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Abstract

We develop a lower and upper solutions method for the periodic problem associated with
the capillarity equation

−
“
u′/
p

1 + u′2
”′

= f(t, u)

in the space of bounded variation functions. We get the existence of periodic solutions
both in the case where the lower solution α and the upper solution β satisfy α ≤ β, and
in the case where α 6≤ β. In the former case we also prove regularity and order stability
of solutions.
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1 Introduction

Let us consider the quasilinear ordinary differential equation

−
(
u′/
√

1 + u′2
)′

= f(t, u). (1)

This equation, together with its N -dimensional counterpart

−div
(
∇u/

√
1 + |∇u|2

)
= f(x, u), (2)

∗Research supported by G.N.A.M.P.A., in the frame of the project “Soluzioni periodiche di alcune classi
di equazioni differenziali ordinarie”, and by M.I.U.R., in the frame of the P.R.I.N. “Equazioni differenziali
ordinarie e applicazioni”.
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plays an important role in various physical and geometrical questions: capillarity-type prob-
lems in fluid mechanics, flux limited diffusion phenomena, prescribed mean curvature problems
(see, e.g., [18, 21, 19]).

The solvability of the T -periodic problem associated with (1), as well as of more general
problems of the type

−
(
φ(u′)

)′ = f(t, u) in ]0, T [, u(0) = u(T ), u′(0) = u′(T ), (3)

with φ : R → R a continuous bounded increasing function and f : [0, T ] × R → R, say, con-
tinuous, has received considerable attention in some recent papers: the existence of classical
solutions has been studied in [4, 7, 5, 8, 9, 6, 25] using topological methods, whereas the ex-
istence of bounded variation solutions has been discussed in [28, 29] using nonsmooth critical
point theory.

The aim of this paper is to develop a lower and upper solutions method for the T -periodic
problem associated with (1) in a variational setting. Formally (1) is the Euler-Lagrange
equation of the functional

H(v) =
∫ T

0

√
1 + v′2 dt−

∫ T

0

F (t, v) dt,

where ∂
∂sF (t, s) = f(t, s). The functional H is well-defined in the space W 1,1

T (0, T ) of all
absolutely continuous functions v satisfying the periodicity conditions v(0) = v(T ). Yet this
space, which could be a natural candidate where to settle the problem, is not a favourable
framework to deal with critical point theory. Therefore, as we did in [28, 29], we replace the
space W 1,1

T (0, T ) with the space BV (0, T ) of bounded variation functions and the functionalH
with an appropriate relaxation, which keeps record of the periodic boundary conditions. Since
the relaxed functional is not differentiable in BV (0, T ), but is just the sum of a convex term
and of a differentiable one, we suitably generalize the notion of critical point, interpreting
it as the solution of a certain variational inequality. Thus the solutions of the T -periodic
problem associated with (1) we find are weaker and less regular than the ones obtained, e.g.,
in [4, 7, 5, 8, 9, 6, 25]; hence an additional effort for studying the regularity of the obtained
solutions is required.

The paper is organized as follows. Section 2 is devoted to introduce some definitions and
to recall some preliminary results that will be extensively used in the sequel. In Section 3
we introduce two notions, of increasing generality, of lower and upper solutions for the T -
periodic problem associated with (1). A discussion of some explicit conditions which yield
the existence of lower and upper solutions is also performed. In Section 4 we present our
existence results for the T -periodic problem associated with (1), in the presence of a lower
solution α and of an upper solution β. If α ≤ β, we prove the existence of a minimum solution
v and of a maximum solution w lying between α and β. Here we follow rather closely the
approach we introduced in [27] to deal with the mixed problem for (2). In particular the
existence of a solution which is a local minimizer of the associated functional is obtained. It
is worth noticing that a similar existence result for classical solutions of (3) was obtained in
[8, 9] using topological degree, but there a one-sided boundedness condition on the right-hand
f of the equation had to be assumed, with bound depending on the size of the range of φ
and on the period T . We see that such an assumption can be completely removed using our
method. If α 6≤ β, we are still able to prove the existence of a solution, but now we must put
a control on f with respect to the first branch of the Dancer-Fuč́ık spectrum of the T -periodic
problem for the 1-Laplace operator, as defined in [29]. Our approach here is perturbative:
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solutions of the T -periodic problem associated with (1) are obtained as limits in BV (0, T ) of
solutions of an approximating sequence of regularized problems. In this context a stronger
notion of lower and upper solutions is needed and no localization information is obtained. It
remains an open question to prove this result by a more direct method, which could probably
allow to overcome such limitations. Nevertheless, these existence results yield rather general
and flexible tools to investigate the solvability of the T -periodic problem associated with (1),
as we illustrate by few simple examples. A non-existence result, witnessing the sharpness of
some of the considered assumptions, completes Section 4. In Section 5 we turn to prove the
regularity of the bounded variation solutions, when a regularity and monotonicity condition
is assumed on f . Here a regularity result for solutions of the Dirichlet problem associated
with (1), we recently proved in [30], plays a central role. In Section 6 we show how certain
stability properties of the solutions of the T -periodic problem associated with (1) can be
detected by the use of lower and upper solutions. In particular we prove the order stability,
as defined in [20], of the minimum and of the maximum solution lying between a pair of
lower and upper solutions α and β satisfying α ≤ β. The use of this concept of stability
is motivated by the fact that, even in the case where all solutions between α and β are
regular, we cannot expect the existence of Lyapunov stable T -periodic solutions in between
(see [17, 33]): this fact is explicitly proven at the end of Section 6. It is also worth noting that
our stability conclusions are obtained without assuming any additional regularity condition,
like, e.g., Lipschitz continuity, on f , as it is usually done in the semilinear case in order to
associate with the considered problem an order preserving operator (see, e.g., [1, 20]).

Notation. We list a few notations that will be used throughout this paper. We set R+
0 =

]0,+∞[. For functions u, v : E(⊆ R) → R, where E has positive 1-dimensional Lebesgue
measure, we write u ≤ v if u(t) ≤ v(t) a.e. in E, and u < v if u ≤ v and u(t) < v(t) in
a subset of E having positive measure. We define the functions u ∨ v and u ∧ v by setting
(u ∨ v)(t) = max{u(t), v(t)} and (u ∧ v)(t) = min{u(t), v(t)} a.e. in E. We also write
u+ = u ∨ 0 and u− = −(u ∧ 0). We set W 1,1

T (0, T ) = {u ∈ W 1,1(0, T ) : u(0) = u(T )},
and C1

T ([0, T ]) = {u ∈ C1([0, T ]) : u(0) = u(T ), u′(0) = u′(T )}. Of course, we can identify
W 1,1
T (0, T ) with W 1,1

loc,T (R) = {u ∈ W 1,1
loc (R) : u is T -periodic} and C1

T ([0, T ]) with C1
T (R) =

{u ∈ C1(R) : u is T -periodic}. For every u ∈ BV (a, b), where a < b, we denote by u(t+0 ) the
right trace of u at t0 ∈ [a, b[ and by u(t−0 ) the left trace of u at t0 ∈ ]a, b]. The conventions
±∞+ r = ±∞, for each r ∈ R, are adopted.

2 Preliminaries

Let a, b ∈ R, with a < b. We recall that v ∈ BV (a, b) if v ∈ L1(a, b) and
∫ b
a
|Dv| <∞, where∫ b

a

|Dv| = sup
{∫ b

a

vw′ dt : w ∈ C1
0 (]a, b[) and ‖w‖L∞ ≤ 1

}
.

For any v ∈ BV (a, b) we set∫ b

a

√
1 + |Dv|2 = sup

{∫ b

a

(vw′1 + w2) dt : w1, w2 ∈ C1
0 (]a, b[)

and ‖w2
1 + w2

2‖L∞ ≤ 1
}
.
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Note that ∫ b

a

√
1 + |Dv|2 ≥

∫ b

a

|Dv|. (4)

For any fixed r ∈ [1,+∞[ ∪ {∞}, BV (a, b) is a Banach space with respect to the norm

‖v‖BV =
∫ b

a

|Dv|+ ‖v‖Lr .

When a = 0 and b = T we set for convenience

J (v) =
∫ T

0

√
1 + |Dv|2 + |v(T−)− v(0+)|.

The functional J : BV (0, T )→ R is convex and, also by the continuity of the trace map [19,
Theorem 2.11], is Lipschitz continuous [13, p. 362].

We now collect, for reader’s convenience, some technical results which will be used in the
sequel. Most proofs can be found in [29].

Proposition 2.1 (Approximation property). For any given v ∈ BV (0, T ) there exists a
sequence (vn)n in W 1,1

T (0, T ) such that

lim
n→+∞

vn = v in L1(0, T ) and a.e. in [0, T ],

lim
n→+∞

∫ T

0

|v′n| dt =
∫ T

0

|Dv|+ |v(T−)− v(0+)|

and

lim
n→+∞

∫ T

0

√
1 + |v′n|

2
dt =

∫ T

0

√
1 + |Dv|2 + |v(T−)− v(0+)|.

Proof. See [29, Proposition 2.1].

Proposition 2.2 (One-sided approximation property). For any given v ∈ BV (0, T ) there
exist sequences (vn)n and (wn)n in W 1,1(0, T ) such that, for all n, vn(t) ≥ v(t) and wn(t) ≤
v(t) a.e. in [0, T ],

lim
n→+∞

vn = lim
n→+∞

wn = v in L1(0, T ) and a.e. in [0, T ], (5)

lim
n→+∞

∫ T

0

|v′n| dt = lim
n→+∞

∫ T

0

|w′n| dt =
∫ T

0

|Dv|, (6)

lim
n→+∞

∫ T

0

√
1 + |v′n|

2
dt = lim

n→+∞

∫ T

0

√
1 + |w′n|

2
dt =

∫ T

0

√
1 + |Dv|2 (7)

and
lim

n→+∞
J (vn) = lim

n→+∞
J (wn) = J (v). (8)
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Proof. We only prove the existence of the sequence (vn)n as the result about the sequence
(wn)n can be similarly verified. By [13, Theorem 3.3] there exists a sequence (vn)n in
W 1,1(0, T ) satisfying (5), (7) and, for every n, vn(t) ≥ v(t) a.e. in [0, T ]. By [3, Fact 3.1], (6)
also holds. As both (5) and (6) hold, by [19, Theorem 2.11], we also have

lim
n→+∞

vn(0+) = v(0+) and lim
n→+∞

vn(T−) = v(T−).

