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Abstract. The classical Newton equation for the motion of a body in
a gravitational central field is here modified in order to include periodic
central forces. We prove that infinitely many periodic solutions still
exist in this case. These solutions have periods which are large integer
multiples of the period of the forcing, and rotate exactly once around
the origin in their period time.

1 Introduction

Newton’s equation for the motion of a planet around the sun is of the type

ẍ = −c x

|x|3
,

where c > 0 is a constant depending on the mass of the attracting body. As it
is well known, this equation gives rise to a variety of periodic solutions having
elliptical planar orbits.

We would like to investigate what happens with these periodic orbits when
the given force is supposed to vary periodically in time, with some period
T > 0. For example, the positive constant c could be replaced by a periodic
function c(t), and an external periodic central force could be added, as well.

Let us consider, e.g., the equation

ẍ = −c(t) x

|x|γ
+ e(t)

x

|x|
, (1)

where c(t) and e(t) are two T -periodic functions, with c(t) positive. Let us
denote by

ē =
1

T

∫ T

0

e(t) dt

the mean value of e(t). In [4], we have already proved that, if 1 < γ < 4 and
ē ≤ 0, then equation (1) has infinitely many periodic solutions, whose periods
are large multiples of T , rotating around the origin on large-amplitude orbits.
In [6], the above result was refined, by removing the restriction that γ < 4.
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It should be noticed that, besides the periodic solutions, a whole family of
quasi-periodic solutions were detected in [4, 6]. Indeed, all those solutions have
a T -periodic oscillating radial component, while their mean angular velocity
covers a whole interval of positive values, among which one can find the sub-
multiples of 2π which correspond to the periodic (subharmonic) solutions.

In this paper we would like to investigate the complementary case when
ē > 0. As we have already proved in [4], in this case solutions with large-
amplitude orbits cannot be periodic. We therefore look for periodic solutions
with smaller amplitude. We will show that, if γ ≥ 2, even in this case there are
infinitely many periodic solutions of (1). Hence, combining this result with the
ones in [4, 6], we can finally state an existence theorem for periodic solutions
of (1), valid for any choice of the T -periodic forcing e(t).

Theorem 1 Assume γ ≥ 2, and let c : R → R be a locally integrable T -
periodic function, such that, for some constants c1 and c2,

0 < c1 ≤ c(t) ≤ c2 , for a.e. t ∈ R . (2)

Then, for any locally integrable T -periodic function e : R → R, there exists a
k1 ≥ 1 such that, for every integer k ≥ k1, equation (1) has a periodic solution
xk(t) with minimal period kT , which makes exactly one revolution around the
origin in the period time kT .

Theorem 1 will follow from a more general result concerning a system of
the type

ẍ =
(
− h(t, |x|) + e(t)

) x
|x|

.

The solutions x(t) ∈ RN are functions which never attain the singularity, in
the sense that

x(t) 6= 0 , for every t ∈ R . (3)

Since the system is radially symmetric, their orbits lie on a plane, so we will
assume, without loss of generality, that N = 2.

In Section 2 we will prove a general theorem, stated in a semi-abstract
setting, which is well suited for establishing the existence of rotating solutions
for such a system under a simple topological degree assumption. This assump-
tion is verified in many different situations already considered in the literature,
and involves only the study of a scalar equation, the one verified by the radi-
ally oscillating solutions. Besides the periodic solutions, even in this general
framework we find a whole family of quasi-periodic solutions, like in [4, 6].

As a consequence of our general theorem, in Section 3 we prove an existence
result, under some assumptions which cover a complementary situation with
respect to the one considered in [4, 6]. Indeed, roughly speaking, in this case
the nonlinearity lies below the first eigenvalue. This fact will permit us to use
the classical theory of lower and upper solutions.
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There is a large literature on the existence of periodic solutions for Hamil-
tonian systems with a singularity. In [4], we gave a brief review of the results
which are more related to ours. Concerning the use of variational methods,
one can see [1], and the references therein. See also [2, 9, 12], where topological
methods have been employed. Let us also mention that we recently showed
in [5] how our techniques apply to the case of a repulsive force, as well.

