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Abstract

We discuss existence and multiplicity of positive solutions of the prescribed mean
curvature problem

−div
(
∇u/

√
1 + |∇u|2

)
= λf(x, u) in Ω, u = 0 on ∂Ω,

in a general bounded domain Ω ⊂ RN , depending on the behaviour at zero or
at infinity of f(x, s), or of its potential F (x, s) =

∫ s
0 f(x, t) dt. Our main effort

here is to describe, in a way as exhaustive as possible, all configurations of the
limits of F (x, s)/s2 at zero and of F (x, s)/s at infinity, which yield the existence
of one, two, three or infinitely many positive solutions. Either strong, or weak,
or bounded variation solutions are considered. Our approach is variational and
combines critical point theory, the lower and upper solutions method and elliptic
regularization.
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1 Introduction

Let us consider the Dirichlet problem for the prescribed mean curvature equation{
−div

(
∇u/

√
1 + |∇u|2

)
= λf(x, u) in Ω,

u = 0 on ∂Ω,
(1)

where Ω is a bounded domain in RN (N ≥ 2) with a C0,1 boundary ∂Ω, f : Ω×R→ R
is a Carathéodory function and λ > 0 is a real parameter. The potential F of f is
defined by

F (x, s) =

∫ s

0

f(x, t) dt.

Existence, non-existence and multiplicity of positive solutions of problem (1) have
been discussed by several authors in the last decades. The case where Ω is a ball and
u is a classical radially symmetric solution has been studied, among others, by Ni and
Serrin [32, 33, 34], Serrin [43], Peletier and Serrin [41], Atkinson, Peletier and Serrin
[2], Ishimura [24], Kusano and Swanson [25], Clement, Manásevich and Mitidieri [11],
Franchi, Lanconelli and Serrin [17], Bidaut-Veron [3], Conti and Gazzola [13], Chang
and Zhang [9], del Pino and Guerra [16], also in relation with the existence of ground
states. The one-dimensional problem has been rather thoroughly discussed in a series
of recent papers by Bonheure, Habets, Obersnel and Omari [23, 5, 36, 6], Bereanu
and Mawhin [4] and Pan [40]. The case where Ω displays no special symmetry, f(x, s)
behaves like a power sp (p > 0) and u is either a classical, or a weak, or a bounded
variation solution, has been considered by Nakao [31], Coffman and Ziemer [12], Nous-
sair, Swanson and Yiang [35], Habets and Omari [22], Le [26, 28]. It is worthwhile to
mention that the case where the domain Ω has no special symmetry and the searched
solution u (classical or bounded variation) has not a prescribed sign has been the sub-
ject of deep studies in the classical works of De Giorgi, Serrin, Federer, Finn, Miranda,
Giusti, Giaquinta, Trudinger, Ladyzenskaia, Ural’tseva, Temam, Gerhard, Simon et
al..

In this paper we deal with positive bounded variation solutions of (1) in a genuine
partial differential equation setting, i.e. in space dimension N ≥ 2, and in fact one of
our aims here is to extend to higher dimensions the results obtained in [5]. However
our conclusions are still valid, and sometimes even new, in the one-dimensional case.
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A bounded variation solution of (1) is a function u ∈ BV (Ω) such that f(·, u) ∈
Lp(Ω), for some p > N , and

J (v)− J (u) ≥ λ

∫
Ω

f(x, u)(v − u) dx

for every v ∈ BV (Ω). The functional J : BV (Ω)→ R is defined by

J (w) =

∫
Ω

√
1 + |Dw|2 +

∫
∂Ω

|w|∂Ω| dHN−1,

where, for any w ∈ BV (Ω),∫
Ω

√
1 + |Dw|2 = sup

{∫
Ω

(
w

N∑
i=1

∂zi
∂xi

+ zN+1

)
dx | zi ∈ C1

0(Ω)

for i = 1, 2, . . . , N + 1 and
∥∥∥N+1∑
i=1

z2
i

∥∥∥
L∞(Ω)

≤ 1
}
,

w|∂Ω ∈ L1(∂Ω,HN−1) is the trace of w on ∂Ω andHN−1 denotes the (N−1)-dimensional
Hausdorff measure.

This notion of bounded variation solution is equivalent (see Remark 2.1) to requiring
that u ∈ BV (Ω) satisfies the Euler equation∫

Ω

(Du)a(Dv)a√
1 + |(Du)a|2

dx+

∫
Ω

Du

|Du|
Dv

|Dv|
d|Dv|s +

∫
∂Ω

sgn(u)|∂Ω v|∂Ω dHN−1

= λ

∫
Ω

f(x, u)v dx

for every v ∈ BV (Ω) such that |Dv|s is absolutely continuous with respect to |Du|s
and v|∂Ω(x) = 0 HN−1-a.e. on the set {x ∈ ∂Ω | u|∂Ω(x) = 0}. Here, for w ∈
BV (Ω), Dw = (Dw)a + (Dw)s is the Lebesgue decomposition of the measure Dw in
its absolutely continuous part and its singular part with respect to the N -dimensional
Lebesgue measure in RN , |Dw| denotes the total variation of the measure Dw, |Dw| =
|Dw|a + |Dw|s is the Lebesgue decomposition of |Dw| and Dw

|Dw| is the density of Dw

with respect to its total variation |Dw|.
Of course, if a bounded variation solution u of (1) is more regular, then it is a

solution in some stronger sense. For instance, if u ∈ W 1,1
0 (Ω), then (see Remark 2.3)

it is a weak solution of (1), in the sense that∫
Ω

∇u∇v√
1 + |∇u|2

dx = λ

∫
Ω

f(x, u)v dx
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for every v ∈ W 1,1
0 (Ω). If in addition u ∈ W 2,p(Ω) for some p > N , then (see Remark

2.4) u is a strong solution of (1), in the sense that

−div
(
∇u/

√
1 + |∇u|2

)
(x) = λf(x, u(x)) a.e. in Ω, u(x) = 0 on ∂Ω.

Throughout this paper by a solution of (1), without any further specification, we will
always mean a bounded variation solution.

We also say that a solution u of (1) is positive if u(x) ≥ 0 for a.e. x ∈ Ω and
u(x) > 0 on a set of positive measure.

Our study of problem (1) will essentially rely on variational methods. This is a
quite natural approach because u is a bounded variation solution of (1) if and only if
0 is a subgradient at u of the action functional Iλ : BV (Ω)→ R defined by

Iλ(v) = J (v)− λ
∫

Ω

F (x, v) dx.

We will infer the existence of positive solutions of (1) by comparing F (x, s) with
s2 near zero and with s at infinity. This is suggested by the fact that the curvature

operator div(∇u/
√

1 + |∇u|2) behaves like the Laplace operator ∆u = div(∇u) near

zero and like the 1-Laplace operator ∆1u = div(∇u/|∇u|) at infinity. Some specific
configurations of the limits of F (x, s)/s2 at 0 and of F (x, s)/s at +∞ will then yield
the existence of one, two, three, or infinitely many positive solutions of (1), thus repro-
ducing the multiplicity phenomena already pointed out in [5] in the one-dimensional
case. The study of problems where the differential operators exhibit different degrees of
homogeneity at zero and at infinity seems to have been little studied in the literature:
we refer to [10, 18, 36] for some recent contributions in this direction.

In order to minimize technicalities and to describe, in the course of this introduction,
our main results in a neat and simple way, we will discuss in the sequel some model
situations where f(x, s) is independent of x, i.e. f(x, s) = f(s) in Ω × R, and its
potential F (s) =

∫ s
0
f(t)dt behaves like a power sp0 in a neighborhood of 0, or a

power sp∞ in a neighbourhood of +∞. Additional smoothness of ∂Ω will be sometimes
assumed. The statements produced below, which are at least partially known, will
be generalized in manifold directions in Section 3. We remark that the hypotheses
here considered are put on the potential F just to facilitate a comparison with the
results given in Section 3, even though all assumptions could have been expressed in
an equivalent way directly on f .