Hence, (8) is also satisfied.

Proposition 2.3 (Semicontinuity of J ). If (vn)n is a sequence in BV (0, T ) converging in
L1(0, T ) to v ∈ BV (0, T ), then

J (v) ≤ lim inf
n→+∞

J (vn).

Proof. See [29, Proposition 2.4].

Proposition 2.4 (Lattice property). For every u, v ∈ BV (0, T )

J (u ∨ v) + J (u ∧ v) ≤ J (u) + J (v).

Proof. See [29, Proposition 2.5].

Proposition 2.5 (Asymmetric Wirtinger inequality). Let µ, ν ∈ R+
0 satisfy

1√
µ + 1√

ν
=
√
T .

For every v ∈ BV (0, T ) such that

µ

∫ T

0

v+ dt− ν
∫ T

0

v− dt = 0

we have

µ

∫ T

0

v+ dt+ ν

∫ T

0

v− dt ≤
∫ T

0

|Dv|+ |v(T−)− v(0+)|.

Proof. See [29, Proposition 2.6].

Corollary 2.6 (Symmetric Wirtinger inequality). For every v ∈ BV (0, T ) such that
∫ T
0
v dt

= 0 we have

‖v‖L1 ≤ T
4

(∫ T

0

|Dv|+ |v(T−)− v(0+)|
)
.

Proof. See [29, Corollary 2.7].

Proposition 2.7 (An oscillation estimate). For every v ∈ BV (0, T ) we have

2
(

ess sup
[0,T ]

v − ess inf
[0,T ]

v
)
≤
∫ T

0

|Dv|+ |v(T−)− v(0+)|.

Proof. See [29, Proposition 2.9].
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Proposition 2.8 (A continuous projector). Fix µ, ν ∈ R+
0 . For each v ∈ L1(0, T ) there exists

a unique P(v) ∈ R such that

µ

∫ T

0

(v − P(v))+ dt− ν
∫ T

0

(v − P(v))− dt = 0.

The map P : L1(0, T )→ R such that v 7→ P(v) is a continuous projector.

Proof. See [29, Proposition 2.11].

3 Lower and upper solutions

Throughout we assume

(h1) f : [0, T ]×R→ R, with T > 0, satisfies the Carathéodory conditions, i.e., f(t, ·) : R→ R
is continuous for a.e. t ∈ [0, T ] and f(·, s) : [0, T ] → R is measurable for every s ∈ R;
the same symbol f will also be used for denoting the T -periodic extension, with respect
to the first variable, of f a.e. onto R.

Notion of solution. We say that a function u ∈ BV (0, T ) is a solution of the T -periodic
problem associated with (1) if f(·, u) ∈ L1(0, T ) and

J (v)− J (u) ≥
∫ T

0

f(t, u)(v − u) dt, (9)

for all v ∈ BV (0, T ). Note that this means that u is a minimizer in BV (0, T ) of the functional
v 7→ J (v)−

∫ T
0
f(t, u)v dt.

Remark 3.1 It has ben proved in [28] that if u ∈ W 1,1
T (0, T ) is a solution of the T -periodic

problem associated with (1), then it is a weak solution of the same problem, in the sense that∫ T

0

u′v′√
1 + u′2

dt =
∫ T

0

f(t, u)v dt,

for every v ∈W 1,1
T (0, T ), and hence one has

u′/
√

1 + u′2 ∈W 1,1
T (0, T ),

−
(
u′/
√

1 + u′2
)′

= f(t, u) a.e. in ]0, T [,

u(0) = u(T ), (u′/
√

1 + u′2)(0) = (u′/
√

1 + u′2)(T ).

It is worth noting that u may present a derivative blow up, but u′ ∈ C0([0, T ], [−∞,+∞]).
Therefore u′ satisfies the periodicity condition in an extended sense, i.e., possibly u′(0) =
u′(T ) = +∞, or u′(0) = u′(T ) = −∞. This kind of non-classical solutions of the prescribed
curvature equation, even possibly discontinuous (hence belonging to SBV (0, T ), the space of
special functions of bounded variation [2]), has already been considered in [11, 10, 26, 31, 12].

Conversely, it is easily seen, using the convexity of the function s 7→
√

1 + s2, that a weak
solution of the T -periodic problem associated with (1) satisfies (9) for all v ∈ BV (0, T ).



7

Remark 3.2 Suppose u is a solution of the T -periodic problem associated with (1) and
extend u a.e. onto R by T -periodicity. Fix any t0 ∈ R and denote by ũ its restriction onto
[t0, t0 + T ]. Then ũ is a solution of the T -periodic problem associated with (1) on the interval
[t0, t0 + T ], that is∫ t0+T

t0

√
1 + |Dv|2 + |v((t0 + T )−)− v(t+0 )|

−
∫ t0+T

t0

√
1 + |Dũ|2 − |ũ((t0 + T )−)− ũ(t+0 )|

≥
∫ t0+T

t0

f(t, u)(v − ũ) dt,

for every v ∈ BV (t0, t0 + T ). Indeed, for any v ∈ BV (t0, t0 + T ) we can define ṽ ∈ BV (0, T )
by setting ṽ(t) = v(t+ t0) a.e. in [0, T ]. Then we have∫ t0+T

t0

√
1 + |Dv|2 + |v((t0 + T )−)− v(t+0 )|

−
∫ t0+T

t0

√
1 + |Dũ|2 − |ũ((t0 + T )−)− ũ(t+0 )|

=
∫ T

0

√
1 + |Dṽ|2 + |ṽ(T−)− ṽ(0+)| −

∫ T

0

√
1 + |Du|2 − |u(T−)− u(0+)|

≥
∫ T

0

f(t, u)(ṽ − u) dt =
∫ t0+T

t0

f(t, ũ)(v − ũ) dt.

Lower and upper solutions. The following notions of lower and upper solutions are
adopted.

• Fix p ∈ [1,+∞[∪{∞}. We say that a function α ∈W 1,∞(0, T ) is a W 2,p-lower solution
of the T -periodic problem associated with (1) if there exist functions α1, . . . , αm ∈
W 2,p(0, T ) such that α = α1 ∨ · · · ∨ αm and, for each i = 1, . . . ,m,

−
(
α′i/

√
1 + α′i

2
)′
≤ f(t, αi) a.e. in [0, T ], αi(0) = αi(T ), α′i(0) ≥ α′i(T ). (10)

• We say that a function α ∈ BV (0, T ) is a BV -lower solution of the T -periodic problem
associated with (1) if there exist functions α1, . . . , αm ∈ BV (0, T ) such that α = α1 ∨
· · · ∨ αm and, for each i = 1, . . . ,m, f(·, αi) ∈ L1(0, T ) and

J (αi + z)− J (αi) ≥
∫ T

0

f(t, αi)z dt, (11)

for all z ∈ BV (0, T ) with z ≤ 0.

• Fix p ∈ [1,+∞[ ∪ {∞}. We say that a function β ∈ W 1,∞(0, T ) is a W 2,p-upper solu-
tion of the T -periodic problem associated with (1) if there exist functions β1, . . . , βn ∈
W 2,p(0, T ) such that β = β1 ∧ · · · ∧ βn and, for each i = 1, . . . , n,

−
(
β′i/

√
1 + β′i

2
)′
≥ f(t, βi) a.e. in [0, T ], βi(0) = βi(T ), β′i(0) ≤ β′i(T ).
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• We say that a function β ∈ BV (0, T ) is a BV -upper solution of the T -periodic problem
associated with (1) if there exist functions β1, . . . , βn ∈ BV (0, T ) such that β = β1 ∧
· · · ∧ βn and, for each j = 1, . . . , n, f(·, βj) ∈ L1(0, T ) and

J (βj + z)− J (βj) ≥
∫ T

0

f(t, βj)z dt, (12)

for all z ∈ BV (0, T ) with z ≥ 0.

• We say that a lower solution α (respectively an upper solution β) of the T -periodic
problem associated with (1) if proper if it is not a solution.

Remark 3.3 A function α ∈ BV (0, T ), with f(·, α) ∈ L1(0, T ), is a BV -lower solution of the
T -periodic problem associated with (1), with m = 1, if and only if α minimizes the functional
v 7→ J (v) −

∫ T
0
f(t, α)v dt on the cone {v ∈ BV (0, T ) : v ≤ α}. Similarly, β ∈ BV (0, T ),

with f(·, β) ∈ L1(0, T ), is a BV -upper solution of the T -periodic problem associated with (1),
with n = 1, if and only if β minimizes the functional v 7→ J (v) −

∫ T
0
f(t, β)v dt on the cone

{v ∈ BV (0, T ) : v ≥ β}. This notion of lower and upper solutions has already been used in
[19, Section 12] for dealing with classical solutions of the minimal surface equation, as well as
in [24, 27] for studying the Dirichlet, the Neumann and the mixed problems for the prescribed
mean curvature equation in the setting of bounded variation functions.

Remark 3.4 A function u ∈ BV (0, T ) is a solution of the T -periodic problem associated with
(1) if and only if it is simultaneously a BV -lower solution of the T -periodic problem associated
with (1), with m = 1, and a BV -upper solution of the T -periodic problem associated with
(1), with n = 1. The proof of this fact is similar to the one of [27, Remark 2.3].