2 A general principle for rotating solutions

In this section, we consider the system

ẍ =
(
− h(t, |x|) + e(t)

) x
|x|

, (4)

where the function e : R → R is locally integrable and T -periodic, and the
function h : R× ]0,+∞[→ R is T -periodic in its first variable, as well, and
L1-Carathéodory, i.e.,
(i) h(·, r) is measurable and T -periodic, for every r > 0 ;
(ii) h(t, ·) is continuous, for almost every t ∈ R ;
(iii) for every compact interval [a, b] in ]0,+∞[ , there exists `a,b ∈ L1(0, T )
such that

r ∈ [a, b] ⇒ |h(t, r)| ≤ `a,b(t) , for a.e. t ∈ ]0, T [ .

We will provide a general theorem for the existence of periodic solutions of (4),
whose periods are sufficiently large multiples of T , which rotate around the
origin exactly once in their period time.

We may write the solutions of (4) in polar coordinates:

x(t) = ρ(t)(cosϕ(t), sinϕ(t)) , (5)

and (3) is satisfied if ρ(t) > 0, for every t. Equation (4) is then equivalent to
the system

(S)


ρ̈− µ2

ρ3
+ h(t, ρ) = e(t) ,

ρ2ϕ̇ = µ ,

where µ is the (scalar) angular momentum of x(t). Recall that µ is constant in
time along any solution. In the following, when considering a solution of (S),
we will always implicitly assume that µ ≥ 0 and ρ > 0.

We will look for solutions for which ρ(t) is T -periodic. We thus consider
the problem

(Pµ)


ρ̈− µ2

ρ3
+ h(t, ρ) = e(t) ,

ρ(0) = ρ(T ) , ρ̇(0) = ρ̇(T ) .
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Let X be a Banach space of functions, such that

C1([0, T ]) ⊆ X ⊆ C([0, T ]) ,

with continuous immersions, and set

X+ = {ρ ∈ X : min ρ > 0} .

Define the linear operator

L : D(L) ⊂ X → L1(0, T ) ,

D(L) = {ρ ∈ W 2,1(0, T ) : ρ(0) = ρ(T ) , ρ̇(0) = ρ̇(T )} ,
Lρ = ρ̈ ,

and the Nemytzkii operator

Nµ : X+ → L1(0, T ) ,

(Nµρ)(t) =
µ2

ρ3(t)
− h(t, ρ(t)) + e(t) .

Problem (Pµ) is then equivalent to

Lρ = Nµρ . (6)

Taking σ ∈ R not belonging to the spectrum of L, we have that (6) can be
translated to the fixed point problem

ρ = (L− σI)−1(Nµ − σI)ρ .

The following theorem provides a general degree assumption, only at µ = 0,
which automatically implies, for every µ > 0 sufficiently small, the solvability
of (S), with ρ(t) a T -periodic function. Moreover, corresponding to an ap-
propriate choice of µ, the function ϕ(t) is kT -periodic, for a sufficiently large
integer k.

We will say that a set Ω ⊆ X is uniformly positively bounded below if there
is a constant δ > 0 such that min ρ ≥ δ for every ρ ∈ Ω.

Theorem 2 Let Ω be an open bounded subset of X, uniformly positively boun-
ded below. Assume that there is no solution of (6), with µ = 0, on the boundary
∂Ω, and that

deg(I − (L− σI)−1(N0 − σI),Ω) 6= 0 . (7)

Then, there exists a k1 ≥ 1 such that, for every integer k ≥ k1, system (4)
has a periodic solution xk(t) with minimal period kT , which makes exactly one
revolution around the origin in the period time kT . The function |xk(t)| is T -
periodic and, when restricted to [0, T ], it belongs to Ω. Moreover, if µk denotes
the angular momentum associated to xk(t), then

lim
k→∞

µk = 0 .
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Remark 1 Condition (7) can be written, equivalently, as

dL(L−N0,Ω) 6= 0 ,

where dL denotes the Mawhin coincidence degree, cf. [7].

Proof Since Ω is uniformly positively bounded below, the closure of Ω is
contained in X+ . We first prove that there exists a constant M > 0 such that
for every µ ∈ [0,M ] there is no solution of (6) on the boundary ∂Ω. Indeed,
by contradiction, assume there are two sequences (µn)n and (ρn)n such that
µn → 0, ρn ∈ ∂Ω, and

ρn = (L− σI)−1(Nµn − σI)ρn .

