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Introduction

At page 214 of of his book [4] Hodge stated a problem which later on became
known as the “ Generalized Hodge Conjecture ”. We will recall here for the
reader convenience the particular case of it we are interested in.

Let X be a projective, smooth and connected threefold over C . Moreover,
let S ⊂ X be a closed algebraic surface. Then there is a canonical map of
vector spaces

(1) H3(S,Q)→ H3(X,Q)

and it is certainly of great interest for the study of the algebraic geometry
of X to be able to characterize the subspace of H3(X,Q) generated by the
images of all such maps, when S varies inside X. By the way, notice that it
would be better to work with homology with integral coefficients, as Hodge
did. It was subsequently realized that the problems raised by Hodge have,
in general, negative answers in this case ( see [1] ).

Hodge found a necessary condition for a class in H3(X,Q) to belong to
such a subspace, and we are going to explain it. For simplicity we will assume
S smooth. If [Γ] ∈ H3(S,Q) , we can assume that the singular 3-cycle Γ is a
linear combination of C∞ singular 3-simplexes. The image of [Γ] in the map
(1) can be still represented by the cycle Γ . Now, for every closed (3, 0)-form
α on X, Hodge remarked that

(2)

∫
Γ

α = 0

To prove this, notice that the form which is actually integrated here is the
pull-back of α to the various singular simplexes of Γ. An intermediate step
in this pull-back procedure is the pull-back of α to S . But α contains too
many dz’s to be supported by a surface, hence

α|S ≡ 0
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and (2) is proved.
At this point it is quite natural to ask whether the vanishing of the integral

(2) for any choice of the closed (3, 0)-form α on X is also a sufficient condition
for a class [Γ] ∈ H3(X,Q) to be in the image of some map (1). This is Hodge’s
problem referred at the beginning.

This problem is even more natural if we put it in a historical perspective.
In fact, let S be a projective, smooth and connected surface over C , and let
C ⊂ S be a closed, algebraic curve. Then, the same argument used above
shows that for any closed (2, 0)-form α on S we have

(3)

∫
C

α = 0

And it was a great breakthrough when Lefschetz proved that, conversely, if
[Γ] ∈ H2(S,Q) is such that (3) is satisfied for every α as above, then [Γ] is
in the image of some canonical map H2(C,Q) → H2(S,Q) , where C ⊂ S
is an algebraic curve, not necessarily irreducible ( [5] ).

To progress further, Grothendieck had the idea to translate everything
from homology to cohomology [3]. The device for this is the Poincaré duality
isomorphism PD : Hr(X,C) → H 6−r(X,C) which works as follows. Fix
[Γ] ∈ Hr(X,C) , and let i : Γ → X denote the inclusion ( cum grano salis
because Γ is a cycle ). Then we have a well defined C-linear map

λ[Γ] : H r(X,C)→ C given by [ω] 7→
∫

Γ

i∗ω

Therefore, thanks to the canonical perfect pairing

(4) Ψ : H r(X,C)×H 6−r(X,C)→ C ([ω], [ω ′]) 7→
∫
X

ω ∧ ω ′

there is one and only one [ξ] ∈ H 6−r(X,C) such that

λ[Γ] = Ψ(−, [ξ])

or, in more down-to-earth terms

(5)

∫
Γ

i∗ω =

∫
X

ω ∧ ξ

for any closed r-form ω . The class [ξ] ∈ H 6−r(X,C) is called the Poincaré
dual of [Γ] ∈ Hr(X,Q) .

The attentive reader had certainly noticed that, to introduce Poincaré du-
ality as above, one represents cohomology classes à la de Rham, i.e. by mean
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of closed forms. This forces us to use cohomology with complex coefficients.
How to deal in this set-up with rational cohomology classes ?

Recall that, if η is a closed differential s-form on X, then a period of η is
any complex number ∫

Γ

η

where Γ is a s-cycle with integral coefficients. Then, η represents a class in
Hs(X,Q) (⊂ Hs(X,C) ) iff all its periods are in Q ( [9], pp. 34-35 ).

With these last preparations, we have at hand everything we need to
translate in cohomological terms Hodge’s necessary condition.

