). Therefore, for all v ∈ H1

0 (0, T ), with 0 < ‖v‖H1
0
≤ r/c∞, we have, using

also (10),

Iµ(v) =

∫ T

0

Ψ(v′) dt− µ
∫ T

0

G(t, v) dt

≥ 1
2

∫ T

0

|v′|2 dt− µε
∫ T

0

|v|2 dt ≥ ‖v‖2H1
0

(
1
2 − µε

(
T
π

)2)
> 0.

Since (24) also holds, we conclude that the functional Iµ has a critical point u2, with Iµ(u2) >
0. Therefore u2 is a positive solution of (25), which is different from u1. By the Claim in
Step 1 of Theorem 2.1, we finally conclude that u1 and u2 are actually solutions of problem
(22).

Remark 2.4 In addition to (h10), (h11), (h12) and (h13) assume

(h14) lim sup
s→0+

g(t, s)

s
< +∞ uniformly a.e. in [0, T ].
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Then, by Remark 2.3 there exists µ∗ ∈ ]0, µ∗] such that, for all µ ∈ ]0, µ∗[, problem (22) has
no positive solutions. If we further assume

(h15) g(t, s) ≥ 0 for a.e. t ∈ [0, T ] and every s ∈ [0, T/2],

then we can also conclude that, in case µ∗ < µ∗, problem (22) has at least one positive
solution for all µ ∈ ]µ∗, µ

∗]. To prove this last statement we consider problem (25), where ψ,
depending on µ∗, is fixed and µ can vary in ]0, µ∗]. Let M be the set of all µ ∈ ]0, µ∗] such
that problem (25) has at least one positive solution. Let us verify that M is an interval. Set
µ∗ = infM and pick any µ1 ∈ ]µ∗, µ

∗]. Then there exists µ2 ≤ µ1 such that problem (25),
with µ = µ2, has at least one positive solution α. By (h15), α is a lower solution of problem
(25) with µ = µ1. On the other hand, by the way we modified g, any constant β ≥ T is an
upper solution of problem (25) for every µ. Then there exists a solution u of (25) with µ = µ1,
such that α ≤ u ≤ β (see, e.g., [9, Lemma 2.1]). Thus we conclude that, for all µ ∈ ]µ∗, µ

∗]
problem (25) has at least one positive solution u. By the Claim in Step 1 of Theorem 2.1, u
is a solution of (22) as well. Accordingly, for all µ ∈ ]µ∗, µ

∗] problem (22) has at least one
positive solution.

Example 2.2. Take q ∈ ]1,+∞[. Let n : [0, T ]→ R be a continuous function, with n+ > 0.
Then Theorem 2.4 and Remark 2.4 yield the existence of µ∗ and µ∗, with 0 < µ∗ ≤ µ∗ such
that the problem −

(
u′/
√

1− u′2
)′

= µn(t)uq in ]0, T [,

u(0) = u(T ) = 0,

has no positive solutions if µ < µ∗, while it has at least two positive solutions if µ > µ∗.

2.3 Existence of at least three positive solutions

A two-parameter problem

Theorem 2.5. Assume (h1), (h2), (h3), (h4), (h10) (h11), (h12), (h13) and

(h16) lim inf
s→0+

G(t, s)

s2
> −∞ uniformly a.e. in [a, b], with a and b defined in (h2).

Then there exists µ∗ > 0 and a function λ : ]µ∗,+∞[→ R+
0 ∪ {+∞} such that, for all µ > µ∗

and all λ ∈ ]0, λ(µ)[, the problem−
(
u′/
√

1− u′2
)′

= λf(t, u) + µg(t, u) in ]0, T [,

u(0) = u(T ) = 0,
(27)

has at least three positive solutions.

Proof. Like in the proofs of Theorem 2.1 and Theorem 2.4 we replace f and g with functions,
we still denote by f and g, which satisfy all assumptions of the theorem, agree with the
original functions in [0, T ] × [0, T/2], vanish outside the rectangle [0, T ] × [−T, T ], and such
that f(t, s) ≥ 0 and g(t, s) = 0 for a.e. t ∈ [0, T ] and every s ≤ 0. Hence, in particular, we
can find constants cf , cg > 0 such that∫ T

0

|F (t, v)| dt ≤ cf and

∫ T

0

G(t, v) dt ≤ cg
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for all v ∈ H1
0 (0, T ). The proof will follow closely the lines of the proof of Theorem 2.4. The

properties of g yield, for large µ, a first solution as a global minimizer and a second solution
as a mountain pass critical point. Next, for small λ, the properties of f produce an additional
local minimum point close to the origin.