Then, (ρn)n and (1/ρn)n are uniformly bounded, so that ((Nµn − σI)ρn)n is
bounded in L1(0, T ). Being (L − σI)−1 : L1(0, T ) → X a compact operator,
there exists a subsequence, still denoted by (ρn)n, for which (L−σI)−1(Nµn −
σI)ρn converges to some ρ̄ ∈ X. Hence ρn → ρ̄, as well, and, being ∂Ω closed,
ρ̄ ∈ ∂Ω. Since ρn → ρ̄ uniformly, and ρ̄ ∈ X+ , we deduce from the definition
of Nµ that ρ̄ = (L − σI)−1(N0 − σI)ρ̄, so that ρ̄ solves (6) with µ = 0, a
contradiction with the assumptions.

By the global continuation principle of Leray-Schauder (see e.g. [13, The-
orem 14.C]), there is a continuum C in [0,M ] × Ω connecting {0} × Ω with
{M} × Ω, whose elements (µ, ρ) satisfy (Pµ). Let us consider the function
Φ : C → R, defined by

Φ(µ, ρ) 7→
∫ T

0

µ

ρ2(t)
dt .

It is continuous and defined on a compact and connected domain, so its image
is a compact interval. Since Φ(0, ρ) = 0, and Φ is not identically zero, this
interval is of the type [0, θ], for some θ > 0.

We now show that, for every θ ∈ [0, θ], there are (µ, ρ, ϕ), verifying sys-
tem (S), for which (µ, ρ) ∈ C, and

ρ(t+ T ) = ρ(t) , ϕ(t+ T ) = ϕ(t) + θ ,

for every t ∈ R. Indeed, given θ ∈ [0, θ], there are (µ, ρ) ∈ C such that∫ T

0

µ

ρ2(t)
dt = θ .

Extending ρ(t) by T -periodicity, the first equation in (S) is satisfied, for every
t ∈ R. Moreover, defining

ϕ(t) =

∫ t

0

µ

ρ2(s)
ds ,
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the second equation in (S) is also satisfied and

ϕ(t+ T )− ϕ(t) =

∫ t+T

t

µ

ρ2(s)
ds =

∫ T

0

µ

ρ2(s)
ds = θ ,

for every t ∈ R. Then, for every θ ∈ [0, θ], the solution of system (S) found
above provides, through (5), a solution to system (4) such that

x(t+ T ) = eiθx(t) , (8)

for every t ∈ R (for briefness we used here the complex notation).

In particular, if θ = 2π
k

for some integer k ≥ 1, then x(t) is periodic with
minimal period kT , and rotates exactly once around the origin in the period
time kT . Hence, for every integer k ≥ 2π/ θ, we have such a kT -periodic
solution, which we denote by xk(t). Let (ρk(t), ϕk(t)) be its polar coordinates,
and µk be its angular momentum. By the above construction, (µk, ρk, ϕk)
verify system (S), (µk, ρk) ∈ C, and∫ T

0

µk
ρ2
k(t)

dt =
2π

k
.

Since ρk ∈ Ω, and Ω is bounded in C([0, T ]), there is a constant C > 0 such
that ρk(t) < C, for every t ∈ [0, T ]. Hence,

2π

k
=

∫ T

0

µk
ρ2
k(t)

dt > T
µk
C2

,

so that limk µk = 0. The proof is thus completed.

Remark 2 The solutions satisfying (8) are quasi-periodic with T -periodic ra-
dial component, and mean angular velocity, on every time interval of length
T , equal to θ/T .

3 An application of Theorem 2

In this section we provide, as an application of Theorem 2, the following result,
which is, in some sense, complementary to those obtained in [4, 6].

Theorem 3 Let the following two assumptions hold.

(LL) There exists a function η ∈ L1(0, T ), with positive values, such that

h(t, r) ≥ −η(t) , for every r ∈ ]0, 1] and a.e. t ∈ ]0, T [ ,

h(t, r) ≤ η(t) , for every r ≥ 1 and a.e. t ∈ ]0, T [ ,

and
1

T

∫ T

0

lim inf
r→0+

h(t, r) dt > ē >
1

T

∫ T

0

lim sup
r→+∞

h(t, r) dt .
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(H0+) There is a constant δ̄ > 0 and a C1-function F : ]0, δ̄[→ R such that

h(t, r) ≥ F ′(r), for every r ∈ ]0, δ̄[ and a.e. t ∈ ]0, T [ ,

and
lim
r→0+

F (r) = −∞ .