First of all, the image in the Poincaré duality map of the sum of all
the images of the possible maps (1) is customary denoted nowadays by
N1H3(X,Q) , and is a particular instance of the coniveau filtration on the
rational cohomology of X. Actually, the standard definition of the spaces of
the coniveau filtration is rather different, we will give it in a moment. For
the comparison of the two definitions the reader is referred to [7].

Moreover, let [Γ] ∈ H3(X,Q) be such that (2) is satisfied for every closed
(3, 0)-form α on X. Then by (5)∫

X

α ∧ ξ = 0

for any α , i.e.
PD([Γ]) = [ξ] ∈ H 3,0(X)⊥

where the orthogonal subspace is taken with respect to the canonical perfect
pairing (4). But it is easily computed that

(6) H 3,0(X)⊥ = H 1,2(X)⊕H 2,1(X)⊕H 3,0(X) =: F 1H3(X,C)

where F 1H3(X,C) is a subspace of the Hodge filtration of H3(X,C) . There-
fore we have

(7) N1H3(X,Q) ⊂ F 1H3(X,C) ∩H3(X,Q)

and Hodge problem amounts to ask if, actually, the above inclusion is an
equality.

The usual definition of the coniveau filtration spaces is based on the
concept of Gysin map. Given a proper map f : S → X, where S is a smooth
surface, the corresponding Gysin map f∗ : H 1(S,Q)→ H 3(X,Q) is defined
as the composition

H 1(S,Q)
PD // H3(S,Q) can. // H3(X,Q) PD // H 3(X,Q)
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Then it is customary to set

N1H3(X,Q) :=
∑

f as above

Im(f∗)

The advantage of the coomological translation is that f∗ is a map of
rational Hodge structures ( [8], 7.3.2 ), hence Im(f∗) is a rational sub-Hodge
structure of H3(X,Q) . In particular, if we extend the scalars of f∗ from Q
to C , we have

f∗(H
0,1(S)) ⊂ H 1,2(X) f∗(H

1,0(S)) ⊂ H 2,1(X)

and
f∗(H 1,0(S)) = f∗(H

0,1(S))

Then, by general facts on the category of ( pure ) rational Hodge structures,
the space N1H3(X,Q) is also a rational sub-Hodge structure of H3(X,Q) ,
and the above relations imply that

N1H3(X,Q)⊗Q C = K 1,2 ⊕K 2,1

where

K 1,2 ⊂ H 1,2(X) K 2,1 ⊂ H 2,1(X) and K 1,2 = K 2,1

Hence we can conclude that the dimension of N1H3(X,Q) is even.

On the other hand, Grothendieck exibited in [3] a particular abelian three-
fold X for which the dimension of H3(X,Q) ∩ F 1H3(X,C) is odd, tush an-
swering Hodge’ s question for the negative. The content of this expository
paper is a thorough analysis of this example.

Grothendieck also showed how it is possible to correct the Generalized
Hodge Conjecture simply by asking whether N1H3(X,Q) ( instead to be
equal to H3(X,Q)∩ F 1H3(X,C) ) is the maximal rational sub-Hodge struc-
ture of H3(X,Q) , which is contained into F 1H3(X,C) . The abelian threefold
X he considers satisfies this amended Generalized Hodge Conjecture, as we
will see.

1 The variety and its topology

Let E be an elliptic curve over the field of complex numbers. The projective
manifolds we are interested in are the abelian threefolds

X := E × E × E = E 3
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More precisely, X can be defined as follows. Let e1, e2, e3 denote the standard
basis of C3, and let z1, z2, z3 denote the corresponding complex coordinates.
Fix a complex number

(8) τ = u+ iv where u, v ∈ R and v > 0

Then e1, e2, e3, τ e1, τ e2, τ e3 is the ( ordered ) basis of a lattice Λ ' Z 6 con-
tained into C 3, and we set

X := C 3/Λ

We will denote by u1, u2, u3, u4, u5, u6 the real coordinates in C3 with respect
to the basis of Λ fixed above, namely

(9) zh = uh + τ uh+3 h = 1, 2, 3

Concerning the topology of X, let us consider integral homology first.
Let I = [0, 1] ⊂ R , and define maps γi : I → C3 by setting