We start considering conditions that yield the existence of at least one positive
solution. First we discuss the case where the potential is subquadratic at 0 or sublinear
at +∞.
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Potential subquadratic at 0. Suppose that Ω has a C1,1 boundary ∂Ω. Assume that
there exist p0 ∈ [1, 2[ and s0 > 0 such that F (s) = sp0 for every s ∈ [0, s0]. Then there
exists λ∗ ∈ ]0,+∞] such that, for every λ ∈ ]0, λ∗[, problem (1) has at least one positive
weak solution.

Potential sublinear at +∞. Suppose that f(0) ≥ 0. Assume that there exist p∞ ∈
]−∞, 1[ and s∞ > 0 such that, up to an additive constant, F (s) = sp∞ for every
s ∈ [s∞,+∞[. Then there exists λ∗ ∈ [0,+∞[ such that, for every λ ∈ ]λ∗,+∞[,
problem (1) has at least one positive solution.

Potential subquadratic at 0 and sublinear at +∞. Assume that there exist
p0 ∈ [1, 2[ and p∞ ∈ ]−∞, 1[ and s0, s∞ > 0 such that F (s) = sp0 for every s ∈ [0, s0]
and, up to an additive constant, F (s) = sp∞ for every s ∈ [s∞,+∞[. Then, for every
λ > 0, problem (1) has at least one positive solution.

The proof of the first result is worked out by minimizing the action functional associated
with a suitably modified problem, which is uniformly elliptic, and on gradient estimates
for the correponding solutions. Whereas, the last two statements are obtained by a
direct minimization in BV (Ω) of the functional Iλ associated with (1). Related results
can be found in [22, 26, 28, 37]. A class of model functions to which these three
statements apply are

f(s) = min{(s+)p0−1, (s+)p∞−1},

with p0 ∈ [1, 2[ and p∞ ∈ ]−∞, 1[.
In the limiting cases where p0 = 2 and p∞ = 1, we can prove some sharper results

involving the principal eigenvalues λ1 and µ1 of −∆ and −∆1 with Dirichlet boundary
conditions; we refer to Section 2 for the definition of these and other related spectral-
type constants. In particular the following result holds.

Potential quadratic at 0 and linear at +∞. Assume that there exist constants
κ0 ∈ [λ1,+∞[, κ∞ ∈ ]0, µ1[ and s0, s∞ > 0 such that F (s) = 1

2
κ0s

2 for every s ∈ [0, s0]
and, up to an additive constant, F (s) = κ∞s for every s ∈ [s∞,+∞[. Then, for λ = 1,
problem (1) has at least one positive solution.

Next we consider the case where the potential is superquadratic at 0 or superlinear
at +∞.

Potential superquadratic at 0. Suppose that Ω has a C1,1 boundary ∂Ω. Assume
that there exist p0 ∈ ]2, 2∗[, where 2∗ = 2N

N−2
if N ≥ 3 and 2∗ = +∞ if N = 2, and

s0 > 0 such that F (s) = sp0 for every s ∈ [0, s0]. Then there exists λ∗ ∈ [0,+∞[ such
that, for every λ ∈ ]λ∗,+∞[, problem (1) has at least one positive strong solution.

Potential superlinear at +∞. Suppose that f(0) ≥ 0. Assume that there exist
p∞ ∈ ]1, 1∗[, where 1∗ = N

N−1
, and s∞ > 0 such that, up to an additive constant,

F (s) = sp∞ for every s ∈ [s∞,+∞[. Then there exists λ∗ ∈ ]0,+∞] such that, for
every λ ∈ ]0, λ∗[, problem (1) has at least one positive solution.
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The former result was obtained in [12] by a clever adaptation to problem (1) of the
Nehari method; a hopefully more transparent proof, based on the same approach, is
given in [38]. The latter result is obtained by an elliptic regularization procedure similar
to that performed in [5] for the one-dimensional case. We remark that approximating
the non-uniformly elliptic problem (1), by adding the term −ε∆u, has been repeatedly
used in the literature, starting with [44], when f(x, s) = f(x) does not depend on s.
What is new here is to adopt this technique to deal with functions f(s), or more
generally f(x, s), which behave as sp−1 for some p > 1 at +∞, and to replace the
perturbation −ε∆u with −ε∆r = −ε div(|∇u|r−2∇u), where r is chosen such that
1 < r < p in order to preserve the mountain-pass geometry of the original functional
Iλ for small values of λ > 0. Each approximating problem is then solved in W 1,r(Ω) and
the obtained solutions are controlled by suitable W 1,1-estimates, which allow to get a
bounded variation solution of (1) by passing to the limit. Related results can be found
in [26, 29], where nonsmooth critical point theory or finite dimensional approximation
were respectively used.

Just combining the two preceding results yields the following statement, which
however has an important drawbak: unlike the corresponding one-dimensional case
(cf. [5, Theorem 3.5]) we are unable here to prove the existence of a solution for any
given λ > 0; it remains an open problem to fill this gap.

Potential superquadratic at 0 and superlinear at +∞. Suppose that Ω has a
C1,1 boundary ∂Ω. Assume that there exist p0 ∈ ]2, 2∗[, p∞ ∈ ]1, 1∗[ and s0, s∞ > 0
such that F (s) = sp0 for every s ∈ [0, s0] and, up to an additive constant, F (s) = sp∞

for every s ∈ [s∞,+∞[. Then there exist λ∗ ∈ [0,+∞[ and λ∗ ∈ ]0,+∞] such that, for
every λ ∈ ]0, λ∗[ ∪ ]λ∗,+∞[, problem (1) has at least one positive solution.

These last three statements apply to functions like

f(s) = min{(s+)p0−1, (s+)p∞−1},

with p0 ∈ ]2, 2∗[ and p∞ ∈ ]1, 1∗[.

Subquadraticity, or respectively superquadraticity, at zero can be combined with
superlinearity, or respectively sublinearity, at infinity to produce multiplicity of so-
lutions. A result substantially similar to our first statement below was previously
obtained in [26] by a different approach based on non-smooth critical point theory. On
the contrary our second result below is new in dimensions larger than one.

Potential subquadratic at 0 and superlinear at +∞. Suppose that Ω has a C1,1

boundary ∂Ω. Assume that there exist p0 ∈ [1, 2[, p∞ ∈ ]1, 1∗[ and s0, s∞ > 0 such that
F (s) = sp0 for every s ∈ [0, s0] and, up to an additive constant, F (s) = sp∞ for every
s ∈ [s∞,+∞[. Then there exists λ∗ ∈ ]0,+∞] such that, for every λ ∈ ]0, λ∗[, problem
(1) has at least two positive solutions, one of which is weak.
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This result applies for instance to

f(s) = (s+)p0−1,

with p0 ∈ ]1, 1∗[.

Potential superquadratic at 0 and sublinear at +∞. Suppose that Ω has a C1,1

boundary ∂Ω. Assume that there exist p0 ∈ ]2, 2∗[, p∞ ∈ ]−∞, 1[ and s0, s∞ > 0 such
that F (s) = sp0 for every s ∈ [0, s0] and, up to an additive constant, F (s) = sp∞ for
every s ∈ [s∞,+∞[. Then there exists λ∗ ∈ [0,+∞[ such that, for every λ ∈ ]λ∗,+∞[,
problem (1) has at least two positive solutions, one of which is strong.
Functions that can be considered here are

f(s) = min{(s+)p0−1, (s+)p∞−1},

with p0 ∈ ]2, 2∗[ and p∞ ∈ ]−∞, 1[.

