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Abstract. Our aim is to prove a multiplicity result for periodic solu-
tions of Hamiltonian systems in the plane, by the use of the Poincaré-
Birkhoff Fixed Point Theorem. Our main theorem generalizes previ-
ous results obtained for scalar second order equations by Lazer and
McKenna [6] and Del Pino, Manasevich and Murua [2].

1 Introduction

We consider the periodic problem{
Ju̇ = ∇H(u) +∇F (t, u) + sv0(t) ,
u(0) = u(T ) .

(1)

Here, H : R2 → R is a continuously differentiable function, with Lipschitz
continuous gradient. It is positively homogeneous of degree 2, i.e.,

H(αu) = α2H(u) , for every α > 0 and u ∈ R2, (2)

and positive, i.e.,

H(u) > 0 , for every u ∈ R2\{0} . (3)

The function F : [0, T ] × R2 → R is assumed to be differentiable in u ∈ R2

with gradient ∇F (t, u) satisfying the following Carathéodory-type conditions,
with locally Lipschitz continuity in u:

- ∇F (· , u) is integrable on [0, T ], for every u ∈ R2,

- for every R > 0 there is a `R ∈ L1(0, T ) such that, if u, v ∈ B(0, R), then

‖∇F (t, u)−∇F (t, v)‖ ≤ `R(t)‖u− v‖ , for a.e. t ∈ [0, T ] .

Moreover, ∇F has a sublinear growth, i.e.,

lim
‖u‖→+∞

∇F (t, u)

‖u‖
= 0 , uniformly for a.e. t ∈ [0, T ] . (4)

The number s is a large positive parameter, and v0 : [0, T ]→ R is an integrable
function.
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Notice that, assuming (2) and (3), all the solutions of the autonomous
system

Ju̇ = ∇H(u) (5)

are periodic with the same minimal period, so that the origin is an isochronous
center. Such a situation has been discussed in [4].

Let us state our multiplicity result.

Theorem 1 Let the following assumptions hold.

(i) The function H satisfies (2) and (3).

(ii) There are a function w0 : R→ R2, solution of{
Jẇ = ∇H(w) + v0(t) ,
w(0) = w(T ) ,

(6)

a constant r0 > 0 and two positive definite symmetric matrices A1 and A2

such that, setting

Br0 = {w0(t) + x : t ∈ [0, T ], ‖x‖ ≤ r0} ,

one has that 0 /∈ Br0 and, for every u, v ∈ Br0,

〈A1(u−v)|u−v〉 ≤ 〈∇H(u)−∇H(v)|u−v〉 ≤ 〈A2(u−v)|u−v〉 . (7)

Moreover, defining

σ1 =
2π√

detA1

, σ2 =
2π√

detA2

,

there is an integer m for which

m <
T

σ1

≤ T

σ2

< m+ 1 . (8)

(iii) Denoting by τ the period of the solutions to (5), there is an integer n
such that

n <
T

τ
< n+ 1 . (9)

(iv) The function ∇F (t, u) satisfies (4).

Then, there is a s0 > 0 such that, for every s ≥ s0, problem (1) has at
least 2|n−m|+ 1 solutions.

Assumption (iii) guarantees that there is at least one solution w0(t) to
problem (6), cf. [4]. In assumption (ii) we ask that this solution does not touch
the origin, so that there is a r0 > 0 for which 0 6∈ Br0 , and that condition (7)
holds in Br0 . Notice that, by the positive homogeneity of∇H, this is equivalent
to assuming the existence of a cone, containing the orbit of w0(t) in its interior,
over which (7) holds. The interesting case is when this cone does not coincide
with the whole plane.
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In order to illustrate a consequence of the above result, let us consider the
scalar periodic problem{

x′′ + g(t, x) = s(1 + h(t)) ,
x(0) = x(T ) , x′(0) = x′(T ) ,

(10)

where g : [0, T ] × R → R satisfies the Carathéodory conditions with locally
Lipschitz continuity in x, and h ∈ L1(0, T ). In the sequel, we denote by ‖ · ‖p
the usual norm in Lp(0, T ).