γi(t) = t ei for i = 1, 2, 3 and γi(t) = t τ ei−3 for i = 4, 5, 6

If we compose these γi with the canonical map π : C3 → X we get six singular
1-cycles of X, whose classes are a basis for the free abelian group H1(X,Z) .
So inside X there are six copies of S1, the images of the π◦γi . We will denote
them by C1, . . . , C6 . It is well known that a basis for Hr(X,Z) is given by
the classes of all the r-cycles

Ci1 × Ci2 × . . .× Cir where 1 ≤ i1 < i2 < . . . < ir ≤ 6

Now we turn to the cohomology spaces of X with coefficients in C .
A basis for Hr(X,C) is given by the classes of the closed r-forms

(10) d
H

= du
h1h2...hr

= du
h1
∧ du

h2
∧ . . . ∧ du

hr

where H = (h1h2 . . . hr ) is a multi-index, and 1 ≤ h1 < h2 < . . . < hr ≤ 6 .
A straightforward computation then shows that

(11)

∫
Ci1
×Ci2

×...×Cir

duh1 ∧ duh2 ∧ . . . ∧ duhr = δh1
i1
δh2
i2
. . . δhr

ir

where the δ’ s are Kronecker’ s. As was remarked in Introduction, this implies
that the classes of the forms (10) are also a basis for Hr(X,Q) over Q .

For future use, let me show how goes the computation (11), at least in a
particular case, for r = 3 . Parametrize C2 × C4 × C5 by first defining

ϕ : [0, 1]3 → C3 ϕ : (t1, t2, t3) 7→ t1 e2 + t2 τ e1 + t3 τ e2
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and then composing with the canonical map π : C3 → X. Namely we have

u1 = 0 u2 = t1 u3 = 0 u4 = t2 u5 = t3 u6 = 0

Actually, we can consider ϕ defined in an open neighborhood of [0, 1]3 inside
R3, and therefore

ϕ∗
(
du2 ∧ du4 ∧ du5

)
= dt1 ∧ dt2 ∧ dt3

which yields the result.

We turn now to the Hodge decomposition of the spaces Hr(X,C) , and
to their relations with Hr(X,Q) . By general facts about the Hodge decom-
position of an abelian variety, the Hodge diamond of X is

(12)

1
3 3

3 9 3
1 9 9 1

3 9 3
3 3

1

For our purposes we have to use also the basis of H1(X,C)

(13) dz1 dz2 dz3 dz 1 dz 2 dz 3

Because of (9), the simple relations between the dzh , dz k and the duj are

(14) dzh = duh + τ duh+3 dz h = duh + τ duh+3

(15)

duh =

(
1

2
+ i

u

2 v

)
dzh +

(
1

2
− i u

2 v

)
dz h

duh+3 = − i

2 v
dzh +

i

2 v
dz h

for any h = 1, 2, 3 .
Finally, we can compute the various classes PD( [Ci × Cj × Ck] ) with

respect to the basis (10) by mean of formula (5). They are
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(16)
PD( [C1 × C2 × C3] ) = − du456 PD( [C2 × C3 × C4] ) = du156

PD( [C1 × C2 × C4] ) = du356 PD( [C2 × C3 × C5] ) = − du146

PD( [C1 × C2 × C5] ) = − du346 PD( [C2 × C3 × C6] ) = du145

PD( [C1 × C2 × C6] ) = du345 PD( [C2 × C4 × C5] ) = du136

PD( [C1 × C3 × C4] ) = − du256 PD( [C2 × C4 × C6] ) = − du135

PD( [C1 × C3 × C5] ) = du246 PD( [C2 × C5 × C6] ) = du134

PD( [C1 × C3 × C6] ) = − du245 PD( [C3 × C4 × C5] ) = − du126

PD( [C1 × C4 × C5] ) = − du236 PD( [C3 × C4 × C6] ) = du125

PD( [C1 × C4 × C6] ) = du235 PD( [C3 × C5 × C6] ) = − du124

PD( [C1 × C5 × C6] ) = − du234 PD( [C4 × C5 × C6] ) = du123

2 Divisors of X

To test Hodge’ s and Grothendieck’ s guesses on X we will need a rather
detailed knowledge of the divisors of this variety. We will determine in this
section a set of divisors on X whose cohomology classes generate the space
H2(X,Q)∩H 1,1(X) . In particular, to apply the various results of Lefschetz’s
theory, we will determine an ample divisor.