In the case where the potential is superquadratic at 0 and superlinear at +∞,
the introduction of a second parameter allows to get the existence of three positive
solutions. Namely, let us consider the model two-parameter problem{

−div
(
∇u/

√
1 + |∇u|2

)
= min{λ(u+)p∞−1, µ(u+)p0−1} in Ω,

u = 0 on ∂Ω,
(2)

with p∞ > 1 and p0 > 2. A careful analysis of the geometric features of the associated
action functional leads to the following result.

Potential superquadratic at 0 and superlinear at +∞ depending on two
parameters. Suppose that Ω has a C1,1 boundary ∂Ω. Assume that p0 ∈ ]2, 2∗[ and
p∞ ∈ ]1, 1∗[. Then there exist λ∗ ∈ ]0,+∞] and a function µ∗ : ]0, λ∗[→ [0,+∞[ such
that, for every λ ∈ ]0, λ∗[ and µ ∈ ]µ∗(λ),+∞[, problem (2) has at least three positive
solutions, two of which are weak.

We conclude this overview by observing that we can also deal with cases where the
potential is neither subquadratic nor superquadratic at zero and it is neither sublinear
nor superlinear at infinity, but it oscillates in between. In this frame we can establish
the existence of infinitely many positive solutions. The proof combines the lower and
upper solutions method, local minimization and critical values estimates; some ideas
from [39, 22, 37] are exploited too.

Potential oscillatory at 0. Suppose that Ω has a C1,1 boundary ∂Ω. Assume that
lim inf
s→0+

F (s)/s2 = 0 and lim sup
s→0+

F (s)/s2 = +∞. Then, for every λ > 0, problem (1)

has an infinite sequence of positive weak solutions.

Potential oscillatory at +∞. Assume that lim inf
s→+∞

F (s)/s = 0 and lim sup
s→+∞

F (s)/s =

+∞. Then, for every λ > 0, problem (1) has an infinite sequence of positive solutions.
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The rest of this paper is organized as follows: in Section 2 we collect some basic
definitions and statements and in Section 3 we state and prove our existence and
multiplicity results.

2 Preliminaries

We list in this section some notation, definitions and facts that will be used in the
sequel.

Bounded variation function. Let Ω be an open set in RN (N ≥ 2). For any u ∈ L1(Ω)
we put ∫

Ω

|Du| = sup
{∫

Ω

(
u

N∑
i=1

∂vi
∂xi

)
dx |

vi ∈ C1
0(Ω) for i = 1, 2, . . . , N and

∥∥∥ N∑
i=1

v2
i

∥∥∥
L∞(Ω)

≤ 1
}
.

A function u ∈ L1(Ω) is said to have bounded variation in Ω if
∫

Ω
|Du| < +∞ (see [21,

p. 3]). The linear space of all functions having bounded variation in Ω is denoted by
BV (Ω).

Poincaré inequality (see [30, p. 228], [21, p. 24]). Assume

(h1) Ω is a bounded domain in RN (N ≥ 2) with a C0,1 boundary ∂Ω.

For each p ∈ [1, N
N−1

] there exists a constant µp > 0 such that

µp

(∫
Ω

|u|p dx
) 1
p ≤

(∫
Ω

|Du|+
∫
∂Ω

|u|∂Ω| dHN−1

)
(3)

for every u ∈ BV (Ω), where u|∂Ω ∈ L1(∂Ω,HN−1) is the trace of u on ∂Ω (see [21, p.
37]) and HN−1 denotes the (N − 1)-dimensional Hausdorff measure.

The space BV (Ω). Assume (h1). The space BV (Ω), equipped with the norm

‖u‖BV (Ω) =

∫
Ω

|Du|+
∫
∂Ω

|u|∂Ω| dHN−1,

is a Banach space continuously embedded into L
N
N−1 (Ω) and compactly embedded into

Lq(Ω) for any q ∈ [1, N
N−1

[ (see [21, pp. 24, 17]).

Area functional. Assume (h1). The area functional J : BV (Ω)→ R is defined by

J (u) =

∫
Ω

√
1 + |Du|2 +

∫
∂Ω

|u|∂Ω| dHN−1,
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where∫
Ω

√
1 + |Du|2 = sup

{∫
Ω

(
u

N∑
i=1

∂vi
∂xi

+ vN+1

)
dx |

vi ∈ C1
0(Ω) for i = 1, 2, . . . , N + 1 and

∥∥∥N+1∑
i=1

v2
i

∥∥∥
L∞(Ω)

≤ 1
}
.

The functional J is convex and, also by the continuity of the trace map (see [21,
Theorem 2.11]), is Lipschitz continuous in BV (Ω) and lower semicontinuous in BV (Ω)
with respect to the L1-topology (see [21, Chapter 14]). Note that, if u ∈ W 1,1

0 (Ω), then

J (u) =

∫
Ω

√
1 + |∇u|2dx

and the restriction of J to W 1,1
0 (Ω) is Gateaux differentiable at any point u ∈ W 1,1

0 (Ω),
with

J ′(u)(w) =

∫
Ω

∇u∇w√
1 + |∇u|2

dx

for every w ∈ W 1,1
0 (Ω).

Approximation property (see [1, pp. 491, 498], [14, Proposition 2], [27, Lemma 2.3]).
Assume (h1). For any u ∈ BV (Ω), there exists a sequence (un)n ⊂ W 1,1

0 (Ω) such that

lim
n→+∞

un = u in Lp(Ω) for each p ∈ [1, N
N−1

],

lim
n→+∞

∫
Ω

|∇un| dx =

∫
Ω

|Du|+
∫
∂Ω

|u|∂Ω| dHN−1,

lim
n→+∞

J (un) = J (u).

Lattice property (see [37, Proposition 2.2]). Assume (h1). For any u, v ∈ BV (Ω), we
have min{u, v}, max{u, v} ∈ BV (Ω) and

J (min{u, v}) + J (max{u, v}) ≤ J (u) + J (v). (4)

Bounded variation solution. Assume (h1). A function u ∈ BV (Ω) is said to be a
bounded variation solution of (1), for a given λ > 0, if f(·, u) ∈ Lp(Ω) for some p > N ,
and

J (v)− J (u) ≥ λ

∫
Ω

f(x, u)(v − u) dx (5)

for every v ∈ BV (Ω). As we already pointed out, by a solution of (1) in this work we
always mean a bounded variation solution.
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Remark 2.1 Assume (h1),

(h2) f : Ω × R → R satisfies the Carathéodory conditions, i.e. for a.e. x ∈ Ω,
f(x, ·) : R→ R is continuous and, for every s ∈ R, f(·, s) : Ω→ R is measurable

and

(h3) there exist constants q ∈ ]1, N
N−1

[, c1 > 0 and a function c2 ∈ L
q
q−1 (Ω) such that

|f(x, s)| ≤ c1|s|q−1 + c2(x)

for a.e. x ∈ Ω and every s ∈ R.

Let F : Lq(Ω)→ R be the potential functional defined by

F(v) =

∫
Ω

F (x, v) dx.

It follows from [15, Theorem 2.8] that F is of class C1. For each λ > 0 we define the
action functional Iλ : BV (Ω)→ R by

Iλ(v) = J (v)− λF(v).