Corollary 1 Assume that the limits

lim
x→−∞

g(t, x)

x
= ν , lim

x→+∞

g(t, x)

x
= µ

exist, uniformly for almost every t ∈ [0, T ], and that there are two positive
integers k, m such that(

2π(k − 1)

T

)2

< ν <

(
2πk

T

)2

≤
(

2πm

T

)2

< µ <

(
2π(m+ 1)

T

)2

.

Let n be a positive integer such that

T

n+ 1
<

π
√
µ

+
π√
ν
<
T

n
.

Then, there are two positive constants h0 and s0 such that, if

‖h‖1 ≤ h0 and |s| ≥ s0 ,

then problem (10) has at least 2(m − n) + 1 solutions for positive s, and at
least 2(n− k) + 1 solutions for negative s.

Notice indeed that, under the assumptions of Corollary 1, we can write

g(t, x) = µx+ − νx− + f(t, x) ,

with

lim
|x|→∞

f(t, x)

x
= 0 , uniformly for a.e. t ∈ [0, T ] .

The scalar equation can then be written as{
−y′= µx+ − νx− + f(t, x)− s(1 + h(t)) ,
x′ = y ,

which is of the form (1), with

H(x, y) = 1
2

[µ(x+)2 + ν(x−)2 + y2] .
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The assumptions (i), (iii), and (iv) of Theorem 1 are readily verified, with
τ = π√

µ
+ π√

ν
. Concerning (ii), notice that, if ‖h‖1 is small enough, the T -

periodic solution of {
x′′ + µx = 1 + h(t) ,
x(0) = x(T ) , x′(0) = x′(T )

is positive. Hence, (7) holds on the half-plane {(x, y) : x > 0}, with A1 = A2 =
µI, where I denotes the identity matrix. Theorem 1 then gives the conclusion
when s is positive. The case when s is negative can be led back to the above
by a change of variable in (10).

Corollary 1 generalizes the results by Lazer and McKenna [6] and Del Pino,
Manasevich and Murua [2]. In those papers, the function g was assumed to be
only dependent on x, continuously differentiable, with

lim
x→−∞

g′(x) = ν , lim
x→+∞

g′(x) = µ .

Later on, further generalizations were given in [1, 7, 8, 9], but the differentia-
bility of g was always required. A further generalization of Corollary 1 for the
scalar equation was recently obtained in [5].

As a direct consequence of Theorem 1, in the case when v0(t) is constant,
we have the following.

Corollary 2 Let the function H satisfy (2) and (3). Assume that v0(t) = v0

for every t and there is a vector w0 6= 0 at which H is twice continuously
differentiable, with positive definite hessian matrix H ′′(w0), such that

∇H(w0) = −v0 .

Set

σ =
2π√

detH ′′(w0)
,

and let m be an integer such that

m <
T

σ
< m+ 1 .

Denoting by τ the period of the solutions to (5), let n be an integer such that

n <
T

τ
< n+ 1 .

Let the function ∇F (t, u) satisfy (4). Then, there is a s0 > 0 such that, for
every s ≥ s0, problem (1) has at least 2|n−m|+ 1 solutions.

The above corollary generalizes [4, Theorem 6], where the simpler case
∇F (t, u) = e(t) was considered.
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2 Proof of Theorem 1

In this section, we provide a proof for Theorem 1. Let us make in (1) the
change of variables

λ =
1

s
, y = λu− w0 . (11)

Moreover, let f : [0, T ]× R2 × [0,+∞[→ R2 be the function defined by

f(t, y;λ) =

{
λ∇F

(
t, 1
λ
(y + w0(t))

)
ifλ > 0 ,

0 ifλ = 0 .

We thus have that, for λ ∈ ]0,+∞[ , problem (1) is equivalent to{
Jẏ = ∇H(y + w0(t))−∇H(w0(t)) + f(t, y;λ) ,
y(0) = y(T ) .

(12)

Let B∞(0, r0) denote the open ball in L∞(0, T ), centered in 0, with radius r0
given by assumption (ii), and let B∞(0, r0) be its closure. We would like to
show that problem (12) has a solution yλ in B∞(0, r0), for λ > 0 small enough.
Notice that, since 0 6∈ Br0 , by (4),

lim
λ→0

f(t, y;λ) = 0 , uniformly for y ∈ B(0, r0) and a.e. t ∈ [0, T ] . (13)

We then start analyzing the case when λ = 0.