The first step is the computation of H2(X,Q) ∩H 1,1(X) . To produce a
basis for this Q-module we will use the approach of [6]. Consider the closed
2-form

(17) F =
∑

1≤h,k≤3

ahk dzh ∧ dzk =
∑

1≤s<t≤6

bst dus ∧ dut

where the ahk and bst are all in C . By (11), we have that [F ] ∈ H2(X,Q) if
and only if all the bst are in Q . Murasaki’ s idea is to write

(18) F = F1 + F2 + F3 + F12 + F13 + F23

where, for every h = 1, 2, 3

Fh := ahh dzh ∧ dzh

and for every 1 ≤ h < k ≤ 3

Fhk := ahk dzh ∧ dzk + akh dzk ∧ dzh

Claim F is a rational class if and only if all the Fh and the Fhk are such.
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One direction is obvious, so assume that F is rational. From (14) we get

Fh = − 2iv ahh duh ∧ duh+3

(19) and

Fhk = ( ahk − akh ) duh ∧ duk + ( ahk τ − akh τ ) duh ∧ duk+3 +

+ ( akh τ − ahk τ ) duk ∧ duh+3 + ( ahk − akh ) τ τ duh+3 ∧ duk+3

In particular, this shows that each of the six terms in (18) involves different
elements of the basis dui ∧ duj of H2(X,C) , so that the Claim above is
completely proved.

Now, the first equation of (19) yields by (17) that

− 2iv ahh = bh,h+3

Therefore bh,h+3 ∈ Q if and only if

ahh =
i

2 v
r where r ∈ Q

In other words, for any h = 1, 2, 3

(20)
i

2 v
dzh ∧ dzh = duh ∧ duh+3 ∈ H2(X,Q) ∩H 1,1(X)

and they are independent over Q .

Concerning the class Fhk , for any fixed 1 ≤ h < k ≤ 3 , from the second
relation in (19) it follows that

ahk − akh ∈ Q

( ahk − akh ) τ τ ∈ Q

ahk τ − akh τ ∈ Q

akh τ − ahk τ ∈ Q

The last two relations imply that

( ahk − akh ) ( τ + τ ) ∈ Q

Therefore, if ahk − akh 6= 0 , then necessarily τ is an algebraic number over
Q , of degree [Q(τ) : Q] ≤ 2 . From now on we will rule out this possibility
by making the
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Assumption 1. If the complex number τ is algebraic over Q , then its degree
over Q is ≥ 3 .

Hence if F is rational, then necessarily ahk = akh = a and

Fhk = a ( τ − τ )
(
duh ∧ duk+3 + duk ∧ duh+3

)
=

= − 2 i a v
(
duh ∧ duk+3 + duk ∧ duh+3

)
We get in this way three more classes into H2(X,Q)∩H 1,1(X) , independent
over Q , namely

(21)
i

2 v

(
dzh ∧ dzk + dzk ∧ dzh

)
= duh ∧ duk+3 + duk ∧ duh+3

To summarize
dimQ

(
H2(X,Q) ∩H 1,1(X)

)
= 6

Let us consider the divisors now.
First of all, the abelian surface E ×E can be embedded in X in a trivial

way by setting, for an arbitrary P ∈ E

S3 := E × E × P

The family {E × E × P }P∈E is a fibration of X. Moreover, if P,Q ∈ E,
then E ×E × P and E ×E ×Q are algebraically equivalent, hence they are
homologically equivalent.

To determine the cohomology class of S3 , we remark that as a singular
4-cycle inside X we have S3 = C1×C2×C4×C5 . Then, for any closed 4-form

α =
∑

#I=4

b
I
du

I
b

I
∈ Q for any I

relation (11) implies∫
S3

α =

∫
C1×C2×C4×C5

α = b(1,2,4,5)

Therefore, (5) will be satisfied for every form α if we take

(22) ω3 := du3 ∧ du6 =
i

2 v
dz3 ∧ dz3

In other words

(23) PD( [S3] ) =
i

2 v
dz3 ∧ dz3
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On X we have also two other obvious families of surfaces, given respectively
by