Note that Iλ is lower semicontinuous in BV (Ω) with respect to the Lq-topology.
According to the convexity and the continuity of J and the differentiability of F
in BV (Ω), it is natural to say that a function u ∈ BV (Ω) is a solution of (1) if
0 ∈ ∂J (u)− λF ′(u), i.e. λF ′(u) ∈ ∂J (u), where ∂J (u) denotes the subdifferential of
J at u. This means that

J (v) ≥ J (u) + λF ′(u)(v − u),

that is (5) holds for every v ∈ BV (Ω). Note also that u is a bounded variation solution
of (1) if and only if u minimizes in BV (Ω) the functional Hλ,u : BV (Ω) → R defined
by

Hλ,u(v) = J (v)− λF ′(u)(v). (6)

According to [1, Section 3] this is equivalent to saying that u ∈ BV (Ω) satisfies the
Euler equation∫

Ω

(Du)a(Dv)a√
1 + |(Du)a|2

dx+

∫
Ω

Du

|Du|
Dv

|Dv|
d|Dv|s +

∫
∂Ω

sgn(u)|∂Ω v|∂Ω dHN−1

= λ

∫
Ω

f(x, u)v dx

(7)

for every v ∈ BV (Ω) such that |Dv|s is absolutely continuous with respect to |Du|s
and v|∂Ω(x) = 0 HN−1-a.e. on the set {x ∈ ∂Ω | u|∂Ω(x) = 0}. Here, for w ∈
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BV (Ω), Dw = (Dw)a + (Dw)s is the Lebesgue decomposition of the measure Dw in
its absolutely continuous part and its singular part with respect to the N -dimensional
Lebesgue measure in RN , |Dw| denotes the total variation of the measure Dw, |Dw| =
|Dw|a + |Dw|s is the Lebesgue decomposition of |Dw| and Dw

|Dw| is the density of Dw

with respect to its total variation |Dw|. Equation (7) yields an alternative formulation
of the notion of bounded variation solution of (1) we have previously introduced.

Remark 2.2 Assume (h1), (h2) and (h3). If u ∈ BV (Ω) is a local minimizer of the
functional Iλ, then u satisfies (5) for every v ∈ BV (Ω). Indeed, as J is convex and F
is of class C1, we have, for each v ∈ BV (Ω) sufficiently close to u and every t ∈ ]0, 1[,

J(u)− λF(u) ≤ (1− t)J(u) + tJ(v)− λF(u)− λ
(∫ 1

0

F ′(u+ st(v − u)) ds
)
t(v − u).

Hence, rearranging and dividing by t > 0, we get

J(u)− J(v) ≤ λ
(∫ 1

0

F ′(u+ st(v − u)) ds
)

(u− v)

and, letting t→ 0+,

J(u)− λF ′(u)(u) ≤ J(v)− λF ′(u)(v).

This means that the functional Hλ,u defined by (6) has a local minimum at u. As Hλ,u

is convex, u is a global minimizer of Hλ,u and then (5) holds for every v ∈ BV (Ω).

Weak solution. Assume (h1). A function u ∈ W 1,1
0 (Ω) is said to be a weak solution of

(1), for a given λ > 0, if f(·, u) ∈ Lp(Ω), for some p > N , and∫
Ω

∇u∇v√
1 + |∇u|2

dx = λ

∫
Ω

f(x, u)v dx (8)

for every v ∈ W 1,1
0 (Ω).

Strong solution. Assume (h1). A function u ∈ W 2,p(Ω), for some p > N , is said to be
a strong solution of (1), for a given λ > 0, if

− div
(
∇u/

√
1 + |∇u|2

)
(x) = λf(x, u(x)) a.e. in Ω, u(x) = 0 on ∂Ω. (9)

Positive solution. A solution u of (1) is said to be positive if u(x) ≥ 0 a.e. in Ω and
u(x) > 0 in a set of positive measure.
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Remark 2.3 A weak solution u of (1) is a bounded variation solution of (1). Indeed,
as the restriction to W 1,1

0 (Ω) of the functional J is convex and Gateaux differentiable,
we have

λ

∫
Ω

f(x, u)(v − u) dx =

∫
Ω

∇u∇(v − u)√
1 + |∇u|2

dx = J ′(u)(v − u) ≤ J (v)− J (u)

for every v ∈ W 1,1
0 (Ω). The above stated approximation property in BV (Ω) implies

that (5) holds for every v ∈ BV (Ω).
Conversely, a bounded variation solution u of (1), with u ∈ W 1,1

0 (Ω), is a weak
solution of (1). Indeed, fix w ∈ W 1,1

0 (Ω). From (5) we have, for every t 6= 0,

sgn(t)
J (u+ tw)− J (u)

t
≥ sgn(t)λ

∫
Ω

f(x, u)w dx.

Letting t→ 0 we get, as J restricted to W 1,1
0 (Ω) is Gateaux differentiable,

±J ′(u)w ≥ ±λ
∫

Ω

f(x, u)w dx,

that is

J ′(u)w = λ

∫
Ω

f(x, u)w dx.

Remark 2.4 A strong solution u of (1) is a weak solution of (1). Indeed, we have
f(·, u) ∈ Lp(Ω) and, by the Dirichlet boundary condition, u ∈ W 1,1

0 (Ω). Multiplying
the equation in (9) by v ∈ W 1,1

0 (Ω), integrating on Ω and using the Green’s formula,
we obtain (8).

Conversely, a weak solution u of (1), with u ∈ W 2,p(Ω) for some p > N , is a
strong solution of (1). Indeed, using the Green’s formula, we see that u satisfies the
equation in (9) a.e. in Ω. The Dirichlet boundary condition is satisfied as well since
u ∈ W 1,1

0 (Ω) ∩ C0(Ω̄).

Lower and upper solutions (see [21, Section 12], [28] and [37]). Assume (h1). A function
α ∈ BV (Ω) is said to be a lower solution of (1), for a given λ > 0, if f(·, α) ∈ Lp(Ω)
for some p > N and

J (α + z)− J (α) ≥ λ

∫
Ω

f(x, α)z dx (10)

for every z ∈ BV (Ω) with z(x) ≤ 0 a.e. in Ω. Similarly a function β ∈ BV (Ω) is said
to be an upper solution of (1), for a given λ > 0, if f(·, β) ∈ Lp(Ω) for some p > N and

J (β + z)− J (β) ≥ λ

∫
Ω

f(x, β)z dx
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for every z ∈ BV (Ω) with z(x) ≥ 0 a.e. in Ω. It follows from [37, Remark 2.3] that u
is a solution of (1) if and only if it is simultaneously a lower and an upper solution of
(1).

Remark 2.5 Note that α is a lower solution of (1) if and only if it is a minimizer of
the functional

Hλ,α(v) = J (v)− λF ′(α)(v)

in the cone Cα = {v ∈ BV (Ω) | v(x) ≤ α(x) a.e. in Ω}. Similarly β is an upper
solution of (1) if and only if it is a minimizer of the functional

Hλ,β(v) = J (v)− λF ′(β)(v)

in the cone Cβ = {v ∈ BV (Ω) | v(x) ≥ β(x) a.e. in Ω}.

Remark 2.6 Assume (h1). Suppose that α ∈ W 1,1(Ω) is such that f(·, α) ∈ Lp(Ω)
for some p > N , α|∂Ω(x) ≤ 0 for HN−1-a.e. x ∈ ∂Ω and∫

∂Ω

|z|∂Ω| dHN−1 +

∫
Ω

∇α∇z/
√

1 + |∇α|2 dx ≥
∫

Ω

f(x, α)z dx, (11)

for every z ∈ W 1,1(Ω) with z(x) ≤ 0 a.e. in Ω. Then (see [37, Lemma 3.8]) α is a
lower solution of (1). Indeed, let z ∈ W 1,1(Ω) be such that z(x) ≤ 0 a.e. in Ω. Using
the convexity in RN of the function a 7→

√
1 + |a|2 and the assumption α|∂Ω(x) ≤ 0

for HN−1-almost every x ∈ ∂Ω, we get from (11)∫
Ω

f(x, α)z dx ≤
∫

Ω

∇α∇z/
√

1 + |∇α|2 dx+

∫
∂Ω

|z|∂Ω| dHN−1

≤
∫

Ω

√
1 + |∇(α + z)|2 dx−

∫
Ω

√
1 + |∇α|2 dx

+

∫
∂Ω

|(α + z)|∂Ω| dHN−1 −
∫
∂Ω

|α|∂Ω| dHN−1

= J (α + z)− J (α).