Lemma 1 The problem{
Jẏ = ∇H(y + w0(t))−∇H(w0(t)) ,
y(0) = y(T )

(14)

has no nontrivial solutions y in B∞(0, r0).

Proof Clearly, the constant 0 is a solution of (14). Assume by contradiction
that there is a nonzero solution y such that ‖y(t)‖ ≤ r0, for every t ∈ [0, T ].
By the uniqueness of the solutions to Cauchy problems, it has to be y(t) 6= 0
for every t ∈ [0, T ]. Passing to polar coordinates

y(t) = ρ(cos(θ(t)), sin(θ(t))) ,

we have

−θ′ = 〈∇H(y + w0(t))−∇H(w0(t)) | y〉
‖y‖2

.

Using (7), we see that

〈A1y | y〉
‖y‖2

≤ −θ′ ≤ 〈A2y | y〉
‖y‖2

.
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Hence, the angular coordinate θ(t) of y(t) can be compared with the angular
coordinates θ1(t) and θ2(t) of the solutions y1(t) and y2(t) of the linear systems

Jẏ1 = A1y1 , Jẏ2 = A2y2 ,

respectively, having the same initial conditions. Recalling assumption (8),
these solutions rotate clockwise around the origin more than m times and less
that m+ 1 times, as t varies from 0 to T . By the above, we have

θ2(t) ≤ θ(t) ≤ θ1(t) ,

for every t ∈ [0, T ]. So, even y(t) rotates clockwise around the origin more
than m times and less that m + 1 times, as t varies in [0, T ], and we get a
contradiction with the fact that y(t) is T -periodic.

Let us define the linear operator L : D(L) ⊂ C([0, T ])→ L1(0, T ) by

D(L) = {u ∈ W 1,1(0, T ) : u(0) = u(T )} , Lu = Ju̇ .

The Nemytzkii operator Nλ : C([0, T ])→ L1(0, T ) is defined by

(Nλy)(t) = ∇H(y(t) + w0(t))−∇H(w0(t)) + f (t, y(t);λ) .

Let us fix a constant σ, not belonging to the spectrum of L, and define the
operator Φ : C([0, T ])× [0, 1] → C([0, T ]) by

Φ(y, λ) = (L− σI)−1(Nλy − σy) .

It is a completely continuous operator. Problem (12) with λ ∈ [0, 1] is then
equivalent to the fixed point problem

Φ(y, λ) = y . (15)

Notice that, by (13),

lim
λ→0

Φ(y;λ) = Φ(y; 0) , uniformly for y ∈ B∞(0, r0) . (16)

As a consequence of Lemma 1, if λ = 0, there is no solution of (15) on the
boundary of B∞(0, r0). We will now see that this is true also for sufficiently
small λ.

Lemma 2 There is a λ0 > 0 such that

Φ(y, λ) 6= y , for every (y, λ) ∈ ∂B∞(0, r0)× [0, λ0] .

Proof Assume by contradiction that there are a sequence (λn)n in [0, 1] and a
sequence (yn)n in ∂B∞(0, r0) such that λn → 0 and Φ(yn, λn) = yn. By (16),

lim
n→+∞

‖Φ(yn, 0)− yn‖∞ = lim
n
‖Φ(yn, 0)− Φ(yn, λn)‖∞ = 0 . (17)
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Since (yn)n is bounded and Φ(· , 0) is completely continuous, there is a subse-
quence (ynk

)k and a ȳ ∈ C([0, T ]) such that

lim
n→+∞

Φ(ynk
, 0) = ȳ .

It then follows from (17) that ynk
→ ȳ uniformly, so that

ȳ ∈ ∂B∞(0, r0) and Φ(ȳ, 0) = ȳ ,

in contradiction with Lemma 1.

Lemma 3 The topological degree

deg(Φ(·, 0)− I , B∞(0, r0))

is different from 0.

Proof Consider, for ξ ∈ [0, 1], the problem{
Jẏ = ξ(∇H(y + w0(t))−∇H(w0(t))) + (1− ξ)A1y ,
y(0) = y(T ) .