S1 := P × E × E S2 := E × P × E

and the corresponding cohomology classes, computed as above, are

PD( [S1] ) = ω1 :=
i

2 v
dz1 ∧ dz1 PD( [S2] ) = ω2 :=

i

2 v
dz2 ∧ dz2

Consider now E embedded into P2 via | 3P | . Then we have also the
embedding

(24) X = E × E × E � � // P2 × P2 × P2 � � // P26

where P2 × P2 × P2 is embedded into P26 à la Segre. It is clear that the
corresponding very ample divisor of X is nothing but 3 (S1 + S2 + S3 ) . We
will use in the sequel the ample divisor

(25) H := S1 + S2 + S3

Finally

(26) ω := PD( [H] ) =
i

2 v

(
dz1 ∧ dz1 + z2 ∧ dz2 + dz3 ∧ dz3

)
To produce divisors not equivalent to the Si’ s, we can try to embed E×E

inside X by using the diagonal map ∆ : E → E × E like in

(27) f : E × E � � ∆×idE // E × E × E

We will denote by T3 the image of E × E in the proper map f. Two other
surfaces T1 and T2 can be defined inside X as the images of the ( proper )
map

E × E � � idE×∆ // E × E × E
and similarly for T2 .

We will determine now the cohomology class of the divisor T3 . To compute
the pull-back of forms it is better to describe the map f in (27) as follows.
If ε1, ε2 is the standard basis of C 2, we have the real basis ε1, ε2, τ ε1, τ ε2 of
this space. It generates over the integers a lattice L ⊂ C 2, and of course
E×E = C 2/L . Moreover, let v1, v2, v3, v4 denote real coordinates in C 2 with
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respect to ε1, ε2, τ ε1, τ ε2 . Then the map f is induced by the map C 2 → C 3

given in real coordinates by

(28)
u1 = v1 u2 = v1 u3 = v2

u4 = v3 u5 = v3 u6 = v4

First consequences of these relations are

f ∗ ( du1 ∧ du2 ) = 0 f ∗ ( du4 ∧ du5 ) = 0

Hence, given any rational closed 4-form α = b1234 du1 ∧ du2 ∧ du3 ∧ du4 + . . .
on X, we have

f ∗ α = − ( b1346 + b1356 + b2346 + b2356 ) dv1 ∧ dv2 ∧ dv3 ∧ dv4

If we set

(29) η3 := du15 + du24 − du14 − du25

it is easily checked that

η3 ∧ α = − ( b1346 + b1356 + b2346 + b2356 ) du1 ∧ du2 ∧ . . . ∧ du6

and we can conclude that ∫
T3

f ∗ α =

∫
X

η3 ∧ α

for any rational closed 4-form α on X, namely that the Poincaré dual σ3 of
T3 is represented by the closed form η3 , which can also be written as

(30) η3 =
i

2 v

(
dz1 ∧ dz2 + dz2 ∧ dz1 − dz1 ∧ dz1 − dz2 ∧ dz2

)
because of (20) and (21).

To conclude this section, I will record some invariants of a general member
Y ∈ | 3H | , computed just for fun. From the Hodge diamond (12) we get

H1(X,OX) ' H2(X,OX) ' C3 H3(X,OX) ' C

Moreover, by Kodaira’s Vanishing Theorem

H i(X,OX(−1)) = 0 for i = 0, 1, 2
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and also
H i(X,OX(1)) = 0 for i = 1, 2, 3

because of

(31) ωX ' OX

This is just a translation of KX = 0 , which in turn is a straightforward
consequence of KE = 0 . Moreover, thanks to (31), Serre’s duality yields

H3(X,OX(−1)) ' H0(X,OX(1)) ' C27

From all this facts and the short exact sequence

0→ OX(−1)→ OX → OY → 0

we get finally

(32) H1(Y,OY ) ' C3 H2(Y,OY ) ' C29

For a complete knowledge of the Hodge diamond of Y it remains to compute
only H 1,1(Y ) . We will do it via the topological Euler-Poincarè characteristic
of Y, which is related to (32) by Noether’s formula

χ(OY ) =
1

12

(
K2
Y + χtop(Y )

)
Now, by adjunction formula

(33) ωY ' OY (1)

hence
K2
Y = Y 3︸︷︷︸

inside X

= 162

and we conclude
H 1,1(Y ) ' C114

3 Classes of N 1H 3(X,Q)

The purpose of this section is to compute the contribution to N1H 3(X,Q)
of the several different surfaces on X we know.