Now, let z ∈ BV (Ω) be such that z(x) ≤ 0 a.e. in Ω. By [8, Theorem 3.3] there exists
a sequence (wn)n such that, for every n, wn ∈ W 1,1(Ω) and wn(x) ≤ α(x) + z(x) for
a.e. x ∈ Ω,

lim
n→+∞

wn = α + z

in L1(Ω) and

lim
n→+∞

∫
Ω

√
1 + |∇wn|2 dx =

∫
Ω

√
1 + |D(α + z)|2.
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By [1, Fact 3.1] we also have

lim
n→+∞

∫
Ω

|∇wn| dx =

∫
Ω

|D(α + z)|

and, by [21, Theorem 2.11],

lim
n→+∞

∫
∂Ω

|wn|∂Ω| dHN−1 =

∫
∂Ω

|(α + z)|∂Ω| dHN−1.

Therefore we conclude that lim
n→+∞

J (wn) = J (α+ z). Set, for each n, zn = wn−α; we

have zn ∈ W 1,1(Ω), zn(x) ≤ z(x) ≤ 0 a.e. in Ω, and lim
n→+∞

zn = z in L1(Ω). As (zn)n is

bounded in W 1,1(Ω), possibly passing to a subsequence, we may further assume that
lim

n→+∞
zn = z in Lq(Ω) with q = p

p−1
. Hence we get

J (α + z) = lim
n→+∞

J (α + zn)

≥ lim
n→+∞

∫
Ω

f(x, α)zn dx+ J (α) =

∫
Ω

f(x, α)z dx+ J (α);

i.e., α is a lower solution of (1).
Similarly (see [37, Lemma 3.7]), if β ∈ W 1,1(Ω) is such that f(·, β) ∈ Lp(Ω) for

some p > N , β|∂Ω(x) ≥ 0 for HN−1-a.e. x ∈ ∂Ω and∫
∂Ω

|z|∂Ω| dHN−1 +

∫
Ω

∇β∇z/
√

1 + |∇β|2 dx ≥
∫

Ω

f(x, β)z dx,

for every z ∈ W 1,1(Ω) with z(x) ≥ 0 a.e. in Ω, then β is an upper solution of (1).

From [37, Theorem 2.4] we derive the following result (see also [28, Theorem 3.2]
for a related statement).

Proposition 2.1. Assume (h1) and (h2). Suppose that there exist a lower solution
α and an upper solution β of (1), for a given λ > 0, such that α(x) ≤ β(x) a.e. in
Ω and F (·, α) ∈ L1(Ω), or F (·, β) ∈ L1(Ω). Assume further that there are p > N
and γ ∈ Lp(Ω) such that |f(x, s)| ≤ γ(x) for a.e. x ∈ Ω and every s ∈ R, with
α(x) ≤ s ≤ β(x). Then problem (1) has at least one solution u such that

α(x) ≤ u(x) ≤ β(x) a.e. in Ω

and
Iλ(u) = min{Iλ(v) | v ∈ BV (Ω), α(x) ≤ v(x) ≤ β(x) a.e. in Ω}.



15

Spectral constants. We denote by

λ1 = min
H1

0 (Ω)\{0}

∫
Ω
|∇u|2 dx∫
Ω
u2 dx

(12)

the principal eigenvalue of −∆ with Dirichlet boundary conditions. Assuming (h1), we
denote by

µ1 = min
BV (Ω)\{0}

∫
Ω
|Du|+

∫
∂Ω
|u|∂Ω|dHN−1∫

Ω
|u| dx

(13)

the principal eigenvalue of −∆1 with Dirichlet boundary conditions (see [14]). Note
that µ1 is the best Poincaré constant appearing in (3) when p = 1.

Denote by SN−1 the unit sphere in RN . For each e ∈ SN−1 we set

ae(Ω) = inf
x∈Ω

x e, be(Ω) = sup
x∈Ω

x e, Le(Ω) = be(Ω)− ae(Ω). (14)

Note that Le(Ω) continuously depends on e ∈ SN−1 and inf
e∈SN−1

Le(Ω) = min
e∈SN−1

Le(Ω) >

0. Define L(Ω) = min
e∈SN−1

Le(Ω). We then set

λ?1 =
( π

L(Ω)

)2

(15)

and

µ?1 =
2

L(Ω)
. (16)

Note that λ?1 and µ?1 are, respectively, the principal eigenvalues of −∆ and −∆1, with
Dirichlet boundary conditions, in the interval [0, L(Ω)].

Denote by R(Ω) > 0 the largest R > 0 such that there is an open ball of radius R
contained in Ω. We set

λ]1 = (2N − 1)
( 2

R(Ω)

)2

. (17)

Let C (⊆ Ω) be a Caccioppoli set (see [21, p. 6]) and let χC be its characteristic
function. Denote by

Per(C) =

∫
Ω

|DχC |+
∫
∂Ω

χC |∂ΩdHN−1 (18)

the perimeter of C in RN . We set

µ]1 =
Per(Ω)

meas(Ω)
. (19)

Note that λ?1, λ1 ≤ λ]1 and µ?1, µ1 ≤ µ]1 and, for some special geometries of Ω, µ1 = µ]1
(see e.g. [14, Proposition 11]).
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An elementary inequality. For any given η ∈ ]0, 1[ there exists d > 0 such that, for
every s ∈ R,

1

2
(1− η)|s| − d ≤

√
1 + s2 − 1− η s2

√
1 + s2

≤ (1− η)|s|. (20)

3 Existence and multiplicity results

In this section we prove several existence and multiplicity results for problem (1),
assuming various conditions on the behaviour at 0 or at +∞ of the potential F of f ,
so as to extend the model statements presented in the introduction.

3.1 Existence of at least one positive solution

Potential subquadratic at zero.

The relevant assumption in this context is (h7), which expresses a form of local and
desultory subquadraticity of the potential F at 0.

Theorem 3.1. Assume

(h4) Ω is a bounded domain in RN (N ≥ 2) with a C1,σ boundary ∂Ω for some σ ∈
]0, 1];

(h2) f : Ω× R→ R satisfies the Carathéodory conditions;

(h5) f(x, 0) ≥ 0 for a.e. x ∈ Ω;

(h6) there exist constants r > 0 and c > 0 such that |f(x, s)| ≤ c for a.e. x ∈ Ω and
every s ∈ [0, r];

(h7) there exist open sets ω and ω1, with ω̄ ⊂ ω1 ⊆ Ω, such that

lim sup
s→0+

∫
ω
F (x, s) dx

s2
= +∞

and

lim inf
s→0+

∫
ω1\ω F (x, s) dx

s2
> −∞.

Then there exists λ∗ ∈ ]0,+∞] such that, for every λ ∈ ]0, λ∗[, problem (1) has at least
one positive weak solution uλ ∈ C1,τ (Ω̄), for some τ ∈ ]0, 1], satisfying

lim
λ→0+

‖uλ‖C1(Ω̄) = 0 and Iλ(uλ) < Iλ(0) = meas(Ω).
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Proof. Step 1. A modified problem. Let a : [0,+∞[ → [0,+∞[ be the C1,1 non-
increasing function defined by

a(s) = (1 + s)−1/2 if s ∈ [0, 1[,

=
√

2
16

(s− 2)2 + 7
√

2
16

if s ∈ [1, 2[,

= 7
√

2
16

if s ∈ [2,+∞[.