Proposition 3.1. Suppose that α = α1 ∨ · · · ∨αm is a W 2,1-lower solution of the T -periodic
problem associated with (1) such that, for each i = 1, . . . ,m, f(·, αi) ∈ L1(0, T ). Then α is a
BV -lower solution of the T -periodic problem associated with (1).

Proof. We may suppose m = 1. Let z ∈W 1,1(0, T ) be such that z ≤ 0. Multiplying the first
inequality in (10) by z and integrating by parts we obtain, as α(0) = α(T ),∫ T

0

f(t, α)z dt ≤
∫ T

0

α′z′/
√

1 + α′2 dt+ α′(0) z(0)/
√

1 + α′(0)2 − α′(T ) z(T )/
√

1 + α′(T )2.

Using the convexity of the function s 7→
√

1 + s2 and the assumption α′(0) ≥ α′(T ) we get∫ T

0

f(t, α)z dt ≤
∫ T

0

√
1 + (α+ z)′2 dt−

∫ T

0

√
1 + z′2 dt+ |z(T )− z(0)|

= J (α+ z)− J (α).

Now, let z ∈ BV (0, T ) be such that z ≤ 0. Set v = α + z. By Proposition 2.2 there exists
a sequence (wn)n in W 1,1(0, T ) such that wn ≤ α + z for every n, lim

n→+∞
wn = α + z in

L1(0, T ) and a.e. in [0, T ], and lim
n→+∞

J (wn) = J (α + z). Note that (wn)n is bounded in

BV (0, T ) and, hence, in L∞(0, T ). Set, for each n, zn = wn − α; we have zn ∈ W 1,1(0, T )
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and zn ≤ z ≤ 0. Moreover, (zn)n is bounded in L∞(0, T ) and lim
n→+∞

zn = z in L1(0, T ) and

a.e. in [0, T ]. Hence we get, using the Lebesgue dominated convergence theorem,

J (α+ z) = lim
n→+∞

J (α+ zn)

≥ lim
n→+∞

∫ T

0

f(t, α)zn dt+ J (α) =
∫ T

0

f(t, α)z dt+ J (α),

i.e., α is a BV -lower solution of the T -periodic problem associated with (1).

A similar result can be proved for upper solutions.

Proposition 3.2. Suppose that β = β1 ∧ · · · ∧ βn is a W 2,1-upper solution of the T -periodic
problem associated with (1) such that, for each i = 1, . . . , n, f(·, βi) ∈ L1(0, T ). Then β is a
BV -upper solution of the T -periodic problem associated with (1).

Remark 3.5 Let α be a BV -lower solution of the T -periodic problem associated with (1).
Assume that m = 1 and α ∈ W 1,1

T (0, T ) ∩ W 2,1(0, T ). Then α is a W 2,1-lower solution.
Indeed, fix z ∈W 1,1

T (0, T ), with z ≤ 0. From (11) we have, for every s > 0,

J (α+ sz)− J (α)
s

≥
∫ T

0

f(t, α)z dt.

Letting s→ 0+ we get, as J restricted to W 1,1
T (0, T ) is Gateaux differentiable,∫ T

0

α′z′/
√

1 + α′2 dt ≥
∫ T

0

f(t, α)z dt.

Integrating by parts we get

−
∫ T

0

(
α′/
√

1 + α′2
)′
z dt+

(
α′(T )/

√
1 + α′(T )2−α′(0)/

√
1 + α′(0)2

)
z(0) ≥

∫ T

0

f(t, α)z dt.

By choosing z with compact support we obtain

−
(
α′/
√

1 + α′2
)′ ≤ f(t, α)

a.e. in [0, T ]. Since we can choose z such that z(0) = −1 and the quantity∫ T

0

((
α′/
√

1 + α′2
)′ + f(t, α)

)
z dt

is as small as we wish, we easily conclude that

α′(T )/
√

1 + α′(T )2 − α′(0)/
√

1 + α′(0)2 ≤ 0,

i.e.,
α′(T ) ≤ α′(0).

A similar conclusion holds for upper solutions.
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Construction of lower and upper solutions. Now we produce some explicit conditions
on the function f which guarantee the existence of a lower solution, or an upper solution.
The first statement concerns the simplest case of constant lower and upper solutions.

Proposition 3.3. If α ∈ R is such that f(t, α) ≥ 0 a.e. in [0, T ], then α is a W 2,∞-
lower solution of the T -periodic problem associated with (1). Similarly, if β ∈ R is such that
f(t, β) ≥ 0 a.e. in [0, T ], then β is a W 2,∞-upper solution of the T -periodic problem associated
with (1).

Alternatively, the existence of a lower solution, or an upper solution, follows assuming
suitable conditions of Landesman-Lazer type (see [22, 23]). It is convenient in this setting to
split f as

f(t, s) = g(t, s)− e(t), (13)

where e ∈ L1(0, T ). In the sequel we set ē = 1
T

∫ T
0
e dt and ẽ = e− ē.

Proposition 3.4. Assume (h1) and

(h2) for each r > 0 there exists γ ∈ L1(0, T ) such that |f(t, s)| ≤ γ(t) for a.e. t ∈ [0, T ] and
every s ∈ [−r, r].

Take e ∈ L∞(0, T ) and define g by (13). Assume further

(h3) there exist c ∈ R ∪ {−∞} and d ∈ R ∪ {+∞}, with c < d, such that

g(t, s) ≥ ē

for a.e. t ∈ [0, T ] and every s ∈ ]c, d[,

and

(h4) there exist µ, ν ∈ R+
0 , with

1√
µ + 1√

ν
=
√
T ,

and ϑ ∈ ]0, 1[ such that

ess inf
[0,T ]

ẽ ≥ −ϑµ and ess sup
[0,T ]

ẽ ≤ ϑν.

Finally, suppose that
T

1− ϑ
≤ d− c. (14)

Then there exists a BV -lower solution α of the T -periodic problem associated with (1) such
that c ≤ α(t) ≤ d a.e. in [0, T ].

Proof. We first show that, for any h ∈ L∞(0, T ) with
∫ T
0
h dt = 0, ess sup

[0,T ]
h ≤ ϑµ and

ess inf
[0,T ]

h ≥ −ϑν, the T -periodic problem associated with

−
(
u′/
√

1 + u′2
)′

= h(t) (15)

has at least one solution w ∈ BV (0, T ) satisfying

µ

∫ T

0

w+ dt− ν
∫ T

0

w− dt = 0
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and
‖w‖L∞ ≤

1
2

T

1− ϑ
. (16)

To this end let us set

S =
{
v ∈ BV (0, T ) : µ

∫ T

0

v+ dt = ν

∫ T

0

v− dt
}
.

We endow S with the norm ∫ T

0

|Dv|+ |v(T−)− v(0+)|,

which, by Proposition 2.5, is equivalent to

‖v‖BV =
∫ T

0

|Dv|+ ‖v‖L1 .

Observe that S is a Banach space. Define a functional H : BV (0, T )→ R by setting

H(v) = J (v)−
∫ T

0

hv dt. (17)

Estimate (4) and Proposition 2.5 again imply that, for every v ∈ S,

H(v) ≥
∫ T

0

|Dv|+ |v(T−)− v(0+)| − ϑ
(
µ

∫ T

0

v+ dt+ ν

∫ T

0

v− dt
)

≥ (1− ϑ)
(∫ T

0

|Dv|+ |v(T−)− v(0+)|
)
.

HenceH is bounded from below and coercive in S. Let (wn)n be a minimizing sequence. Since
(wn)n is bounded in S, there exists a subsequence of (wn)n, which we still denote by (wn)n,
and a function w ∈ S such that lim

n→+∞
wn = w in L1(0, T ). As H is lower semicontinuous

with respect to the L1-convergence in S, H has a global minimum at w, and w satisfies

J (v)− J (w) ≥
∫ T

0

h (v − w) dt (18)

for every v ∈ S and, actually, for every v ∈ BV (0, T ), as H(v + k) = H(v) for all k ∈ R.
Hence w is a solution of (15). Now, taking v = 0 in (18), we have∫ T

0

|Dw|+ |w(T−)− w(0+)| ≤ J (w) ≤ J (0) +
∫ T

0

hw dt

≤ T + ϑ
(
µ

∫ T

0

w+ dt+ ν

∫ T

0

w− dt
)
≤ T + ϑ

(∫ T

0

|Dw|+ |w(T−)− w(0+)|
)

and hence, using Proposition 2.7, estimate (16) follows.

Next we show how to construct a lower solution α, with c ≤ α ≤ d. Let w be a solution of
the T -periodic problem associated with (15), with h = −ẽ. In case c = −∞ or d = +∞, we
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can find a constant b such that, setting α = w + b, we have c ≤ α ≤ d. Otherwise, we define
α = 1

2 (c+ d) + w. We get, by (14), c ≤ α ≤ d and, by (h3),

J (α+ z)− J (α) = J (w + z)− J (w) ≥ −
∫ T

0

ẽ z dt ≥
∫ T

0

g(t, α) z dt−
∫ T

0

e z dt,

for every z ∈ BV (0, T ) with z ≤ 0. Hence α is a BV -lower solution of the T -periodic problem
associated with (1).

Remark 3.6 We note that, in case c = −∞ or d = +∞, relation (14) is trivially satisfied.

Proposition 3.5. Assume (h1) and (h2). Take e ∈ L∞(0, T ) and define g by (13). Assume
further

(h5) there exist c ∈ R ∪ {−∞} and d ∈ R ∪ {+∞}, with c < d, such that

g(t, s) ≤ ē

for a.e. t ∈ [0, T ] and every s ∈ ]c, d[,

(h4) and suppose that (14) is satisfied. Then there exists a BV -upper solution β of the T -
periodic problem associated with (1) such that c ≤ β(t) ≤ d a.e. in [0, T ].

We show now that the two-sided bound on ẽ required by (h4) can be replaced by a one-
sided bound, as expressed by (h6).