Let i denote the inclusion S1 ⊂ X. We start by computing the image of
the Gysin map i∗ : H 1(S1,Q) → H 3(X,Q) . A basis for H3(S1,Q) is given
by the classes

[C2 × C3 × C5] [C2 × C3 × C6] [C2 × C5 × C6] [C3 × C5 × C6]
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They are sent by i∗ into the same classes, viewed as elements of H3(X,Q) .
Finally, by the table (16) we conclude that i∗(H

1(S1,Q) ) is generated by

du146 , du145 , du134 , du124

Similarly, bases for the images of the Gysin maps for the surfaces S2 and S3

are given respectively by

du256 , du245 , du235 , du125

and
du356 , du346 , du236 , du136

A quick inspection shows that the twelve 3-forms above are distinct elements
of the basis (10) of H 3(X,Q) ; let M0 denote the subspace they generate.

Now we will compute the image of the Gysin map for the inclusion j : Y ⊂
X of the very ample divisor Y. By (26), 3ω ∈ H2(X,Q) is the cohomology
class of Y. Then the following diagram is commutative

(34)

H 1(X,Q)
3ω ∪− //

j∗ &&NNNNNNNNNNN
H 3(X,Q)

H 1(Y,Q)

j∗

88ppppppppppp

In fact, we have the commutative diagram, where [X] ∈ H6(X,Q) and [Y ] ∈
H4(Y,Q) are the fundamental classes of X and Y respectively

H3(Y,Q)
j∗ // H3(X,Q)

H 1(X,Q)
j∗

// H 1(Y,Q)
j∗

//

− ∩ [Y ]

OO

H 3(X,Q)

− ∩ [X]

OO

The cohomology class 3ω and [Y ] are related by Poincaré duality as

j∗[Y ] = 3ω ∩ [X]

Then, for every x ∈ H 1(X,Q) we have by the “ projection formula ” and the
above relation

( j∗ j
∗ x ) ∩ [X] = j∗ ( j∗ x ∩ [Y ] ) = x ∩ j∗ [Y ] =

x ∩ ( 3ω ∩ [X] ) = (x ∪ 3ω ) ∩ [X] = ( 3ω ∪ x ) ∩ [X]
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where the last equality is true because the degree of ω is 2 . Since the Poincaré
duality map is an isomorphism, the commutativity of (34) is completely
proved.

It is customary to denote by L the above map H 1(X,Q) → H 3(X,Q)
given by capping with 3ω . Since j∗ : H 1(X,Q) → H 1(Y,Q) is an isomor-
phism by the Weak Lefschetz Theorem, we have then

Im(j∗) = Im(L)

If α, β are closed forms, then [α]∪ [β] = [α∧ β] . Moreover, due to the use of
rational coefficients, we get the same image if we cap with ω instead of 3ω .
Finally, the form (26) can be written in the base (10) as

ω = du14 + du25 + du36

Therefore

(35)

ω ∧ du1 = − du125 − du136

ω ∧ du2 = − du125 − du136

ω ∧ du3 = − du125 − du136

ω ∧ du4 = − du125 − du136

ω ∧ du5 = − du125 − du136

ω ∧ du6 = − du125 − du136

These six elements are already in M0 , so no further progress has been made
toward the generation of N1H 3(X,Q) . Morally this was to be expected be-
cause of (25).

The contribution of the surfaces T1 , T2 and T3 to N 1H 3(X,Q) is not
easily determined in homology, so we switch directly to cohomology.

Consider the map f defined in (27) ( or (28), in coordinates ). The image
of f was denoted by T3 ; for simplicity, we will still denote by f the inclusion
of T3 into X.

The Gysin maps induced by f appears in the following diagram, which
can be shown to be commutative by the same argument used above to prove
the commutativity of (34) ( recall also (30) )

(36)

H 1(X,Q)
σ3 ∪− //

f∗ ''NNNNNNNNNNN
H 3(X,Q)

H 1(T3,Q)

f∗

77ppppppppppp
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The only relevant difference here is that f ∗ cannot be any more an isomor-
phism for the trivial reason that H 1(X,Q) and H 1(T3,Q) have different
dimensions ( 6 and 4 respectively ).