(21)

Set, for every s ≥ 0,

A(s) =

∫ s

0

a(t) dt. (22)

Note that the structure and the regularity conditions assumed in [19] are satisfied.
Further, we have for every s ≥ 0

7
√

2
16
≤ a(s) ≤ 1 (23)

and hence
7
√

2
16
s ≤ A(s) ≤ s. (24)

Let χ : [0,+∞[→ [0, 1] be a continuous function such that

χ(s) = 1 if 0 ≤ s ≤ r
2
,

= 0 if s ≥ r,

where r is defined in (h6). Then we set, for a.e. x ∈ Ω and every s ∈ R,

g(x, s) = χ(−s) f(x, 0) if s < 0,

= χ(s) f(x, s) if s ≥ 0,
(25)

and

G(x, s) =

∫ s

0

g(x, t) dt.

Note that, by (h6),
|g(x, s)| ≤ c (26)

and
|G(x, s)| ≤ cr (27)

for a.e. x ∈ Ω and every s ∈ R. Let us consider the modified problem{
−div

(
a(|∇u|2)∇u

)
= λg(x, u) in Ω,

u = 0 on ∂Ω.
(28)
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A solution of (28) is a function u ∈ H1
0 (Ω) satisfying∫

Ω

a(|∇u|2)∇u∇v dx = λ

∫
Ω

g(x, u)v dx (29)

for every v ∈ H1
0 (Ω). For each λ > 0 we define the functional Kλ : H1

0 (Ω)→ R by

Kλ(u) =
1

2

∫
Ω

A(|∇u|2) dx− λ
∫

Ω

G(x, u) dx. (30)

Kλ is of class C1 and weakly lower semicontinuous, being the sum of a convex and a
weakly continuous function. Moreover, u ∈ H1

0 (Ω) is a solution of (28) if and only if u
is a critical point of Kλ.
Step 2. Existence of solutions of the modified problem for every λ > 0. Fix any λ > 0.
By (24) and (27) the functional Kλ is coercive and bounded from below in H1

0 (Ω);
hence it has a global minimizer uλ ∈ H1

0 (Ω). Take w ∈ H1
0 (Ω) such that w(x) ≥ 0 in

Ω, w(x) = 0 in Ω \ ω1 and w(x) = 1 in ω, ω and ω1 being defined in (h7). By (h7)
there exist a sequence (dn)n, with dn > 0 for every n and lim

n→+∞
dn = 0, and a constant

κ1 > 0, such that

lim
n→+∞

d−2
n

∫
ω

G(x, dn) dx = +∞ (31)

and ∫
ω1\ω

G(x, dnw) dx ≥ −κ1d
2
n

∫
ω1\ω

w2 dx. (32)

Hence, we have

Kλ(dnw) =
1

2

∫
Ω

A(d2
n|∇w|2) dx− λ

∫
ω

G(x, dn) dx− λ
∫

Ω\ω
G(x, dnw) dx

≤ d2
n

(1

2

∫
Ω

|∇w|2 dx− λd−2
n

∫
ω

G(x, dn) dx− λκ1

∫
ω1\ω

w2 dx
)
< 0,

for all n large enough. This implies that

Kλ(uλ) = min
u∈H1

0 (Ω)
Kλ(u) < 0 (33)

and hence uλ 6= 0. Testing (29) against (uλ − r)+, which belongs to H1
0 (Ω) by Stam-

pacchia theorem (see [45, Section 1.8]), and using (23) and (25), we get

7
√

2
16

∫
Ω

|∇(uλ − r)+|2 dx ≤
∫

Ω

a(|∇uλ|2) |∇(uλ − r)+|2 dx

=

∫
Ω

a(|∇uλ|2)∇uλ∇(uλ − r)+ dx

= λ

∫
Ω

χ(uλ)f(x, uλ)(uλ − r)+ dx = 0.
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Therefore we have (uλ − r)+ = 0, i.e. uλ(x) ≤ r a.e. in Ω. Testing against −u−λ and
using (23), (25) and (h5), we obtain

7
√

2
16

∫
Ω

|∇u−λ |
2 dx ≤

∫
Ω

a(|∇u−λ |
2) |∇u−λ |

2 dx

= −
∫

Ω

a(|∇uλ|2)∇uλ∇u−λ dx

= −λ
∫

Ω

g(x, uλ)u
−
λ dx = −λ

∫
Ω

χ(u−λ )f(x, 0)u−λ dx ≤ 0.

Therefore we have u−λ = 0, i.e. uλ(x) ≥ 0 a.e. in Ω. Thus we conclude that for a.e.
x ∈ Ω

0 ≤ uλ(x) ≤ r. (34)

Due to (34) and (26), the regularity theory for (28) (see [19]) implies that there exist
τ ∈ ]0, 1] and κ2 > 0 such that

‖uλ‖C1,τ (Ω̄) ≤ κ2 (35)

for every λ ∈ ]0, 1].

Step 3. There exists λ∗ ∈ ]0,+∞] such that, for every λ ∈ ]0, λ∗[, problem (1) has at
least one positive weak solution uλ ∈ C1,τ (Ω̄), for some τ ∈ ]0, 1], satisfying

lim
λ→0+

‖uλ‖C1(Ω̄) = 0.

Pick any sequence (λn)n, with λn ∈ ]0, 1] and lim
n→+∞

λn = 0, and let (uλn)n be the

corresponding sequence of solutions of (28) we have found in Step 2. Estimate (35)
and the Arzelà-Ascoli theorem yield the existence of a subsequence (uk)k = (uλnk )k
converging in C1(Ω̄) to some function u ∈ C1(Ω̄) with u(x) = 0 on ∂Ω. Testing (29)
against uk and using (23), (26) and (34), we get

7
√

2
16

∫
Ω

|∇uk|2 dx ≤
∫

Ω

a(|∇uk|2)|∇uk|2 dx

= λnk

∫
Ω

g(x, uk)uk dx ≤ λnk crmeas(Ω)

and hence, passing to the limit, u = 0. Therefore we conclude that

lim
λ→0+

‖uλ‖C1(Ω̄) = 0.

This implies that there exists λ∗ ∈ ]0,+∞] such that, for every λ ∈ ]0, λ∗[, uλ ∈
H1

0 (Ω) ∩ C1,τ (Ω̄) is a positive weak solution of (1). Since Kλ(v) = Iλ(v) − meas(Ω)
for any v ∈ C1(Ω̄) ∩ H1

0 (Ω) with ‖u‖C1(Ω̄) < min{1, r
2
}, by (33) we also conclude

Iλ(uλ) < Iλ(0) = meas(Ω).



20

Remark 3.1 Assumptions (h5) and (h7) are implied by the following subquadraticity
condition at 0.

(h8) lim inf
s→0+

F (x, s)

s2
= +∞ uniformly a.e. in Ω.

Remark 3.2 If, in addition to all assumptions of Theorem 3.1, we suppose that

(h9) there exists a constant r > 0 such that f(x, s) ≥ 0 for a.e. x ∈ Ω and every
s ∈ [0, r],

then the strong maximum principle and the boundary point lemma [42, Corollary 8.3,
Corollary 8.4] yield uλ(x) > 0 for every x ∈ Ω and ∂uλ

∂ν
(x) < 0 for every x ∈ ∂Ω, ν being

the unit outer normal to Ω at x ∈ ∂Ω. Note that, under (h9), the second condition in
(h7) is automatically satisfied.

Potential sublinear at infinity.

The relevant assumptions in this context are (h11) in Theorem 3.2 and (h14) in Theo-
rem 3.3. Condition (h11) requires F to be sublinear at +∞; whereas condition (h14)
allows F to be just desultorily sublinear at +∞. The two hypotheses are however in-
dependent, because (h14), although weaker than (h11) when f is autonomous, requires
otherwise an additional uniform control on f .