Proposition 3.6. Assume (h1) and (h2). Take e ∈ L∞(0, T ) and define g by (13). Assume
further (h3),

(h6) there exists ϑ ∈ ]0, 1[ such that either ‖ẽ+‖L1 ≤ 2ϑ, or ‖ẽ−‖L1 ≤ 2ϑ,

and suppose that (14) is satisfied. Then there exists a BV -lower solution α of the T -periodic
problem associated with (1) such that c ≤ α(t) ≤ d a.e. in [0, T ].

Proof. We shall assume ‖ẽ+‖L1 ≤ 2ϑ in (h6). The proof in case ‖ẽ−‖L1 ≤ 2ϑ is similar.
Arguing as in the proof of Proposition 3.4 we can show that, for any h ∈ L1(0, T ) such that∫ T
0
h dt = 0 and ‖h−‖L1 ≤ 2ϑ, the T -periodic problem associated with (15) has at least one

solution w ∈ BV (0, T ) satisfying ess sup
[0,T ]

w = 0 and (16). To this end we set now

S =
{
v ∈ BV (0, T ) : ess sup

[0,T ]
v = 0

}
and endow S with the norm ∫ T

0

|Dv|+ |v(T−)− v(0+)|.

We define the functional H : BV (0, T ) → R as in (17) and, using Proposition 2.7 and (h6),
we show that, for every v ∈ S,

H(v) ≥
∫ T

0

|Dv|+ |v(T−)− v(0+)|+ ess inf
[0,T ]

v

∫ T

0

h− dt

≥ (1− ϑ)
(∫ T

0

|Dv|+ |v(T−)− v(0+)|
)
.
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Hence H is bounded from below and coercive in S. Arguing as in the proof of Proposition 3.4,
we see that H has a global minimum at some w ∈ S, which satisfies (18) for every v ∈ S and,
actually, for every v ∈ BV (0, T ), as H(v + k) = H(v) for all k ∈ R. Hence w is a solution of
(15). Now, taking v = 0 in (18), we obtain∫ T

0

|Dw|+ |w(T−)− w(0+)| ≤ J (w) ≤ J (0) +
∫ T

0

hw dt

≤ T −
∫ T

0

h−w dt ≤ T + ϑ
(∫ T

0

|Dw|+ |w(T−)− w(0+)|
)

and hence, using Proposition 2.7, (16) is satisfied. The lower solution α is eventually con-
structed as in the proof of Proposition 3.4.

Proposition 3.7. Assume (h1) and (h2). Take e ∈ L∞(0, T ) and define g by (13). Suppose
further that (h5) and (h6) hold and that (14) is satisfied. Then there exists a BV -upper
solution β of the T -periodic problem associated with (1) such that c ≤ β(t) ≤ d a.e. in [0, T ].

4 Existence results

We develop in this section a lower and upper solutions method for the T -periodic problem
associated with (1).

Well-ordered lower and upper solutions. The first result deals with the case where the
lower solution is smaller than the upper solution. The approach is variational and provides
the existence of a solution bracketed by the given lower and upper solutions. The proof is
a simplified version of the argument in [27, Theorem 2.4]. Here we consider the functional
I : BV (0, T )→ R defined by

I(v) =
∫ T

0

√
1 + v′2 dt−

∫ T

0

F (t, v) dt,

where F (t, s) =
∫ s
0
f(t, ξ) dξ.

Theorem 4.1. Assume (h1),

(h7) there exists p > 1 such that, for each r > 0, there is γ ∈ Lp(0, T ) such that |f(t, s)| ≤ γ(t)
for a.e. t ∈ [0, T ] and every s ∈ [−r, r],

(h8) there exist a BV -lower solution α and a BV -upper solution β of the T -periodic problem
associated with (1) satisfying α ≤ β.

Then the T -periodic problem associated with (1) has at least one solution u ∈ BV (0, T ) such
that

α ≤ u ≤ β and I(u) = min
v∈BV (0,T )
α≤v≤β

I(v).

Moreover, there exist solutions v, w of the T -periodic problem associated with (1), with α ≤
v ≤ w ≤ β, such that every solution u of the T -periodic problem associated with (1), with
α ≤ u ≤ β, satisfies v ≤ u ≤ w.
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Proof. Without restriction we can assume p ∈ ]1, 2]. Set q = p
p−1 ∈ [2,+∞[. Let α =

α1 ∨ · · · ∨ αm and β = β1 ∧ · · · ∧ βn where, for each i = 1, . . . ,m, αi satisfies (11) for all
z ∈ BV (0, T ) with z ≤ 0 and, for all j = 1, . . . , n, βj satisfies (12) for all z ∈ BV (0, T ) with
z ≥ 0.
Step 1. A modified problem. Let us set, for a.e. t ∈ [0, T ] and every s ∈ R,

Q(s) = |s|q,

hi(t, s) =
{
f(t, αi(t)) +Q′(αi(t)) if s < αi(t),
f(t, s) +Q′(s) if s ≥ αi(t),

kj(t, s) =
{
f(t, βj(t)) +Q′(βj(t)) if s > βj(t),
f(t, s) +Q′(s) if s ≤ βj(t),

for i = 1, . . . ,m, j = 1, . . . , n, and

`(t, s) =


max

i=1,...,m
hi(t, s) if s < α(t),

f(t, s) +Q′(s) if α(t) ≤ s ≤ β(t),

min
j=1,...,n

kj(t, s) if s > β(t).

Clearly, Q is of class C1 and strictly convex and ` satisfies the Carathéodory conditions (h1)
and (h7). Moreover, there exists a function λ ∈ Lp(0, T ) such that, for a.e. t ∈ [0, T ] and
every s ∈ R,

|`(t, s)| ≤ λ(t)

and hence, setting L(t, s) =
∫ s
0
`(t, ξ)dξ,

|L(t, s)| ≤ λ(t)|s|. (19)

Let us consider the modified equation

−
(
u′/
√

1 + u′2
)′

= `(t, u)−Q′(u). (20)

Of course, a solution of the T -periodic problem associated with (20) is a function u ∈ BV (0, T )
such that

J (v)− J (u) ≥
∫ T

0

(
`(t, u)−Q′(u)

)
(v − u) dt (21)

for every v ∈ BV (0, T ).
Step 2. Existence of solutions of the modified problem. We define a functional
K : BV (0, T )→ R by setting

K(v) = J (v) +
∫ T

0

Q(v) dt−
∫ T

0

L(t, v) dt.

We aim to show that there exists min
v∈BV (0,T )

K(v). We first observe that K is coercive and

bounded from below in BV (0, T ). Indeed, using (4), (19) and standard inequalities, we can
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find constants d1, d2 > 0 such that

K(v) ≥
∫ T

0

|Dv|+|v(T−)− v(0+)|+ ‖v‖qLq − ‖λ‖Lp‖v‖Lq

≥ d1‖v‖BV − d2,

for every v ∈ BV (0, T ). Let (un)n be a minimizing sequence. Since (un)n is bounded in
BV (0, T ), there exists a subsequence of (un)n, which we still denote by (un)n, and a function
u ∈ BV (0, T ) such that lim

n→+∞
un = u in Lq(0, T ). By Proposition 2.3 we have

lim inf
n→+∞

J (un) ≥ J (u)

and, as the functionals v 7→
∫ T
0
Q(v) dt and v 7→

∫ T
0
L(t, v) dt are continuous in Lq(0, T ),

lim
n→+∞

∫ T

0

(Q(un)− L(t, un)) dt =
∫ T

0

(Q(u)− L(t, u)) dt.

Hence, we conclude that

inf
v∈BV (0,T )

K(v) = lim
n→+∞

K(un) ≥ K(u),

that is, K(u) = min
v∈BV (0,T )

K(v).

Observe that any minimizer u of K satisfies (21) for every v ∈ BV (0, T ). Indeed, let v ∈
BV (0, T ) and take s ∈ ]0, 1[. By the convexity of J we obtain

(1− s)J (u) + sJ (v)− J (u) ≥ J ((1− s)u+ sv)− J (v)

≥ −
∫ T

0

((
Q(u+ s(v − u))− L(t, u+ s(v − u)

)
−
(
Q(u)− L(t, u)

))
dt

and, dividing by s,

J (v)− J (u) ≥ −
∫ T

0

1
s

((
Q(u+ s(v − u))− L(t, u+ s(v − u))

)
−
(
Q(u)− L(t, u)

))
dt.

Hence, letting s→ 0+, we easily get

J (v)− J (u) ≥ −
∫ T

0

(
Q′(u)− `(t, u)

)
(v − u) dt,

i.e., (21) holds. We conclude that the T -periodic problem associated with (20) has at least
one solution.
Step 3. Any solution u of the T -periodic problem associated with (20) satisfies
α ≤ u ≤ β. Let us show that u ≤ β; by a similar argument we can prove that u ≥ α. We fix
j ∈ {1, . . . , n} and verify that u ≤ βj . Taking v = u ∧ βj = u− (u− βj)+ as a test function
in (21) we obtain

J (u ∧ βj)− J (u) ≥ −
∫ T

0

(`(t, u)−Q′(u))(u− βj)+dt

≥ −
∫ T

0

f(t, βj)(u− βj)+dt+
∫ T

0

(Q′(u)−Q′(βj)) (u− βj)+dt. (22)
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Taking z = (u− βj)+ as a test function in (12) we have, as u ∨ βj = βj + (u− βj)+,

J (u ∨ βj)− J (βj) ≥
∫ T

0

f(t, βj)(u− βj)+dt. (23)

Summing (22) and (23) and using Proposition 2.4 and the convexity of Q, we find

0 ≥ J (u ∧ βj) + J (u ∨ βj)− J (βj)− J (u) ≥
∫ T

0

(Q′(u)−Q′(βj)) (u− βj)+dt ≥ 0.

As Q′ is strictly increasing, we conclude that (u − βj)+(t) = 0 a.e. in [0, T ] and therefore
u ≤ βj .
Step 4. There is a solution u of the T -periodic problem associated with (1) such
that

α ≤ u ≤ β and I(u) = min
v∈BV (0,T )
α≤v≤β

I(v).