Recall that the closed form η3 representing σ3 = PD([T3]) was already
given in (29). Then the space Im(σ3 ∪ − ) is generated by the classes of

η3 ∧ du1 = du124 − du125 ∈M0

η3 ∧ du2 = du124 − du125

η3 ∧ du3 = du134 + du235︸ ︷︷ ︸
∈M0

− du135 − du234

η3 ∧ du4 = du245 − du145 ∈M0

η3 ∧ du5 = du245 − du145

η3 ∧ du6 = −du256 − du146︸ ︷︷ ︸
∈M0

+ du246 + du156

These relations shows that Im(σ3 ∪ − ) has dimension four. But this forces
f ∗ to be onto because dimQ H

1(T3,Q) = 4 , hence

Im( f∗ ) = Im(σ3 ∪ − )

To summarize, the contribution of Im( f∗ ) to the generation of the space
N1H 3(X,Q) is given by the classes

(37) du135 + du234 du246 + du156

Similar computations can be performed for the surfaces T1 and T2 , which
contribute to the generation of N1H 3(X,Q) respectively with the classes

(38) du135 + du126 du246 + du345

and

(39) du126 − du234 du156 − du345

Finally, it is easily seen that a basis for the subspace of H 3(X,Q) generated
by the six classes (37), (38) and (39) is given by

(40) du126− du234 du156− du345 du246 + du345 du135 + du234

and that

M0 ∩ 〈 du126 − du234 , du156 − du345 , du246 + du345 , du135 + du234 〉 = 0
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We set

(41) M := M0 ⊕ 〈 du126− du234 , du156− du345 , du246 + du345 , du135 + du234 〉

This space M is a rational sub-Hodge structure of H3(X,Q) , contained into
N1H3(X,Q) , hence into F 1H3(X,C) . From dimQM = 16 , we get then

(42) dimQ N
1H3(X,Q) ≥ 16

4 Computation of F 1H 3(X,C) ∩H 3(X,Q)

For this computation we will exploit (6) and the fact that H 3,0(X) is iso-
morphic to C , generated by the class of the closed form

α := dz1 ∧ dz2 ∧ dz3

In terms of the base (10) the form α is given by

(43)
α = dz1 ∧ dz2 ∧ dz3 =

= ( du1 + τ du4 ) ∧ ( du2 + τ du5 ) ∧ ( du3 + τ du6 ) =
= du123 + τ (du126 − du135 + du234) + τ 2 (du156 − du246 + du345) + τ 3 du456

Then, for an arbitrary ω =
∑

1≤i<j<k≤6 rijk duijk where rijk ∈ Q for any
i, j, k, we have that ω ∧ α is(

r123 τ
3 − ( r234 − r135 + r126 ) τ 2 + ( r345 − r246 + r156 ) τ − r456

)
du123456

Hence [ω] is orthogonal to [α] with respect to (4) if and only if

(44) r123 τ
3 − ( r234 − r135 + r126 ) τ 2 + ( r345 − r246 + r156 ) τ − r456 = 0

Now, by Assumption 1, if τ is not algebraic over Q , of degree 3 , this relation
is satisfied only if all the coefficients in it vanish. In this case

dimQ

(
H3(X,Q) ∩ F 1H3(X,C)

)
= 16

Therefore, by (7) and (42) we conclude

Corollary 2. If [Q(τ) : Q] > 3 ( in particular, if τ is trascendental over Q ),
then

N1H3(X,Q) = F 1H3(X,C) ∩H3(X,Q)
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On the other hand, Grothendieck considered the case when τ is algebraic
over Q , of degree 3 . If the minimal polynomial of τ over Q is

(45) f = X3 + µ1X
2 + µ2X + µ3 = 0 µ1, µ2, µ3 ∈ Q

then relation (44) can be rewritten as

( r234−r135 +r126 +µ1 r123 ) τ 2 − ( r345−r246 +r156−µ2 r123 ) τ + r456 +µ3 r123 = 0

Since [Q(τ) : Q] = 3 , we have necessarily

(46)


r234 − r135 + r126 + µ1 r123 = 0
r345 − r246 + r156 − µ2 r123 = 0

r456 + µ3 r123 = 0

This linear system has rank 3 , hence

dimQ

(
H3(X,Q) ∩ F 1H3(X,C)

)
= 20− 3 = 17

and the Generalized Hodge Conjecture fails in it original form.