Then, there exists a k1 ≥ 1 such that, for every integer k ≥ k1, system (4)
has a periodic solution xk(t) with minimal period kT , which makes exactly
one revolution around the origin in the period time kT . Moreover, there is a
constant C > 0 such that

1

C
< |xk(t)| < C , for every t ∈ R and every k ≥ k1 ,

and, if µk denotes the angular momentum associated to xk(t), then

lim
k→∞

µk = 0 .

Assumption (LL) is the well-known Landesman-Lazer condition, which has
been first introduced in [10] in the framework of elliptic partial differential
equations. Condition (H0+) will be needed in order to control the solutions
which approach the singularity, by the use of some energy estimates. In
the following, it will be convenient to extend the functions in L1(0, T ) by
T -periodicity to the whole line R.

As a corollary of Theorem 3 we have that, if γ ≥ 2, assuming (2) and ē > 0,
the same conclusion holds for the model system (1). We thus have a proof of
Theorem 1, since the case ē ≤ 0 has already been considered in [4, 6].

We will show that, under the assumptions of Theorem 3, taking X =
C1([0, T ]), we can find an open bounded subset Ω of X which satisfies the
assumptions of Theorem 2.

Let us first recall the following equivalent formulation of the Landesman-
Lazer condition (see, e.g., [8, Proposition 4.1]).

Lemma 1 Condition (LL) is equivalent to the following.

(LL ′) There is a constant d ≥ 1 and two functions ψ1, ψ2 ∈ L1(0, T ) such that

h(t, r) ≥ ψ1(t) , for every r ∈ ]0, 1
d
] and a.e. t ∈ ]0, T [ ,

h(t, r) ≤ ψ2(t) , for every r ≥ d and a.e. t ∈ ]0, T [ ,

and
1

T

∫ T

0

ψ1(t) dt > ē >
1

T

∫ T

0

ψ2(t) dt .

Proof If (LL ′) holds, (LL) is directly verified, since

lim inf
r→0+

h(t, r) ≥ ψ1(t) , lim sup
r→+∞

h(t, r) ≤ ψ2(t) ,

for almost every t.
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On the other hand, if (LL) holds, we have that

lim inf
r→0+

h(t, r) = lim
n
gn(t) , with gn(t) = inf{h(t, r) : r ∈ ]0, 1

n
]} .

Since (gn)n is an increasing sequence of functions, bounded from below by −η,
the monotone convergence theorem implies that

lim
n

∫ T

0

gn(t) dt =

∫ T

0

lim
n
gn(t) dt =

∫ T

0

lim inf
r→0+

h(t, r) dt > T ē .

Hence, there is a n̄ such that 1
T

∫ T
0
gn(t) dt > ē, for every n ≥ n̄. Similarly,

writing

lim sup
r→+∞

h(t, r) = lim
n
fn(t) , with fn(t) = sup{h(t, r) : r ≥ n } ,

one finds a ñ such that 1
T

∫ T
0
fn(t) dt < ē, for every n ≥ ñ. Setting d =

max{n̄, ñ}, ψ1 = gn̄, and ψ2 = fñ, condition (LL ′) follows.

Without loss of generality we assume that e(t) has zero mean value, i.e.,

ē = 0 . (9)

Indeed, otherwise, we just replace e(t) by e(t)− ē and h(t, ρ) by h(t, ρ)− ē.
Let d ≥ 1 be as in Lemma 1. For some r0 ∈ ]0, 1

d
], to be fixed later, we

define the truncation hr0 : R× R→ R, as follows:

hr0(t, r) =

{
h(t, r) for r ≥ r0

h(t, r0) for r ≤ r0 .

This function is still L1-Carathéodory. We consider the T -periodic problem

(P̂r0)

{
ρ̈+ hr0(t, ρ) = e(t) ,

ρ(0) = ρ(T ) , ρ̇(0) = ρ̇(T ) ,

and look for a priori bounds for the solutions ρ, for small values of r0. To this
aim, we first show the existence of lower and upper solutions.

Lemma 2 There exist two functions α, β : [0, T ] → R such that, for every
r0 ∈ ]0, 1

d
], α is a strict lower solution of (P̂r0), β is a strict upper solution,

and α(t) ≤ 0, β(t) ≥ d, for every t. Moreover, every solution ρ of (P̂r0) is such
that α < ρ < β.