Let u be a solution of the T -periodic problem associated with (20). As u is such that α ≤
u ≤ β, we have `(·, u) − Q′(u) = f(·, u) and hence u is a solution of the T -periodic problem
associated with (1). Furthermore, for a.e. t ∈ [0, T ] and every s, with α(t) ≤ s ≤ β(t), we
have

L(t, s) = L(t, α) + F (t, s)− F (t, α) +Q(s)−Q(α).

Hence we obtain, for every v ∈ BV (0, T ), with α ≤ v ≤ β,

K(v) = I(v) +
∫ T

0

(
Q(α) + F (t, α)− L(t, α)

)
dt.

Since u minimizes K, we conclude that u minimizes I on the set of all v ∈ BV (0, T ), with
α ≤ v ≤ β.
Step 5. Existence of extremum solutions. Let us set

U = {u ∈ BV (0, T ) : u is a solution of the T -periodic problem
associated with (1) such that α ≤ u ≤ β}.

We notice that U is bounded in BV (0, T ). Indeed, if u ∈ U , taking v = 0 as a test function
in (9), we obtain

J (u) ≤ J (0) +
∫ T

0

f(t, u)u dt ≤ T + ‖γ‖L1‖u‖L∞ ≤ T + ‖γ‖L1 max{‖α‖L∞ , ‖β‖L∞}.

To prove the compactness of U in Lq(0, T ), take any sequence (un)n in U . Since (un)n is
bounded in BV (0, T ), applying the same argument we used in Step 2, we easily deduce that
there exists a subsequence of (un)n which converges in Lq(0, T ) to some u ∈ U .

Let us prove that there exists minU ; a similar argument shows the existence of maxU .
For each u ∈ U we define the closed subset of Lq(0, T )

Cu = {v ∈ U : v ≤ u}.

The family (Cu)u∈U has the finite intersection property. Indeed, if u1, u2 ∈ U , then u1∧u2 is an
upper solution of the T -periodic problem associated with (1), with α ≤ u1 ∧ u2. Hence, there
is a solution u of the T -periodic problem associated with (1), with α ≤ u ≤ u1 ∧ u2 ≤ β; i.e.,
u ∈ Cu1 ∩ Cu2 . The compactness of U implies that there exists v ∈ U such that v ∈

⋂
u∈U Cu;

that is v ≤ u for every u ∈ U .
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Remark 4.1 It is clear from the proof above that we can replace in Theorem 4.1 assumption
(h1) with

(h9) f : [0, T ]× [−ρ, ρ]→ R satisfies the Carathéodory conditions, i.e., f(t, ·) : [−ρ, ρ]→ R is
continuous for a.e. t ∈ [0, T ] and f(·, s) : [0, T ]→ R is measurable for every s ∈ [−ρ, ρ],
where

ρ > max
i=1,...,m;j=1,....n

{‖αi‖L∞ , ‖βj‖L∞}.

and assumption (h7) with

(h10) there exist p > 1 and γ ∈ Lp(0, T ) such that |f(t, s)| ≤ γ(t) for a.e. t ∈ [0, T ] and every
s ∈ [−ρ, ρ].

Remark 4.2 Let the assumptions of Theorem 4.1 be satisfied. If a solution u of the T -
periodic problem associated with (1), such that α ≤ u ≤ β and

I(u) = min
v∈BV (0,T )
α≤v≤β

I(v),

satisfies
ess inf
[0,T ]

(u− α) > 0 > ess sup
[0,T ]

(u− β),

then u is a local minimum point of I in BV (0, T ). Indeed, there exists a number δ > 0 such
that, if v ∈ BV (0, T ) satisfies ‖u− v‖BV < δ, then α ≤ v ≤ β and hence

I(u) = min
v∈BV (0,T )
‖u−v‖BV <δ

I(v).

Non-well-ordered lower and upper solutions. Our next result deals with the case where
α and β may fail to satisfy the ordering condition α ≤ β, assumed in Theorem 4.1. We show
that this restriction can be removed at the expense of assuming a stronger notion of lower
and upper solutions, as well as of placing an additional control on f , with respect to the
second eigenvalue 4/T of the 1-Laplace operator with T -periodic boundary conditions, or
more generally with respect to the first branch Σ of the Dancer-Fuč́ık spectrum of the same
operator, defined by

Σ =
{

(µ, ν) ∈ R+
0 × R+

0 : 1√
µ + 1√

ν
=
√
T
}
.

We refer to [29] for the introduction of Σ and for a discussion of its variational properties.

Theorem 4.2. Assume (h1),

(h11) there exist a W 2,∞(0, T )-lower solution α = α1 ∨ · · · ∨ αm and a W 2,∞(0, T )-upper
solution β = β1 ∧ · · · ∧ βn of the T -periodic problem associated with (1) such that, for
each i = 1, . . . ,m,

ess inf
[0,T ]

((
α′i/
√

1 + α′2i

)′
+ f(t, αi)

)
> 0

and, for each j = 1, . . . , n,

ess sup
[0,T ]

((
β′j/
√

1 + β′2j

)′
+ f(t, βj)

)
< 0,
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and

(h12) there exist µ, ν ∈ R+
0 , with 1√

µ + 1√
ν

=
√
T , such that

ess sup
[0,T ]×R

f < µ and ess inf
[0,T ]×R

f > −ν.

Then the T -periodic problem associated with (1) has at least one solution u ∈ BV (0, T ).

Proof. In case α ≤ β Theorem 4.1 guarantees the existence of a solution u ∈ BV (0, T ) of the
T -periodic problem associated with (1). Therefore, in the sequel, we may assume that there
exists t0 ∈ [0, T ] such that

α(t0) > β(t0).

Step 1. A perturbed problem. Let us take a sequence (εn)n, with εn > 0 for all n, such
that lim

n→+∞
εn = 0. For each n we consider the T -periodic problem associated with

−εnu′′ −
(
u′/
√

1 + u′2
)′

= f(t, u). (24)

This equation can also be written as

−u′′ =
(1 + u′2)3/2

1 + εn(1 + u′2)3/2
f(t, u). (25)

For sake of simplicity we set, for each n,

gn(t, s, ξ) =
(1 + ξ2)3/2

1 + εn(1 + ξ2)3/2
f(t, s) (26)

for a.e. t ∈ [0, T ], every s ∈ R and every ξ ∈ R. Note that, thanks to (h12), we have for each
n

|gn(t, s, ξ)| ≤ 1
εn

max{µ, ν}.

Let us verify that, for large n, α is a lower solution of the T -periodic problem associated with
(25). Indeed, for each i = 1 . . .m, as αi ∈ W 2,∞(0, T ) and lim

n→0
εn = 0, we have, for a.e.

t ∈ [0, T ],

−
(
α′i/

√
1 + α′i

2
)′
− f(t, αi) ≤ εnα′′i ,

and hence
−α′′i ≤ gn(t, αi, α′i),

provided that n is taken sufficiently large. Similarly, we can prove that β is an upper solution
of the T -periodic problem associated to (25). By [14, pp. 173-174] we conclude that, possibly
relabelling the sequence (εn)n, for each n there exists a solution un ∈ W 2,∞(0, T ) of the
T -periodic problem associated with (25) such that

un(t′n) ≤ α(t′n) and un(t′′n) ≥ β(t′′n) (27)

for some t′n, t
′′
n ∈ [0, T ].
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Step 2. Estimates. For each n, un satisfies the following weak formulation of the T -periodic
problem associated with (24)

εn

∫ T

0

u′nv
′ dt+

∫ T

0

u′nv
′/

√
1 + u′n

2 dt =
∫ T

0

f(t, un)v dt (28)

for all v ∈ W 1,1
T (0, T ). Let P be the projector operator defined in Proposition 2.8. Taking

v = (un−P(un))+ as a test function in (28) and setting E+
n = {t ∈ [0, T ] : un(t)−P(un) > 0},

we get ∫ T

0

f(t, un)(un − P(un))+ dt = εn

∫
E+

n

u′n
2
dt+

∫
E+

n

u′n
2
/

√
1 + u′n

2 dt

≥
∫
E+

n

|u′n| dt− cT (29)

where
c = max

s∈R

(
|s| − s2/

√
1 + s2

)
> 0. (30)

Similarly, taking v = (un − P(un))− and setting E−n = {t ∈ [0, T ] : un(t) − P(un) < 0}, we
get

−
∫ T

0

f(t, un)(un − P(un))− dt = εn

∫
E−n

u′n
2
dt+

∫
E−n

u′n
2
/

√
1 + u′n

2 dt

≥
∫
E−n

|u′n| dt− cT. (31)

By (29) and (31), also using [32, Theorem 1.56], we easily obtain∫ T

0

|u′n| dt− 2cT ≤
∫ T

0

f(t, un)(un − P(un))+ dt−
∫ T

0

f(t, un)(un − P(un))− dt.

Assumption (h12) yields the existence of a constant ϑ ∈ ]0, 1[, independent of n, such that∫ T

0

|u′n| dt− 2cT ≤ ϑ
(∫ T

0

µ(un − P(un))+ dt+
∫ T

0

ν(un − P(un))− dt
)
.