Theorem 3.2. Assume

(h1) Ω is a bounded domain in RN (N ≥ 2) with a C0,1 boundary ∂Ω;

(h2) f : Ω× R→ R satisfies the Carathéodory conditions;

(h5) f(x, 0) ≥ 0 for a.e. x ∈ Ω;

(h10) there exist constants q ∈ ]1, N
N−1

[, c1 > 0 and a function c2 ∈ L
q
q−1 (Ω) such that

|f(x, s)| ≤ c1s
q−1 + c2(x)

for a.e. x ∈ Ω and every s ∈ [0,+∞[;

(h11) lim sup
s→+∞

F (x, s)

s
≤ 0 uniformly a.e. in Ω;

(h12) there exists s0 > 0 such that

∫
Ω

F (x, s0) dx > 0.



21

Then there exists λ∗ ∈ [0,+∞[ such that, for every λ ∈ ]λ∗,+∞[, problem (1) has at
least one positive solution uλ, satisfying

lim
λ→+∞

Iλ(uλ) = −∞ and lim inf
λ→+∞

‖uλ‖Lq(Ω) > 0.

Proof. Since we are looking for positive solutions of (1), we can modify f by setting

f(x, s) = f(x, 0)− arctan(s) (36)

for a.e. x ∈ Ω and every s < 0. We derive from (h10) that, with possibly a different
choice of the function c2,

|f(x, s)| ≤ c1|s|q−1 + c2(x) (37)

for a.e. x ∈ Ω and every s ∈ R. Moreover, from (h5), (36) and (h11) we deduce that,
for every ε > 0, there exists sε > 0 such that

F (x, s) ≤ ε|s| (38)

for a.e. x ∈ Ω and every |s| ≥ sε.

Step 1. For each λ > 0 there exists min
v∈BV (Ω)

Iλ(v). Fix λ > 0 and pick ε > 0 such that

ε < µ1

λ
, where µ1 is defined by (13). By (37) and (38) there exists c3 ∈ L

q
q−1 (Ω) such

that, for a.e. x ∈ Ω and every s ∈ R,

F (x, s) ≤ ε|s|+ c3(x).

Using the Poincaré inequality we get, for every v ∈ BV (Ω),

Iλ(v) ≥
∫

Ω

|Dv|+
∫
∂Ω

|v|∂Ω| dHN−1 − λε
∫

Ω

|v| dx− c4 ≥ (1− ε λ
µ1

)‖v‖BV (Ω) − c4,

for some constant c4 > 0. Therefore Iλ is bounded from below and coercive in BV (Ω).
Let (un)n be a minimizing sequence. Since (un)n is bounded in BV (Ω), by the compact
embedding of BV (Ω) into Lq(Ω), there exist a subsequence of (un)n, which we still
denote by (un)n, and a function uλ ∈ BV (Ω) such that lim

n→+∞
un = uλ in Lq(Ω). As Iλ

is lower semicontinuous with respect to the Lq-convergence in BV (Ω), we have

lim inf
n→+∞

Iλ(un) ≥ Iλ(uλ).

Hence we conclude that

inf
v∈BV (Ω)

Iλ(v) = lim
n→+∞

Iλ(un) ≥ Iλ(uλ),



22

that is
Iλ(uλ) = min

v∈BV (Ω)
Iλ(v). (39)

Step 2. For each λ > 0 there exists a solution uλ of (1) with uλ(x) ≥ 0 a.e. in Ω. Fix
λ > 0. Any minimizer uλ of Iλ, whose existence follows from Step 1, is a solution of
(1). Let us prove that uλ = u+

λ . Since, by (h5) and (h10), 0 is a lower solution of (1),
using −u−λ as a test function in (10) we get

J (−u−λ )− J (0) ≥ −λ
∫

Ω

f(x, 0)u−λ dx. (40)

Moreover, as uλ is a solution of (1), using u+
λ as a test function in (5), we have

J (u+
λ )− J (uλ) ≥ λ

∫
Ω

f(x, uλ)(u
+
λ − uλ) dx

= λ

∫
Ω

f(x, 0)u−λ dx− λ
∫

Ω

arctan(−u−λ )u−λ dx. (41)

Summing up (40) and (41) and using (4), with u = uλ and v = 0, we obtain

0 ≥ J (u+
λ ) + J (−u−λ )− J (uλ)− J (0) ≥ λ

∫
Ω

arctan(u−λ )u−λ dx ≥ 0.

This yields u−λ = 0.

Step 3. There is λ∗ ≥ 0 such that, for each λ > λ∗, there exists a positive solution uλ
of (1) satisfying

lim
λ→+∞

Iλ(uλ) = −∞ and lim inf
λ→+∞

‖uλ‖Lq(Ω) > 0.

For any λ > 0 let uλ be a minimizer of Iλ, whose existence follows from Step 1. From
(39) and (h12) we can find λ∗ ≥ 0 such that, for every λ > λ∗, we have

Iλ(uλ) ≤ Iλ(s0) = Iλ(0) + s0 Per(Ω)− λ
∫

Ω

F (x, s0) dx < Iλ(0).

Hence we infer that uλ 6= 0 and, by Step 2, it is a positive solution of (1). Moreover,
letting λ→ +∞, we also get

lim
λ→+∞

Iλ(uλ) = −∞.
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Take λ2 > λ1 > λ∗. We want to prove that F(uλ1) ≤ F(uλ2). Indeed, otherwise we
should get

J (uλ2)− λ2F(uλ2) = J (uλ2)− λ1F(uλ2)− (λ2 − λ1)F(uλ2)

≥ J (uλ1)− λ1F(uλ1)− (λ2 − λ1)F(uλ2)

> J (uλ1)− λ1F(uλ1)− (λ2 − λ1)F(uλ1)

= J (uλ1)− λ2F(uλ1) ≥ J (uλ2)− λ2F(uλ2),

which is a contradiction. Moreover, as for each λ > λ∗ we have Iλ(uλ) < Iλ(0) =
meas(Ω) and J (uλ) ≥ meas(Ω), we infer F(uλ) > 0. Assume now, by contradiction,
that there exists an increasing sequence (λn)n, with λn ≥ λ∗ for every n and lim

n→+∞
λn =

+∞, such that lim
n→+∞

uλn = 0 in Lq(Ω). The continuity of F : Lq(Ω) → R yields

lim
n→+∞

F(uλn) = F(0) = 0, thus contradicting the fact that F(uλn) ≥ F(uλ1) > 0 for

every n ≥ 1. Hence we conclude that lim inf
λ→+∞

‖uλ‖Lq(Ω) > 0.

Theorem 3.3. Assume

(h1) Ω is a bounded domain in RN (N ≥ 2) with a C0,1 boundary ∂Ω;

(h13) f : Ω × R → R satisfies the Lp-Carathéodory conditions for some p > N , i.e. f
is a Carathéodory function and, for each r > 0, there exists γr ∈ Lp(Ω) such that
|f(x, s)| ≤ γr(x) for a.e. x ∈ Ω and every s ∈ [−r, r];

(h5) f(x, 0) ≥ 0 for a.e. x ∈ Ω;

(h12) there exists s0 > 0 such that
∫

Ω
F (x, s0) dx > 0;

(h14) there exist a constant r and a continuous function h : R→ R such that

f(x, s) ≤ h(s) for a.e. x ∈ Ω and every s ≥ r

and

lim inf
s→+∞

H(s)

s
≤ 0,

where H(s) =
∫ s

0
h(t) dt.

Then there exists λ∗ ∈ [0,+∞[ such that, for every λ ∈ ]λ∗,+∞[, problem (1) has at
least one positive solution uλ, with uλ ∈ L∞(Ω), satisfying

lim
λ→+∞

Iλ(uλ) = −∞.
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Proof. We start proving the following result, which is related to [37, Lemma 3.19].