(18)

Using the argument in the proof of Lemma 1, it is possible to show that (18)
has no nontrivial solutions in B∞(0, r0). Hence, by homotopy invariance,

deg(Φ(·, 0)− I , B∞(0, r0)) = deg((L− σI)−1(A1 − σI)− I , B∞(0, r0)) .

This last degree is not zero, since the operator involved is linear and invertible.

By Lemma 2, we have that

deg(Φ(·, λ)− I , B∞(0, r0)) = deg(Φ(·, 0)− I , B∞(0, r0)) ,

for every λ ∈ [0, λ0]. By Lemma 3, this degree is different from 0. We conclude
that, for every λ ∈ [0, λ0], there is a solution of (12) in B∞(0, r0). We will
denote by yλ such a solution.

Lemma 4 We have that
lim
λ→0
‖yλ‖∞ = 0 .

Proof By contradiction, assume that there is an ε > 0, a sequence (λn)n in
[0, 1] and a sequence (tn)n in [0, T ] such that λn → 0, and

‖yλn(tn)‖ ≥ ε , for every n ∈ N .

Since yλn ∈ B∞(0, r0), passing to subsequences we will have

lim
n→+∞

tn = t̄, lim
n→+∞

yλn(tn) = ȳ ,
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for some t̄ ∈ [0, T ] and ȳ ∈ B(0, r0), with ‖ȳ‖ ≥ ε. Let ȳ(t) be the unique
solution to the Cauchy problem{

Jẏ = ∇H(y + w0(t))−∇H(w0(t)) ,
y(t̄) = ȳ .

(19)

By (13) and the continuous dependence, yλn(t)→ ȳ(t), uniformly in t ∈ [0, T ],
so that ȳ ∈ B∞(0, r0) and ȳ(0) = ȳ(T ). Hence, ȳ(t) is a nontrivial solution
of (14) in B∞(0, r0), in contradiction with Lemma 1.

We now make in (12) the change of variable

z = y − yλ , (20)

thus obtaining the equivalent problem
Jż = ∇H(z + yλ(t) + w0(t))−∇H(yλ(t) + w0(t))+

+f(t, z + yλ(t);λ)− f(t, yλ(t);λ) ,

z(0) = z(T ) .

(21)

Notice that the constant 0 is a solution of (21). In order to simplify the
notation, let

g(t, z;λ) = ∇H(z + yλ(t) + w0(t))−∇H(yλ(t) + w0(t))+
+f(t, z + yλ(t);λ)− f(t, yλ(t);λ) .

With the aim of applying the Poincaré-Birkhoff Theorem, we need to con-
sider the Cauchy problem {

Jż = g(t, z;λ) ,
z(0) = z0 .

(22)

In the following, it will be convenient to extend by T -periodicity all the func-
tions defined on [0, T ]. Since g(t, z;λ) has at most linear growth and is locally
Lipschitz continuous in z, the solution to (22) is unique and globally defined.
Hence, the Poincaré map is well defined.

By (13) and Lemma 4,

lim
λ→0

g(t, z;λ) = ∇H(z + w0(t))−∇H(w0(t)) ,

uniformly for z ∈ B
(
0, 1

2
r0
)

and a.e. t ∈ [0, T ] .
(23)

Let us first study the limit case.

Lemma 5 There are two positive constants r̃0, and r̄, with 2r̃0 < r̄ < 1
2
r0,

such that, if z0 is verifies
‖z0‖ = r̄ ,
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then the solution to the Cauchy problem{
Jż = ∇H(z + w0(t))−∇H(w0(t)) ,
z(0) = z0

(24)

satisfies

2r̃0 ≤ ‖z(t)‖ ≤ 1
2
r0 , for every t ∈ [0, T ] .

Proof As already seen in Lemma 1, it is possible to use polar coordinates

z(t) = ρ(t)(cos θ(t), sin θ(t)) ,

leading us to the system
ρ′ = −

〈
∇H(t, z + w0(t))−∇H(w0(t))

∣∣∣ (− sin θ, cos θ)
〉
,

θ′ = −1

ρ

〈
H(t, z + w0(t))−∇H(w0(t))

∣∣∣ (cos θ, sin θ)
〉
.