By Proposition 2.5 we get

‖u′n‖L1 ≤ 2cT
1− ϑ

. (32)

Using (27) and (32) we obtain, for all t ∈ [0, T ],

un(t) =
∫ t

t′n

u′n(s) ds+ un(t′n) ≤ ‖u′n‖L1 + α(t′n) ≤ 2cT
1− ϑ

+ ‖α‖L∞

and

un(t) =
∫ t

t′′n

u′n(s) ds+ un(t′′n) ≥ −‖u′n‖L1 + β(t′n) ≥ − 2cT
1− ϑ

− ‖β‖L∞ ,

which lead to
‖un‖L∞ ≤

2cT
1− ϑ

+ max{‖α‖L∞ , ‖β‖L∞}. (33)
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This last estimate, combined with (32), yields

‖un‖W 1,1 ≤ K (34)

for some constant K.
Step 3. Existence of a solution. Fix any w ∈ W 1,1

T (0, T ). Taking v = w − un as a test
function in (28), also using the convexity properties of the function s 7→

√
1 + s2 + εn

2 s
2, we

get ∫ T

0

f(t, un)(w − un) dt =
∫ T

0

u′n(w − un)′/
√

1 + u′n
2 dt+ εn

∫ T

0

u′n(w − un)′ dt

≤
∫ T

0

√
1 + w′2 dt+ εn

2

∫ T

0

w′2 dt−
∫ T

0

√
1 + u′n

2 dt− εn

2

∫ T

0

u′n
2
dt.

Hence we have

J (w)− J (un) + εn

2

∫ T

0

w′2 dt ≥
∫ T

0

f(t, un)(w − un) dt

for all w ∈ W 1,1
T (0, T ). As, by (34) the sequence (un)n is bounded in W 1,1(0, T ), we can

extract a subsequence, we still denote by (un)n, converging with respect to the L1-topology
and a.e. to a function u ∈ BV (0, T ). By (h2), which follows from (h12), (33) and the Lebesgue
dominated convergence theorem we get

lim
n→+∞

∫ T

0

f(t, un)(w − un) dt =
∫ T

0

f(t, u)(w − u) dt.

Hence, by Proposition 2.3 we conclude

J (u) ≤ lim inf
n→+∞

J (un) ≤ J (w)− lim
n→+∞

∫ T

0

f(t, un)(w − un) dt

= J (w)−
∫ T

0

f(t, u)(w − u) dt,

that is

J (w)− J (u) ≥
∫ T

0

f(t, u)(w − u) dt.

Fix any v ∈ BV (0, T ). By Proposition 2.1 there exists a sequence (wk)k ∈ W 1,1
T (0, T ),

bounded in W 1,1
T (0, T ), such that lim

k→+∞
wk = v in L1(0, T ) and a.e. in [0, T ] and lim

k→+∞
J (wk)

= J (v). Arguing as above we see that

lim
k→+∞

∫ T

0

f(t, u)(wk − u) dt =
∫ T

0

f(t, u)(w − u) dt

and using again Proposition 2.3 we conclude that

J (v)− J (u) ≥
∫ T

0

f(t, u)(v − u) dt,

thus showing that u is a solution of the T -periodic problem associated with (1).
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We show now that the two-sided bound on f required by (h12) can be replaced by a
one-sided bound, as expressed by (h13), or (h14).

Theorem 4.3. Assume (h1), (h2), (h11) and either

(h13) there exists a measurable function k : [0, T ]→ R such that ‖k+‖L1 < 2 and f(t, s) ≤ k(t)
for a.e. t ∈ [0, T ] and every s ∈ R,

or

(h14) there exists a measurable function k : [0, T ]→ R such that ‖k−‖L1 < 2 and f(t, s) ≥ k(t)
for a.e. t ∈ [0, T ] and every s ∈ R.

Then the T -periodic problem associated with (1) has at least one solution u ∈ BV (0, T ).

Proof. The proof is similar to that of Theorem 4.2. Let us assume (h13), in case of (h14) the
proof is the same. For each n define gn as in (26). By (h13) we have

gn(t, s, ξ) ≤ 1
εn
k+(t)

for a.e. t ∈ [0, T ], every s ∈ R and every ξ ∈ R. By [14, pp. 173-174], for each n there exist
a solution un ∈W 2,1(0, T ) of the T -periodic problem associated with (25) satisfying (27) for
some t′n, t

′′
n ∈ [0, T ]. Taking v = un − ess inf

[0,T ]
un as a test function in (28) we get

∫ T

0

f(t, un)(un − ess inf
[0,T ]

un) dt = εn

∫ T

0

u′n
2
dt+

∫ T

0

u′n
2
/

√
1 + u′n

2 dt

≥
∫ T

0

|u′n| dt− cT

c being defined by (30). Assumption (h13) yields the existence of a constant ϑ ∈]0, 1[, inde-
pendent of n, such that∫ T

0

|u′n| dt− cT ≤
∫ T

0

f(t, un)(un − ess inf
[0,T ]

un) dt ≤
∫ T

0

k+(t)(un − ess inf
[0,T ]

un) dt

≤ ‖k+‖L1( ess sup
[0,T ]

un − ess inf
[0,T ]

un) dt ≤ 2ϑ( ess sup
[0,T ]

un − ess inf
[0,T ]

un) dt.

By Proposition 2.7 we get, for all n,

‖u′n‖L1 ≤ cT

1− ϑ
.

To complete the proof we proceed as in the proof of Theorem 4.2.

Examples. We produce here two sample applications of the previous existence theorems; they
can be compared with some statements obtained in [8, Sections 3, 4] and in [29, Section 3],
but are independent of them.

Example 4.1. Assume that f : [0, T ] × R → R is continuous and satisfies either (h12), or
(h13), or (h14). Suppose that there exist a, b ∈ R such that

f(t, a) f(t, b) < 0

in [0, T ]. Then the T -periodic problem associated with (1) has at least one solution.
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This statement follows by combining Proposition 3.3 with Theorem 4.2 or Theorem 4.3.
Of course, if a ≤ b, then we do not need to assume (h12), or (h13), or (h14).

Example 4.2. Assume that f : [0, T ] × R → R and e : [0, T ] → R are continuous. Set
g = f + e and ē = 1

T

∫ T
0
e dt. Suppose that there exists a constant c > 0 such that

(g(t, s)− ē) sgn(s) ≤ 0

for all t ∈ [0, T ] and every s with |s| ≥ c. Assume finally that (h4) or (h6) hold. Then the
T -periodic problem associated with (1) has at least one solution.

This statement follows by combining Proposition 3.4 and Proposition 3.5, or Proposition
3.6 and Proposition 3.7, with Theorem 4.1.

Remark 4.3 We point out that a condition like (h4) cannot be avoided in order to get the
conclusion in Example 4.2. This is a direct consequence of the following non-existence result.

A non-existence result. We conclude this section by producing a non-existence result which
shows the sharpness of some of the assumptions previously considered; it improves and spec-
ifies a similar statement obtained in [29, Proposition 3.2].

Proposition 4.4. Fix ρ, σ ∈ R+
0 such that 1

ρ + 1
σ <

T
2 and set τ = σ

ρ+σT. Then there exists

γ ∈ L1(0, T ) such that for every e ∈ L1(0, T ), with 1
τ

∫ τ
0
e dt = −ρ and 1

T−τ
∫ T
τ
e dt = σ (and

hence
∫ T
0
e dt = 0), and for every g : [0, T ] × R → R satisfying (h1), with |g(t, s)| ≤ γ(t)

for a.e. t ∈ [0, T ] and every s ∈ R, the periodic problem associated with (1), where f(t, s) =
g(t, s)− e(t), has no solution.

Proof. Let w ∈ BV (0, T ) be given by w(t) = 1, if t ∈ [0, τ [, and w(t) = −1, if t ∈ ]τ, T ]. Take
any u ∈ BV (0, T ) and compute, for k ∈ R+

0 ,

J (kw)−
∫ T

0

(g(t, u)− e)kw dt

≤ T + 4k + k

∫ τ

0

e dt− k
∫ T

τ

e dt+ k

∫ T

0

|γ| dt

= T + 4k − kρτ − kσ(T − τ) + k‖γ‖L1

= T + 4k − 2k ρ σ
ρ+σT + k‖γ‖L1

= T + 2kT
(

2
T −

ρ σ
ρ+σ + 1

2T ‖γ‖L1

)
.

Clearly, the last term tends to −∞ as k → +∞, provided that ‖γ‖L1 ∈
]
0, 2Tρ σ

ρ+σ − 4
[
.

Therefore u is not a solution of the T -periodic problem associated with (1), where f(t, s) =
g(t, s)− e(t).

Corollary 4.5. Fix µ, ν ∈ R+
0 such that 1√

µ + 1√
ν

=
√
T . Then there exist γ ∈ L1(0, T )

and e ∈ C∞([0, T ]), with
∫ T
0
e dt = 0, ess inf

[0,T ]
e < −µ and ess sup

[0,T ]
e > ν, such that for every

g : [0, T ]×R→ R satisfying (h1), with |g(t, s)| ≤ γ(t) for a.e. t ∈ [0, T ] and every s ∈ R, the
periodic problem associated with (1), where f(t, s) = g(t, s)− e(t), has no solution.

Proof. Pick η > 1 such that 1
µ + 1

ν < η T2 and set ρ = ηµ and σ = ην. Then Proposition 4.4
yields the conclusion. Note that 1

µ + 1
ν = T

2 if and only if µ = ν = 4
T : in this case we can

take η as close to 1 as we want.
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5 Regularity results

We prove in this section the regularity of the bounded variation solutions of the T -periodic
problem associated with (1), when additional regularity and monotonicity conditions on the
right-hand side f of the equation are assumed. We will use here a regularity result for solutions
of the Dirichlet problem associated with (1) that we proved in [30].

Theorem 5.1. Assume (h1). Let u ∈ BV (0, T ) be a non-constant solution of the T -periodic
problem associated with (1) and suppose that

(h15) f ∈ C1(R× [ ess inf
[0,T ]

u, ess sup
[0,T ]

u]) and
∂f

∂s
(t, s) < 0 in R× [ ess inf

[0,T ]
u, ess sup

[0,T ]
u].

Then u is the unique solution of the T -periodic problem associated with (1), having range in
[ ess inf

[0,T ]
u, ess sup

[0,T ]
u], and the T -periodic extension of u onto R belongs to C3(R).