But in our case N1H3(X,Q) = M, the space introduced in (41), is the
maximal rational sub-Hodge structure of F 1H3(X,C) . Hence, the General-
ized Hodge Conjecture as amended by Grothendieck is still true for X.

In the remaining of this section we will try to get a better understanding
of what is really going on.

Any element in H 3(X,Q) can be represented by a closed form like

ω = r123 du123 + r126 du126 + r135 du135 + r156 du156+
r234 du234 + r246 du246 + r345 du345 + r456 du456 + ν

where ν ∈ M0 and rijk ∈ Q for every i, j, k . Moreover ω ∈ F 1H 3(X,C) if
and only if the coefficients rijk satisfy conditions (46), and in this case ω can
be rewritten as

ω = r123 du123 + r126 du126 + r135 du135 + r156 du156 +
+ ( r135 − r126 − µ1 r123 ) du234 + r246 du246 +
+ ( r246 − r156 + µ2 r123 ) du345 − µ3 r123 du456 + ν =

= r123 ( du123 − µ1 du234 + µ2 du345 − µ3 du456 ) +
+ r126 ( du126 − du234 ) + r135 ( du135 + du234 ) +
+ r156 ( du156 − du345 ) + r246 ( du246 + du345 ) + ν
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This expression of ω clarifies the role of the forms (40). In particular

ω = r123

(
du123 − µ1 du234 + µ2 du345 − µ3 du456

)
+ ν ′

where ν ′ ∈ N1H3(X,Q) , and [ω] ∈ N1H3(X,Q) if and only if r123 = 0 .

Now set
ϕ := d123 − µ1 d234 + µ2 d345 − µ3 d456

The Poincaré dual of [ϕ] can be computed with the help of the table (5); it
is represented by the cycle

Γ := C4 × C5 × C6 + µ1C1 × C5 × C6 + µ2C1 × C2 × C6 + µ3C1 × C2 × C3

Let us set

(47)
Γ1 := C4 × C5 × C6 Γ2 := C1 × C5 × C6

Γ3 := C1 × C2 × C6 Γ4 := C1 × C2 × C3

Then (11) and (43) imply

(48)

∫
Γ1

β = τ 3

∫
Γ2

β = τ 2

∫
Γ3

β = τ

∫
Γ4

β = 1

and therefore no one of the classes [d123] , [d234] , [d345] , [d456] in H3(X,C) is
contained into F 1H3(X,C) .

Finally, since
Γ = Γ1 + µ1 Γ2 + µ2 Γ3 + µ3 Γ4

we conclude ∫
Γ

β = τ 3 + µ1τ
2 + µ2τ + µ3 = 0

a little, great miracle ! This implies [ϕ] ∈ F 1H3(X,C) , as we already know.

5 A few, simple facts about τ

First of all, we have

(49) τ τ /∈ Q

In fact, if σ denotes the unique real root of f, then clearly σ /∈ Q , but
σ τ τ ∈ Q .
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Another fact is

(50) u /∈ Q v /∈ Q

To prove this, notice that we have the factorization

f = (X − σ)
(
X2 + (µ1 + σ)X + µ2 + µ1 σ + σ2

)
hence

X2 + (µ1 + σ)X + µ2 + µ1 σ+ σ2 = (X − τ) (X − τ) = X2− 2uX + u2 + v2

and we get

−2u = µ1 + σ u2 + v2 = µ2 + µ1 σ + σ2

Since σ /∈ Q but µ1 ∈ Q , the first relation implies u /∈ Q . Moreover, the two
relations toghether yield

3

4
σ2 +

1

2
µ1 σ + µ2 −

1

4
µ2

1 − v2 = 0

If v ∈ Q then σ would be a root of a non trivial polynomial of degree two
with rational coefficients, contradiction.
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et Cie Editeurs, Paris, 1924;

[6] T. Murasaki, A Calculation of Rational Cohomology Classes on Some
Complex Tori, Science Reports of the Faculty of Education, Gunma Uni-
versity, Vol. 28 (1979), 13-16;

19



[7] D. Portelli, A remark on the Generalized Hodge Conjecture, preprint
2010;
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