As in the proof of Theorem 2.4 let w ∈ H1
0 (0, T ) be the function with the properties

described in (h11) and let µ∗ be such that∫ T

0

Φ(w′) dt− µ∗
∫ T

0

G(t, w) dt+ 2cf = 0. (28)

We fix now µ > µ∗. By (h1) and (h10) there exists γ ∈ L1(0, T ) such that

|f(t, s)|+ µ|g(t, s)| ≤ γ(t)

for a.e. t ∈ [0, T ] and every s ∈ R. Without restriction we can also suppose that

φ(‖w′‖∞) < ‖γ‖L1 .

We define ψ as in (8), Ψ as in (9) and, for all λ > 0, Iλ,µ : H1
0 (0, T )→ R by setting

Iλ,µ(v) =

∫ T

0

Ψ(v′) dt− λ
∫ T

0

F (t, v) dt− µ
∫ T

0

G(t, v) dt.

Iλ,µ is C1 and weakly lower semicontinuous; moreover, it is coercive and bounded from below.
In particular Iλ,µ satisfies the Palais-Smale condition. Consequently, for each λ > 0 there
exists u1 ∈ H1

0 (0, T ) such that

Iλ,µ(u1) = min
v∈H1

0 (0,T )
Iλ,µ(v).

Observe that u1 ∈W 2,1(0, T ) and is a solution of the problem{
−
(
ψ(u′)

)′
= λf(t, u) + µg(t, u) in ]0, T [,

u(0) = u(T ) = 0.
(29)

Note also that, by (28), if λ ∈ ]0, 1[ we have

Iλ,µ(u1) ≤ Iλ,µ(w) < −cf < 0. (30)

Using the fact that λf(t, s) + µg(t, s) ≥ 0 for a.e. t ∈ [0, T ] and every s ≤ 0, and arguing as
in the proof of Theorem 2.1, we see that any solution u of (29) satisfies u ≥ 0. Therefore u1
is a positive solution of (29).

Like in the proof of Theorem 2.4 the second solution will be found by using the mountain
pass theorem. We take ε > 0 such that

1
2 − µε

(
T
π

)2
> 0.

By assumption (h12) there exists r such that 0 < r < ‖w‖H1
0

and

G(t, s) ≤ εs2
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for a.e. t ∈ [0, T ] and every s ∈ [0, r]. Take now v ∈ H1
0 (0, T ), with 0 < ‖v‖H1

0
≤ r/c∞ and

c∞ > 1 defined as in (26). Therefore we have, using also (10),∫ T

0

Ψ(v′) dt− µ
∫ T

0

G(t, v) dt ≥ 1
2

∫ T

0

|v′|2 dt− µε
∫ T

0

|v|2 dt

≥ ‖v‖2H1
0

(
1
2 − µε

(
T
π

)2)
> 0. (31)

Take a constant λ(µ) ∈ ]0, 1[ such that

r2

c2∞

(
1
2 − µε

(
T
π

)2)− λ(µ)cf > 0

and pick any λ ∈ ]0, λ(µ)[. By (31) we have

Iλ,µ(v) > 0

for all v ∈ H1
0 (0, T ) such that ‖v‖H1

0
= r/c∞. Since also (30) holds, by the mountain pass

theorem we conclude that the functional Iλ,µ has a critical point u2, with Iλ,µ(u2) > 0.
Therefore u2 is a positive solution of (29). Since Iλ,µ(u1) < 0 we have u1 6= u2.

Finally, we observe that there exists a local minimum point u3 of Iλ,µ, with ‖u3‖H1
0
<

r/c∞. To verify that u3 6= 0 we argue as in the proof of Theorem 2.1. Consider a function
ζ ∈ H1

0 (0, T ), a constant K > 0 and a strictly decreasing sequence (cn)n as in (13), with the
further property, which follows from (h16), that

G(t, cnζ(t)) ≥ −Kc2nζ(t)2

for a.e. t ∈ [a, b] and all n. Then we compute, using also (10),

Iλ,µ(cnζ) =

∫ T

0

Ψ(cnζ
′) dt− λ

∫ T

0

F (t, cnζ) dt− µ
∫ T

0

G(t, cnζ) dt

≤ c2n
(

1
2σ‖ζ

′‖2L2 − λ
∫ d

c

F (t, cn)

c2n
dt+ (λ+ µ)K‖ζ‖2L2

)
.

Hence, we conclude that Iλ,µ(u3) ≤ Iλ,µ(cnζ) < 0 for large n and, in particular, u3 6= 0.
Observe that, by (31), −cf < Iλ,µ(u3). Since, by (30), Iλ,µ(u1) < −cf , we conclude that
u1 6= u3. Therefore u1, u2 and u3 are positive solutions of (29) and, by the Claim in Step 1
of Theorem 2.1, of (27) as well.