Proof. To prove uniqueness, let us assume that u1 and u2 are both solutions of the T -periodic
problem associated with (1), having range in [ ess inf

[0,T ]
u, ess sup

[0,T ]
u]. Testing (9), with u = u1,

against u2 and (9), with u = u2, against u1, we obtain

J (u2)− J (u1) ≥
∫ T

0

f(t, u1)(u2 − u1) dt

and

J (u1)− J (u2) ≥
∫ T

0

f(t, u2)(u1 − u2) dt.

Summing the two inequalities we get∫ T

0

(f(t, u1)− f(t, u2))(u2 − u1) dt ≤ 0.

By (h15) we conclude that u1 = u2 a.e. in [0, T ].
To prove that u ∈ C3(]0, T [), we shall use a regularity result for solutions of the Dirichlet

problem associated with (1) proved in [30]. To this aim we first show that u is a solution of
a suitably defined Dirichlet problem.
Claim. Let u ∈ BV (0, T ) be a solution of the T -periodic problem associated with (1). Then,
u is a solution of the Dirichlet problem

−
(
v′/
√

1 + v′2
)′

= f(t, v) in ]0, T [, v(0) = u(0+), v(T ) = u(T−). (35)

We recall that v ∈ BV (0, T ) is a solution of (35) if∫ T

0

√
1 + |Dw|2 + |w(0+)− u(0+)|+ |w(T−)− u(T−)|

−
(∫ T

0

√
1 + |Dv|2 + |v(0+)− u(0+)|+ |v(T−)− u(T−)|

)
≥
∫ T

0

f(t, v)(w − v) dt,



24

for all w ∈ BV (0, T ). Fix any w ∈ BV (0, T ). Using the elementary inequality

|a− b| − |c− d| ≤ |a− c|+ |b− d|,

which holds for all a, b, c, d ∈ R, and the fact that u satisfies (9) with v = w, we see that∫ T

0

√
1 + |Dw|2 + |w(0+)− u(0+)|+ |w(T−)− u(T−)| −

∫ T

0

√
1 + |Du|2

≥
∫ T

0

√
1 + |Dw|2 + |w(T−)− w(0+)| −

∫ T

0

√
1 + |Du|2 − |u(T−)− u(0+)|

≥
∫ T

0

f(t, u)(w − u) dt.

Hence, u is a solution of (35) and the claim is proved.
As u is a solution of the Dirichlet problem (35), by [30, Corollary 1.6] we have that

u ∈ C3(]0, T [).
To prove that the T -periodic extension û of u onto R belongs to C3(R), we first notice

that, by Remark 3.2, the restriction ũ to [ 12T,
3
2T ] of û is a solution of the T -periodic problem

associated with (1) on [ 12T,
3
2T ]. Then we repeat the previous argument and we conclude that

ũ ∈ C3(] 12T,
3
2T [). Hence û belongs to C3(R).

The following statement yields the regularity of solutions of the T -periodic problem as-
sociated with (1) in the presence of a lower solution α and of an upper solution β such that
α < β. This result should be compared with [8, Theorem 2], where the further condition

(h16) there exists c ∈ C0([0, T ]) such that ‖c−‖L1 < 1
2 (respectively ‖c+‖L1 < 1

2) and f(t, s) ≥
c(t) (respectively f(t, s) ≤ c(t)) for every t ∈ [0, T ] and every s ∈ R

was needed, but no additional regularity, besides continuity, nor monotonicity were assumed
on f .

Corollary 5.2. Assume (h1), (h8) and

(h17) f ∈ C1(R× [−ρ, ρ]) and
∂f

∂s
(t, s) < 0 in R× [−ρ, ρ], with ρ > max{‖αi‖L∞ , ‖βj‖L∞ :

i = 1, . . . ,m; j = 1, . . . , n}.

Then the T -periodic problem associated with (1) has a unique solution u, having range in
[−ρ, ρ], and the T -periodic extension of u onto R belongs to C3(R).

Proof. By Theorem 4.1 and Remark 4.1 there exists a solution u of the T -periodic problem
associated with (1) such that α ≤ u ≤ β. The uniqueness can be verified exactly as in the
proof of Theorem 5.1. Theorem 5.1 finally yields the regularity of u.

Example 5.1. From Proposition 3.3 and Corollary 5.2 we easily deduce that the sine-
curvature equation

−
(
u′/
√

1 + u′2
)

= A sinu− e(t) (36)

has, for any given A ∈ R and e ∈ C1
T (R) satisfying ‖e‖L∞ < A, exactly one (classical) T -

periodic solution u ∈ C3(R), with π
2 < min

[0,T ]
u ≤ max

[0,T ]
u < 3π

2 . A related result was obtained in

[6, Corollary 1, Example 1], but there the additional condition ‖(e−A)−‖L∞ < 1
2 was required.

The solvability of the T -periodic problem associated with the sine-curvature equation (36)
under different conditions has been investigated in [28].
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Example 5.2. The singular curvature equation

−
(
u′/
√

1 + u′2
)

= u−p − e(t) (37)

has, for any given p > 0 and e ∈ C1
T (R) satisfying ē > 0 and (h4) (or (h6)), exactly one

(classical) T -periodic solution u ∈ C3(R) such that min
[0,T ]

u > 0. This can be deduced from

Proposition 3.3, Proposition 3.5 and Corollary 5.2, observing that lim
s→0+

(s−p−‖e‖L∞) = +∞

and lim
s→+∞

(s−p− ē) < 0. Related results have been obtained in [8, Example 2] under different

conditions. The solvability of the Dirichlet problem associated with equation (37) has been
investigated in [10].

6 Stability results

In this section we discuss how certain stability properties of the solutions of the T -periodic
problem associated with (1) can be detected by the use of lower and upper solutions.

Order stability. We introduce the following concept of stability, adapted to the present
setting from [20, Chapter I].

• We say that a solution u of the T -periodic problem associated with (1) is order stable
(respectively strictly order stable) from below if there exists a sequence (αn)n of lower
solutions (respectively proper lower solutions) such that, for each n, αn < αn+1 and

lim
n→+∞

αn = u in Lq(0, T ) for some q > 1.

• We say that a solution u of the T -periodic problem associated with (1) is order stable
(respectively strictly order stable) from above if there exists a sequence (βn)n of upper
solutions (respectively proper upper solutions) such that, for each n, βn > βn+1 and

lim
n→+∞

βn = u in Lq(0, T ) for some q > 1.

The following order stability results hold. We point out that our conclusions are obtained
without assuming any additional regularity condition, like, e.g., Lipschitz continuity, on f , as
it is usually required in the semilinear case in order to associate with the considered problem
an order preserving operator (see, e.g., [1, 20]).

Theorem 6.1. Assume (h1) and (h7). Let v ∈ BV (0, T ) be a solution of the T -periodic
problem associated with (1). Suppose that there exists a BV -lower solution α of the T -periodic
problem associated with (1) such that v > α and there is no solution u of the T -periodic problem
associated with (1) satisfying α ≤ u < v. Then v is strictly order stable from below.

Proof. Assume that α = α̃1 ∨ · · · ∨ α̃m, where, for each i = 1, . . . ,m, α̃i satisfies

J (α̃i + z)− J (α̃i) ≥
∫ T

0

f(t, α̃i)z dt,

for all z ∈ BV (0, T ) with z ≤ 0. Fix ρ > max
i=1,...,m

‖α̃i‖L∞ . By [16, Lemma 2.1] (see also [15,

Proposition 2.3]) there exists a function h : [0, T ]× [−ρ, ρ]× [−ρ, ρ]→ R such that

• h satisfies the Carathéodory conditions, i.e., for a.e. t ∈ [0, T ], h(t, ·, ·) : [−ρ, ρ] ×
[−ρ, ρ] → R is continuous and, for every (s, r) ∈ [−ρ, ρ] × [−ρ, ρ], h(·, s, r) : [0, T ] → R
is measurable;
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• there exists γ ∈ Lp(0, T ) such that |h(t, s, r)| ≤ γ(t) for a.e. t ∈ [0, T ] and every
(s, r) ∈ [−ρ, ρ]× [−ρ, ρ];

• h(t, ·, r) : [−ρ, ρ]→ R is strictly increasing for a.e. t ∈ [0, T ] and every r ∈ [−ρ, ρ];

• h(t, s, ·) : [−ρ, ρ]→ R is strictly decreasing for a.e. t ∈ [0, T ] and every s ∈ [−ρ, ρ];

• h(t, s, r) = −h(t, r, s) for a.e. t ∈ [0, T ] and every (s, r) ∈ [−ρ, ρ]× [−ρ, ρ];

• for a.e. t ∈ [0, T ] and every (s, r) ∈ [−ρ, ρ]× [−ρ, ρ], with r < s, we have

|f(t, s)− f(t, r)| < h(t, s, r). (38)

Let us consider the equation

−
(
u′/
√

1 + u′2
)′

+ h(t, u, α) = f(t, α). (39)

A solution u of the T -periodic problem associated with (39) is a function u ∈ BV (0, T )
satisfying ‖u‖L∞ ≤ ρ and

J (u+ z)− J (u) ≥
∫ T

0

(
f(t, α)− h(t, u, α)

)
z dt, (40)

for all z ∈ BV (0, T ).
Claim. The T -periodic problem associated with (39) has a unique solution α1, satisfying
α < α1 < v, which is a proper BV -lower solution of the T -periodic problem associated with
(1).
We first show that the T -periodic problem associated with (39) has at most one solution.
Suppose that both u1 and u2 are solutions of the T -periodic problem associated with (39).
Then we have

J (u2)− J (u1) ≥
∫ T

0

(
f(t, α)− h(t, u1, α)

)
(u2 − u1) dt

and

J (u1)− J (u2) ≥
∫ T

0

(
f(t, α)− h(t, u2, α)

)
(u1 − u2) dt.