(25)

Define

r̄ = 1
2
r0 e

−LT .

Consider the first equation in (25), and assume ρ(0) = ‖z0‖ = r̄ . Then, using
the fact that ∇H is Lipschitz continuous,

ρ′(t) ≤ ‖∇H(t, z(t) + w0(t))−∇H(w0(t))‖ ≤ Lρ(t) ,

so that

ρ(t) ≤ ρ(0)eLt ≤ r̄eLT = 1
2
r0 , for every t ∈ [0, T ] .

Define now

r̃0 = 1
2
r̄ e−LT ,

and assume that ‖z0‖ = r̄. In order to prove that ‖z(t)‖ ≥ 2r̃0 for every
t ∈ [0, T ], we consider a time-inversion in (24), by a change of variable. Set
η(υ) = z(T − υ), so that η(T ) = z0. Assume by contradiction that there is a
t0 ∈ [0, T ] such that ‖z(t0)‖ < 2r̃0. Set υ0 = T − t0 and η0 = z(t0). Arguing
as in the first part of the proof, we can see that the solution of{

Jη̇(υ) = −∇H(η + w0(T − υ)) +∇H(w0(T − υ)) ,
η(υ0) = η0 ,

verifies

‖η(υ)‖ ≤ ‖η(υ0)‖eL(υ−υ0) < 2r̃0e
LT = r̄ , for every υ ∈ [υ0, υ0 + T ] .

We thus get a contradiction with the fact that ‖η(T )‖ = r̄.
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Lemma 6 Let r̄ > 0 be as in Lemma 5. Then, there is a λ1 ∈ ]0, λ0] such that
every solution of (22) with ‖z0‖ = r̄ and λ ∈ [0, λ1] rotates clockwise around
the origin more than m times and less that m + 1 times, as t varies from 0
to T .

Proof By Lemma 5, the solutions of (24) with ‖z0‖ = r̄ belong to B∞(0, r0).
Hence, as already seen in the proof of Lemma 1, they rotate clockwise around
the origin more than m times and less that m+ 1 times, as t varies from 0 to
T . By (23), the solutions of (22) with ‖z0‖ = r̄ remain close to those of (24).
In particular, for λ small enough, any solution of (22) is such that

r̃0 ≤ ‖z(t)‖ ≤ r0 , for every t ∈ [0, T ] ,

and, being close to the solution of (24), it rotates clockwise around the origin
more than m times and less that m+ 1 times, as well, when t varies from 0 to
T . Since ∂B(0, r̄) is compact, there is a λ1 ∈ ]0, λ0] such that, if λ ∈ [0, λ1], all
the solutions of (24) starting from ∂B(0, r̄) must behave as above.

We now need to estimate the number of rotations of the solutions of (22)
when ‖z0‖ is large. In the following, the parameter λ ∈ ]0, λ1] will be considered
as fixed. Recalling the change of variables (11) and (20), we have set

z(t) = λu(t)− w0(t)− yλ(t) .

Let ϕ(t) be the solution of (5) such that

H(ϕ(t)) = 1
2
, for every t ∈ R . (26)

Recall that ϕ(t) has minimal period τ . It rotates around the origin with a star-
shaped orbit. Therefore, we can use some kind of generalized polar coordinates,
setting

u(t) =
1

δ
r(t)ϕ(t+ ϑ(t)) , (27)

for some δ > 0 to be fixed. More precisely, since we are dealing with the
Cauchy problem (22), we set

z(t) =
λ

δ
r(t)ϕ(t+ ϑ(t))− w0(t)− yλ(t) . (28)

Substitution in the differential equation leads to

r′Jϕ(t+ ϑ)+ r(1 + θ′)Jϕ̇(t+ ϑ) =

= ∇H(rϕ(t+ ϑ)) + δ∇F
(
t,

1

δ
(rϕ(t+ ϑ))

)
+
δ

λ
v0(t) .