Proof Consider the functions ψ1 and ψ2 given by Lemma 1. Recall that
they are extended to R by T -periodicity. Let ψ1(t) = ψ̄1 + ψ̃1(t), with ψ̄1 =
1
T

∫ T
0
ψ1(t) dt, and similarly for ψ2. Recall (9) and choose two T -periodic func-

tions w1(t) and w2(t) such that

ẅ1(t) = −ψ̃1(t) + e(t) , ẅ2(t) = −ψ̃2(t) + e(t) ,

for almost every t. Set α(t) = w1(t) − c and β(t) = w2(t) + c with c ≥
d + max{‖w1‖∞, ‖w2‖∞}. Then, for every r0 ∈ ]0, 1

d
], α is a lower solution of

(P̂r0), and β is an upper solution (see [3, Theorem 7.2.1]). Hence, there is
indeed a whole family of lower and upper solutions.
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Let us see that α, β are strict. Assume that ρ is a solution of (P̂r0) such
that ρ(t) ≥ α(t), for every t ∈ [0, T ]. Extending ρ by periodicity, since α is
also T -periodic, we have that ρ(t) ≥ α(t), for every t ∈ R. If by contradiction
α is not strict, there is a t0 ∈ R such that ρ(t0) = α(t0). Then, ρ̇(t0) = α̇(t0)
and, for almost every t in a neighborhood of t0,

ρ̈(t)− α̈(t) = −h(t, r0) + ψ1(t)− ψ̄1 ≤ −ψ̄1 < 0 ,

so that, integrating,
ρ(t)− α(t) ≤ −1

2
(t− t0)2ψ̄1 ,

and we find a contradiction. Similarly, one proves that β is strict, as well.

As shown above, once we have selected α and β, every function of the type
α(t) − ξ, with ξ ≥ 0, is also a strict lower solution, and every function of
the type β(t) + ξ is a strict upper solution. This fact implies that the graphs
of the solutions of (P̂r0) cannot cross any of the graphs of these lower and
upper solutions. Indeed, assume by contradiction that there is a crossing of a
solution ρ(t) with one of the lower solutions α1(t) = α(t) − ξ1 above. Then,
there would be a ξ2 ≥ ξ1 and a t0 ∈ R such that, setting α2(t) = α(t)− ξ2, one
has ρ(t) ≥ α2(t) for every t, and ρ(t0) = α2(t0), contradicting the fact that α2

is strict. The proof is then easily completed.

Remark 3 The use of lower and upper solutions for scalar equations with a
singularity was first proposed by Lazer and Solimini in [11].

We now carry out the a priori bounds needed on the solutions of (P̂r0).

Lemma 3 Let d ≥ 1 be as in Lemma 1. There exist r̄0 ∈ ]0, 1
d
] and C > 0

such that, if ρ(t) is any solution of (P̂r0), with r0 ∈ ]0, r̄0 ], then

1

C
< ρ(t) < β(t) and |ρ̇(t)| < C , for every t ∈ [0, T ] .

Proof The strict inequality with β(t) is guaranteed by Lemma 2. By contra-
diction, assume that, for every n ≥ d, there are r0,n ∈ ]0, 1

n
], and a solution

ρn(t) of (P̂r0,n), such that, either min ρn ≤ 1
n

, or ‖ρ̇n‖∞ ≥ n. For simplicity we
denote by hn the function hr0,n .

Let us estimate the derivative of ρn. We know that ρn(t) < β(t), for
every t. Using (LL′) and the Carathéodory assumption, we can find a function
χ ∈ L1(0, T ) such that

hn(t, ρn(t)) ≥ χ(t) ,

for almost every t. Since ρn is T -periodic, for every t there is a t1 , such that
t− T ≤ t1 ≤ t, for which ρ̇n(t1) = ρ̇n(t1 + T ) = 0. Hence,

ρ̇n(t) = ρ̇n(t1) +

∫ t

t1

ρ̈n =

∫ t

t1

(−hn(s, ρn(s)) + e(s)) ds ≤ ‖χ‖1 + ‖e‖1 ,
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while

ρ̇n(t) = ρ̇n(t1 +T )+

∫ t

t1+T

ρ̈n =

∫ t

t1+T

(−hn(s, ρn(s))+e(s)) ds ≥ −‖χ‖1−‖e‖1 .

Hence,
‖ρ̇n‖∞ ≤ C1 , (10)

with C1 = ‖χ‖1 + ‖e‖1. So, if n is sufficiently large, we have that ‖ρ̇n‖∞ < n.
Therefore, it has to be min ρn ≤ 1

n
, for n large enough.