Example 2.3. Take p ∈ ]0, 1[ and q ∈ ]1,+∞[. Let m,n : [0, T ]→ R be continuous functions,
with m+ > 0 and n+ > 0. Then Theorem 2.5 yields the existence of a constant µ∗ > 0 and
of a function λ : ]µ∗,+∞[→ R+

0 ∪ {+∞} such that, for all µ > µ∗ and all λ ∈ ]0, λ(µ)[, the
problem −

(
u′/
√

1− u′2
)′

= λm(t)up + µn(t)uq in ]0, T [,

u(0) = u(T ) = 0

has at least three positive solutions.



18

2.4 Existence of infinitely many positive solutions

The case of an oscillatory potential

Theorem 2.6. Assume (h1), (h2), (h3), (h4) and

(h17) there exists a continuous function l : [0, T/2] → R such that f(t, s) ≤ l(s), for a.e.
t ∈ [0, T ] and every s ∈ [0, T/2], and

lim inf
s→0+

L(s)

s2
= 0,

where L(s) =

∫ s

0

l(ξ) dξ.

Then there exists a sequence (uk)k of positive solutions of (1) such that lim
k→+∞

‖uk‖∞ = 0.

Proof. Like in the proof of Theorem 2.1 we replace f with a function, we still denote by
f , which satisfies all the assumptions of the theorem, agrees with the original function in
[0, T ] × [0, T/2], vanishes outside the rectangle [0, T ] × [−T, T ], and is such that f(t, s) ≥ 0
for a.e. t ∈ [0, T ] and every s ≤ 0.

Suppose first that there exists a strictly decreasing sequence (Rk)k such that lim
k→+∞

Rk = 0

and l(Rk) ≤ 0. In this case we set, for each k, βk = Rk.
Suppose next that there exists r > 0 such that l(s) > 0 for every s ∈ ]0, r]. By (h17) we

can find a strictly decreasing sequence (Rk)k such that lim
k→+∞

Rk = 0 and

lim
k→+∞

L(Rk)

R2
k

= 0. (32)

We set, for s ≥ 0,

κ(s) =
1 + s√
2 + s

.

For each R ∈ ]0, r] we define

T (R) =

∫ R

0

κ
(
L(R)− L(s)

)√
L(R)− L(s)

ds =

∫ 1

0

Rκ
(
L(R)− L(Rs)

)√
L(R)− L(Rs)

ds.

This function is called the time-map and is such that the problem−
(
u′/
√

1− u′2
)′

= l(u) in ]0, T (R)[,

u(0) = R, u′(0) = 0,
(33)

has a positive solution satisfying u(T (R)) = 0. We easily have, for each R ∈ ]0, r],

T (R) ≥ R√
2L(R)

.

Hence, by (32) we obtain
lim

k→+∞
T (Rk) = +∞.
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Consequently, there exists a sequence (βk)k of solutions of the equation in (33), which are
strictly positive on [0, T ] and such that

lim
k→+∞

βk(t) = 0 (34)

uniformly in [0, T ]. We define ψ as in (8), Ψ as in (9) and I as in (12).
In both cases, for each k, βk is an upper solution of the problem{

−
(
ψ(u′)

)′
= f(t, u) in ]0, T [,

u(0) = u(T ) = 0
(35)

and, by (h4), α = 0 is a lower solution of (35). Applying [9, Lemma 2.1] yields the existence
of a solution uk of (35) such that α ≤ uk ≤ βk and

I(uk) = min
v∈H1

0 (0,T )
α≤v≤βk

I(v).

To verify that uk 6= 0 we argue as in the proof of Theorem 2.1. Consider a function ζ ∈
H1

0 (0, T ), a constant K > 0 and a strictly decreasing sequence (cn)n as in (13). Then we
easily compute, using also (10),

I(cnζ) =

∫ T

0

Ψ(cnζ
′) dt−

∫ T

0

F (t, cnζ) dt

≤ c2n
(

1
2σ‖ζ

′‖2L2 −
∫ d

c

F (t, cn)

c2n
dt+K‖ζ‖2L2

)
.

Hence we get I(uk) ≤ I(cnζ) < 0, for large n, and we conclude that uk 6= 0. Therefore uk
is a positive solution of (35). Hence, by the Claim in Step 1, it is a positive solution of (1).
As (34) holds uniformly on [0, T ], possibly passing to a subsequence, we may assume that
βk+1 < βk and maxβk+1 < maxuk for all k. Hence we obtain uk+1 6= ui for each i ≤ k.

Example 2.4. Take p ∈ ]0, 1[ and q ∈ ]1,+∞[. Define F : R→ R by

F (s) = (sp+1 + sq+1) + (sp+1 − sq+1) sin(ln |s|)

if s 6= 0 and F (0) = 0. Set f = F ′. Then Theorem 2.6 yields the existence of infinitely many
positive solutions of the problem−

(
u′/
√

1− u′2
)′

= f(u) in ]0, T [,

u(0) = u(T ) = 0.
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