Using (26) and the Euler Identity, we then get the system
r′ = −δ

〈
∇F

(
t,
rϕ(t+ ϑ)

δ

)
+

1

λ
v0(t)

∣∣∣ ϕ̇(t+ ϑ)
〉
,

ϑ′ =
δ

r

〈
∇F

(
t,
rϕ(t+ ϑ)

δ

)
+

1

λ
v0(t)

∣∣∣ϕ(t+ ϑ)
〉
.

(29)
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Lemma 7 There is a R̄λ > r̄ such that, if ‖z0‖ = R̄λ , every solution of (22)
with ‖z0‖ = R̄λ rotates clockwise around the origin more than n times and less
that n+ 1 times, as t varies from 0 to T .

Proof By (4), one has

lim
δ→0

δ
〈
∇F

(
t,
rϕ(t+ ϑ)

δ

) ∣∣∣ ϕ̇(t+ ϑ)
〉

= 0 ,

lim
δ→0

δ

r

〈
∇F

(
t,
rϕ(t+ ϑ)

δ

) ∣∣∣ϕ(t+ ϑ)
〉

= 0 ,

uniformly for ϑ ∈ R, r varying on compact subsets of ]0,+∞[ , and for almost
every t ∈ [0, T ]. Denote by (r(t;ϑ0, δ), ϑ(t;ϑ0, δ)) the solution of (29) satisfying

r(0) = 1 , ϑ(0) = ϑ0 ∈ [0, τ ] .

Then, r′(· ;ϑ0, δ) → 0 and ϑ′(· ;ϑ0, δ) → 0 in L1(0, T ), uniformly in ϑ0, as
δ → 0. Then,

lim
δ→0

r(t;ϑ0, δ) = 1 , lim
δ→0

ϑ(t;ϑ0, δ) = ϑ0 ,

uniformly in (t, ϑ0) ∈ [0, T ]× [0, τ ].

By (9), the function ϕ(· + ϑ0) rotates clockwise around the origin more
than n times and less than n+ 1 times, as t varies from 0 to T . Recalling (28),
since yλ and w0 are bounded, we deduce that there is a δ̄ > 0 such that, fixing
δ ∈ ]0, δ̄] and setting

R̄λ =
λ

δ
‖ϕ‖∞ + ‖w0‖∞ + ‖yλ‖∞ ,

the solutions of (22) with ‖z0‖ ≥ R̄λ must rotate clockwise around the origin
more than n times and less than n+ 1 times, as well, as t varies from 0 to T .

We are now ready to apply the Poincaré-Birkhoff Theorem, in the version
of [3]. We know that the Poincaré map is an area-preserving homeomorphism.
We have seen in Lemma 6 and Lemma 7 that, if λ ∈ ]0, λ1], there are two
positive constants r̄, R̄λ, with r̄ < R̄λ, having the following property: when t
varies in [0, T ], the solutions of (22) with ‖z0‖ = r̄ rotate clockwise around the
origin more than m times and less than m+ 1 times, and the solutions of (22)
with ‖z0‖ = R̄λ rotate clockwise around the origin more than n times and less
than n+ 1 times.

Taking the composition of the Poincaré map with a counter-clockwise ro-
tation of angle 2πk, with

k = min{m,n}+ 1 , min{m,n}+ 2 , . . . , min{m,n}+ |m− n| ,
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we have a map satisfying all the hypotheses of the Poincaré-Birkhoff Theorem.
We thus obtain |m − n| pairs of T -periodic solutions for (21), which rotate
clockwise, respectively, k = min{m,n}+ 1 , min{m,n}+ 2 , . . . , min{m,n}+
|m − n| times around the origin, in the period time T . Recalling the zero
solution, we thus get 2|m − n| + 1 distinct solutions of (21). Those solutions
generate, by the change of variables we have made, 2|m − n| + 1 distinct
solutions of (1).
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Amer. Math. Soc. 88 (1983), 341–346.

[4] A. Fonda, Positively homogeneous Hamiltonian systems in the plane, J.
Differential Equations 200 (2004), 162-184.

[5] A. Fonda and L. Ghirardelli, Multiple periodic solutions of scalar second
order differential equations, preprint.

[6] A. C. Lazer and P. J. McKenna, Large scale oscillatory behaviour in loaded
asymmetric systems, Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987),
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