We now show that max ρn >
1
d

, for every n ≥ d. By contradiction, assume
that max ρn ≤ 1

d
. Since r0,n ≤ 1

d
, by (LL ′),

ρ̈n(t) = −hn(t, ρn(t)) + e(t) ≤ −ψ1(t) + e(t) .

Integrating over [0, T ], we get a contradiction, since ē = 0 and ψ̄1 > 0.

Set r̃1 = min{1
d
, δ̄}. Taking n large enough, we can assume that r̃1 >

1
n

.
Then, there is an interval [γn, δn] such that

ρn(γn) = r̃1 , ρn(δn) = 1
n
,

and
1
n
< ρn(t) < r̃1 , for every t ∈ ]γn, δn[ . (11)

Let η(t) be as in (LL), define

h̃(t, r) = h(t, r) + η(t) , ẽ(t) = e(t) + η(t) , f̃(r) = max{F ′(r), 0} ,

and let F̃ : ]0, δ̄[→ R be a primitive of f̃ , i.e., F̃ ′(r) = f̃(r), for every r. Then,

h̃(t, r) ≥ F̃ ′(r), for every r ∈ ]0, δ̄[ and a.e. t ∈ R ,

and
lim
r→0+

F̃ (r) = −∞ . (12)

Recall that r0,n ≤ 1
n

. So, by (11) we have that

ρ̈n(t) + h̃(t, ρn(t)) = ẽ(t) , for every t ∈ ]γn, δn[ . (13)

Let C1 be the constant appearing in (10). Multiplying the equation in (13) by
(ρ̇n − C1) and integrating on [γn, δn], we see that

1

2
[(ρ̇n − C1)2]δnγn

+

∫ δn

γn

h̃(t, ρn(t))(ρ̇n(t)− C1) dt =

∫ δn

γn

ẽ(t)(ρ̇n(t)− C1) dt .

Hence, by (10), there is a constant c2 > 0 for which∣∣∣∣ ∫ δn

γn

h̃(t, ρn(t))(ρ̇n(t)− C1) dt

∣∣∣∣ ≤ c2 , (14)
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for every n. On the other hand, since ρ̇n − C1 ≤ 0,∫ δn

γn

h̃(t, ρn(t))(ρ̇n(t)− C1) dt ≤
∫ δn

γn

F̃ ′(ρn(t))(ρ̇n(t)− C1) dt

≤
∫ δn

γn

F̃ ′(ρn(t))ρ̇n(t) dt

=
[
F̃ (ρn(t))

]δn
γn

≤ F̃ ( 1
n
)− F̃ (r̃1) .

Using (12), when n tends to infinity we get a contradiction with (14), thus
ending the proof of the lemma.

We now take r̄0 > 0 and C > 0 as given by Lemma 3. We can also assume
that β(t) ≤ C, for every t. Let us fix r0 = min{r̄0,

1
C
}. As a consequence of

Lemma 3, any solution ρ(t) of (P̂r0) is also a solution of (P0). Define Ω to be
the following open and bounded subset of C1([0, T ]):

Ω =
{
ρ ∈ C1([0, T ]) :

1

C
< ρ(t) < β(t) and |ρ̇(t)| < C , for every t ∈ [0, T ]

}
.

Clearly, Ω is uniformly positively bounded below.

In order to apply Theorem 2, we need to verify assumption (7), i.e., that the
topological degree is not zero. Let us define, for problem (P̂r0), the Nemytzkii
operator

N̂ : C1([0, T ])→ L1(0, T ) ,

(N̂ρ)(t) = −hr0(t, ρ(t)) + e(t) .

By the classical theory on lower and upper solutions, we have that, setting

Ω̂ =
{
ρ ∈ C1([0, T ]) : α(t) < ρ(t) < β(t) and |ρ̇(t)| < C, for every t ∈ [0, T ]

}
,

it is

deg(I − (L− σI)−1(N̂ − σI), Ω̂) = 1 ,

see, e.g., [3, Theorem 3.1.12]. As Ω is a subset of Ω̂ and, by Lemma 3, every
solution of (P̂r0) is in Ω, the excision property of the degree implies that

deg(I − (L− σI)−1(N̂ − σI), Ω̂) = deg(I − (L− σI)−1(N̂ − σI),Ω) .

Since N̂ and N0 coincide on Ω, we finally have

deg(I − (L− σI)−1(N0 − σI),Ω) = 1 .

The proof of Theorem 3 is thus completed.
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