Since the function h(t, ·, r) : [−ρ, ρ] → R is strictly increasing for a.e. t ∈ [0, T ] and every
r ∈ [−ρ, ρ], we conclude that

0 ≥
∫ T

0

(
h(t, u1, α)− h(t, u2, α)

)
(u1 − u2) dt ≥ 0

and hence u1 = u2.
Next we prove that the T -periodic problem associated with (39) has a solution. Let us

verify that α = α̃1 ∨ · · · ∨ α̃m is a BV -lower solution of the T -periodic problem associated
with (39), that is, for each j = 1, . . . ,m,

J (α̃j + z)− J (α̃j) ≥
∫ T

0

(
f(t, α)− h(t, α̃j , α)

)
z dt,
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for all z ∈ BV (0, T ) with z ≤ 0. Indeed, as α̃j ≤ α, we have, by (38),

f(·, α̃j) ≤ f(·, α) + h(·, α, α̃j) = f(·, α)− h(·, α̃j , α)

and, hence, as α is a BV -lower solution of the T -periodic problem associated with (1),

J (α̃j + z)− J (α̃j) ≥
∫ T

0

f(t, α̃j)z dt ≥
∫ T

0

(
f(t, α)− h(t, α̃j , α)

)
z dt.

Similarly, we verify that v is an upper solution of the T -periodic problem associated with
(39), that is

J (v + z)− J (v) ≥
∫ T

0

(
f(t, α)− h(t, v, α)

)
z dt,

for all z ∈ BV (0, T ) with z ≥ 0. Indeed, as v > α, we have, by (38),

f(·, v) > f(·, α)− h(·, v, α) (41)

and, hence, as v is a solution of the T -periodic problem associated with (1),

J (v + z)− J (v) ≥
∫ T

0

f(t, v)z dt ≥
∫ T

0

(
f(t, α)− h(t, v, α)

)
z dt.

Theorem 4.1 and Remark 4.1 yield the existence of a solution α1 of the T -periodic problem
associated with (39) such that α ≤ α1 ≤ v.

Let us prove that α < α1. Suppose, by contradiction, that α1 = α. Then we get

J (α+ z)− J (α) ≥
∫ T

0

(
f(t, α)− h(t, α1, α)

)
z dt =

∫ T

0

f(t, α)z dt,

for all z ∈ BV (0, T ), i.e., α is a solution of the T -periodic problem associated with (1), thus
contradicting the assumption that α is a proper BV -lower solution.

Let us prove that α1 < v. Suppose, by contradiction, that α1 = v. Then, testing (40)
against z = −1 and against z = 1, we obtain∫ T

0

(
f(t, α)− h(t, v, α)

)
dt = 0.

Similarly, testing

J (v + z)− J (v) ≥
∫ T

0

f(t, v)z dt

against z = −1 and against z = 1, we get∫ T

0

f(t, v) dt = 0.

Hence, we have ∫ T

0

(
f(t, v)− f(t, α) + h(t, v, α)

)
dt = 0,

thus contradicting (41).
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Finally, we observe that α1 is a BV -lower solution of the T -periodic problem associated
with (1). Indeed, if z ∈ BV (0, T ), with z ≤ 0, we have, using (38),

J (α1 + z)− J (α1) ≥
∫ T

0

(
f(t, α)− h(t, α1, α)

)
z dt ≥

∫ T

0

f(t, α1)z dt.

As the T -periodic problem associated with (1) has no solutions u, with α < u < v, we conclude
that α1 is proper.

We now recursively define a sequence (αn)n, where α0 = α, α1 has been constructed in
the above claim and, for every n ≥ 1, αn+1 is the unique solution of the T -periodic problem
associated with

−
(
u′/
√

1 + u′2
)′

+ h(t, u, αn) = f(t, αn),

that is

J (αn+1 + z)− J (αn+1) ≥
∫ T

0

(
f(t, αn)− h(t, αn+1, αn)

)
z dt,

for all z ∈ BV (0, T ). Arguing as above we see that the sequence (αn)n is well-defined and,
for each n, αn is a proper BV -lower solution of the T -periodic problem associated with (1),
satisfying αn < αn+1 < v.

Let us verify that (αn)n converges to v in Lq(0, T ), where q = p
p−1 . Since the sequence

(αn)n is increasing and uniformly bounded in L∞(0, T ), it converges a.e. in [0, T ] and in
Lq(0, T ) to some function ṽ, with α < ṽ ≤ v. Since there exists γ ∈ Lp(0, T ) such that, for
all n,

|h(t, αn+1(t), αn(t))| ≤ γ(t)

and
lim

n→+∞
h(t, αn+1(t), α(t)) = h(t, ṽ(t), ṽ(t)) = 0

a.e. in [0, T ], we get
lim

n→+∞
h(·, αn+1, αn) = 0

in Lp(0, T ). By (h7) we also have

lim
n→+∞

f(·, αn) = f(·, ṽ)

in Lp(0, T ). Fix w ∈ BV (0, T ). Since, for each n,

J (w)− J (αn+1) ≥
∫ T

0

(
f(t, αn)− h(t, αn+1, αn)

)
(w − αn+1) dt,

passing to the limit and using Proposition 2.3, we conclude that

J (w)− J (ṽ) ≥
∫ T

0

f(t, ṽ)(w − ṽ) dt.

Accordingly, ṽ is a solution of the T -periodic problem associated with (1), satisfying α ≤ ṽ ≤
v, and hence ṽ = v.

In a completely similar way we can prove the following symmetric result.
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Theorem 6.2. Assume (h1) and (h7). Let w ∈ BV (0, T ) be a solution of the T -periodic
problem associated with (1). Suppose that there exists a BV -upper solution β of the T -periodic
problem associated with (1) such that w < β and there is no solution u of the T -periodic
problem associated with (1) satisfying w < u ≤ β. Then, w is strictly order stable from above.

Combining Theorem 6.1 and Theorem 6.2 yields the order stability of the minimum and
the maximum solutions of the T -periodic problem associated with (1), lying between a pair
of lower and upper solutions α and β, with α ≤ β.

Corollary 6.3. Assume (h1), (h7) and (h8). Suppose further that α and β are proper lower
and upper solutions, respectively, of the T -periodic problem associated with (1). Then the
minimum solution v and the maximum solution w in [α, β] of the T -periodic problem associated
with (1) are strictly order stable from below and strictly order stable from above, respectively.

We stress that we cannot expect in the context of Corollary 6.3, even in the case where
all solutions between α and β are regular, the existence of a Lyapunov stable solution. This
is the content of the following result.

Proposition 6.4. Assume (h1). Let α and β be respectively a W 2,1-lower and a W 2,1-upper
solution, with m = n = 1, of the T -periodic problem associated with (1). Suppose that α and
β are proper and that α < β. Finally, assume that (h17) holds. Then the T -periodic problem
associated with (1) has a unique classical solution u, with α < u < β in [0, T ]. Further, u is
strictly order stable from below and from above, but is Lyapunov unstable in the past and in
the future.

Proof. Proposition 3.1, Proposition 3.2, Corollary 5.2 and Corollary 6.3 imply that the T -
periodic problem associated with (1) has a unique classical solution u, with α < u < β, which
is strictly order stable from below and from above.

Let us prove that u is Lyapunov unstable in the past and in the future. We first note that
u is a T -periodic solution of the equation

−u′′ = f(t, u)(1 + u′2)
3
2 .

Next we take R > max{‖u′‖L∞ , ‖α′‖L∞ , ‖β′‖L∞} and we define a function k : R×R×R→ R
by setting, for every (t, s) ∈ R2,

k(t, s, r) =

{
f(t, s)(1 + r2)

3
2 if |r| ≤ R,

f(t, s)(1 +R2)
3
2 if |r| > R.

Note that k satisfies the Bernstein-Nagumo condition. Obviously, α is a proper lower solution,
β is a proper upper solution and u is a solution of the T -periodic problem associated with the
equation

−u′′ = k(t, u, u′). (42)

Pick t1, t2 ∈ [0, T ] such that α(t1) < u(t1) and u(t2) < β(t2). Theorem 3.1 in [33] implies that,
for any u0 ∈ [α(t1), u(t1)[ (respectively, u0 ∈ ]u(t2), β(t2)]), there are solutions ul : ]−∞, t1]→
R and ur : [t1,+∞[→ R of (42), with

ul(t1) = u0 = ur(t1), α(t) ≤ ul(t) ≤ u(t) in ]−∞, t1], α(t) ≤ ur(t) ≤ u(t) in [t1,+∞[

(respectively,

ul(t2) = u0 = ur(t2), u(t) ≤ ul(t) ≤ β(t) in ]−∞, t2], u(t) ≤ ur(t) ≤ β(t) in [t2,+∞[),
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satisfying

lim
t→−∞

(ul(t)− u(t)) = 0, lim
t→−∞

(u′l(t)− u′(t)) = 0,

lim
t→+∞

(ur(t)− u(t)) = 0, lim
t→+∞

(u′r(t)− u′(t)) = 0.

Hence, it follows that u is Lyapunov unstable in the past and in the future as a solution of
(42) and therefore as a solution of (36), as it is immediately checked.

Example 6.1. We know from Example 5.1 that the sine-curvature equation (36) has, for any
given A ∈ R and e ∈ C1

T (R) satisfying ‖e‖L∞ < A, exactly one T -periodic solution u ∈ C3(R),
with π

2 < min
[0,T ]

u ≤ max
[0,T ]

u < 3π
2 . Proposition 6.4 implies that u is strictly order stable from

below and from above, but is Lyapunov unstable in the past and in the future.

Example 6.2. We observed in Example 5.2 that the singular curvature equation (37) has,
for any given p > 0 and e ∈ C1

T (R) satisfying ē > 0 and (h4) (or (h6)), exactly one T -periodic
solution u ∈ C3(R) such that min

[0,T ]
u > 0. By the strict monotonicity we see that there exists

a constant ε > 0 such that α = u− ε and β = u+ ε are respectively a proper W 2,1-lower and
a proper W 2,1-upper solution. Accordingly, Proposition 6.4 implies that u is strictly order
stable from below and from above, but is Lyapunov unstable in the past and in the future.
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