Claim. Assume (h1). Suppose that g : Ω × R → R satisfies the Lp-Carathéodory
conditions for some p > N and there exist a constant r > 0 and a continuous function
` : R→ R such that

g(x, s) ≤ `(s) for a.e. x ∈ Ω and every s ≥ r

and

lim inf
s→+∞

L(s)

s
< µ?1,

where L(s) =
∫ s

0
`(t) dt and µ?1 is defined by (16). Then there exists a sequence (βn)n

of upper solutions of the problem{
−div

(
∇u/

√
1 + |∇u|2

)
= g(x, u) in Ω,

u = 0 on ∂Ω,
(42)

such that, for each n, βn ∈ C2(Ω̄) and lim
n→+∞

(min
Ω̄
βn) = +∞. Suppose first that sup{s >

0 | `(s) ≤ 0} = +∞. Then there exists an increasing sequence (βn)n of constant upper
solutions of (42) with lim

n→+∞
βn = +∞. Therefore we may assume `(s) > 0 in [r,+∞[.

Possibly replacing `(s) with `(r) in ]−∞, r[, we can further suppose that `(s) > 0 in
R. Fix µ > 0 such that

lim inf
s→+∞

L(s)

s
< µ < µ?1.

Then we can find an increasing sequence (Rn)n such that lim
n→+∞

Rn = +∞ and, for
every n,

r + 1
µ
< Rn < Rn+1 − 1

µ

and
L(Rn)− L(s) < µ(Rn − s) in [Rn − 1

µ
, Rn[. (43)

Fix n, set R = Rn and consider the initial value problem

−
(
v′/
√

1 + |v′|2
)′

= h(v), v(0) = R, v′(0) = 0. (44)

Let v ∈ C2(]− ω, ω[) be an even non-extendible solution of (44). Then v|[0,ω[
is decreas-

ing, concave and satisfies the energy relation

1− 1√
1 + |v′(t)|2

= L(R)− L(v(t)) (45)

in [0, ω[. Define
T = sup

{
t ∈ [0, ω[ | v(t) > R− 1

µ

}
.
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Since v|[0,ω[
is decreasing and concave we have T < +∞. As lim

t→T
v(t) ≥ R− 1

µ
, by (45)

and (43), we easily see that lim
t→T

v′(t) > −∞. Therefore T < ω and v ∈ C2([−T, T ]).

Using (45), (43) and the fact that the function t 7→ (1 − t)/
√

2t− t2 is decreasing in
]0, 1], we get

T =

∫ T

0

−v′(t) 1− (L(R)− L(v(t)))√
2 (L(R)− L(v(t)))− (L(R)− L(v(t)))2

dt

=

∫ v(0)

v(T )

1− (L(R)− L(s))√
2 (L(R)− L(s))− (L(R)− L(s))2

ds

≥
∫ R

R− 1
µ

1− µ(R− s)√
2µ(R− s)− (µ(R− s))2

ds =
1

µ

∫ 1

0

1− t√
2t− t2

dt =
1

µ
>

1

µ?1
.

Let ê ∈ SN−1 be such that Lê(Ω) = min
e∈SN−1

Le(Ω) and set, for every x ∈ Ω̄,

β(x) = v(x ê− 1
2
(aê(Ω) + bê(Ω))),

where Lê(Ω), aê(Ω) and bê(Ω) are defined in (14). Observe that β ∈ C2(Ω̄) and
R− 1

µ
≤ β(x) ≤ R for every x ∈ Ω. Note also that g(·, β) ∈ Lp(Ω). Moreover we have

− div

(
∇β/

√
1 + |∇β|2

)
= −v′′/(1 + |v′|2)

3
2 = `(v) ≥ g(x, β) (46)

a.e. in Ω. Take z ∈ W 1,1(Ω) such that z(x) ≥ 0 a.e. in Ω. Multiplying (46) by z and
integrating by parts, we easily get∫

∂Ω

|z|∂Ω| dHN−1 +

∫
Ω

∇β∇z/
√

1 + |∇β|2 dx ≥
∫

Ω

g(x, β)z dx.

By Remark 2.6, β is an upper solution of (1). This concludes the proof of the claim.

Step 1. For each λ > 0 there exists a solution uλ of (1) with uλ(x) ≥ 0 a.e. in Ω.
Fix λ > 0. Conditions (h5) and (h13) imply that α = 0 is a lower solution of (1). Let
us set λf = g and λh = `. Conditions (h13) and (h14) imply that g and ` satisfy the
assumptions of the claim. Hence there exists an upper solution βλ ∈ C2(Ω̄) of (1) such
that

min
Ω̄
βλ > s0, (47)

where s0 is given in (h12). By Proposition 2.1 there exists a solution uλ of (1) such
that 0 ≤ uλ(x) ≤ βλ(x) a.e. in Ω and

Iλ(uλ) = min{Iλ(v) | v ∈ BV (Ω), 0 ≤ v(x) ≤ βλ(x) a.e. in Ω}. (48)
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Step 2. There is λ∗ ≥ 0 such that, for each λ > λ∗, there exists a positive solution uλ
of (1) satisfying

lim
λ→+∞

Iλ(uλ) = −∞.

From (47) and (48) we infer that

Iλ(uλ) ≤ Iλ(s0) = Iλ(0) + s0 Per(Ω)− λ
∫

Ω

F (x, s0) dx.

By (h12), letting λ→ +∞, we get the conclusion.

Potential subquadratic at zero and sublinear at infinity.

In the following theorem we show that the existence of positive solutions of (1) for
any given λ > 0 can be established if the potential F is desultorily subquadratic at 0
and sublinear at +∞. Loosely speaking the condition at +∞ yields the existence of a
solution and the conditions at 0 guarantee that it is positive.

Theorem 3.4. Assume

(h1) Ω is a bounded domain in RN (N ≥ 2) with a C0,1 boundary ∂Ω;

(h2) f : Ω× R→ R satisfies the Carathéodory conditions;

(h5) f(x, 0) ≥ 0 for a.e. x ∈ Ω;

(h7) there exist open sets ω and ω1, with ω̄ ⊂ ω1 ⊆ Ω, such that

lim sup
s→0+

∫
ω
F (x, s) dx

s2
= +∞

and

lim inf
s→0+

∫
ω1\ω F (x, s) dx

s2
> −∞;

(h10) there exist constants q ∈ ]1, N
N−1

[, c1 > 0 and a function c2 ∈ L
q
q−1 (Ω) such that

|f(x, s)| ≤ c1s
q−1 + c2(x)

for a.e. x ∈ Ω and every s ∈ [0,+∞[;

(h11) lim sup
s→+∞

F (x, s)

s
≤ 0 uniformly a.e. in Ω.

Then, for every λ ∈ ]0,+∞[, problem (1) has at least one positive solution.
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Proof. Fix λ > 0. As we are assuming (h5), (h10) and (h11), we can argue like in Step 1
and Step 2 of the proof of Theorem 3.2 to get a global minimizer uλ of the action
functional Iλ, which is a solution of (1) satisfying uλ(x) ≥ 0 a.e. in Ω. To prove that
uλ is non-trivial, we exploit assumption (h7) exactly as we did in Step 2 of the proof
of Theorem 3.1, observing that (31) and (32) hold with G replaced by F .

In the next statement we just require F to be desultorily subquadratic at 0 and
desultorily sublinear at +∞.

Theorem 3.5. Assume

(h1) Ω is a bounded domain in RN (N ≥ 2) with a C0,1 boundary ∂Ω;

(h5) f(x, 0) ≥ 0 for a.e. x ∈ Ω;

(h7) there exist open sets ω and ω1, with ω̄ ⊂ ω1 ⊆ Ω, such that

lim sup
s→0+

∫
ω
F (x, s) dx

s2
= +∞

and

lim inf
s→0+

∫
ω1\ω F (x, s) dx

s2
> −∞;

(h13) f : Ω× R→ R satisfies the Lp-Carathéodory conditions for some p > N ;

(h14) there exist a constant r and a continuous function h : R→ R such that

f(x, s) ≤ h(s) for a.e. x ∈ Ω and every s ≥ r

and

lim inf
s→+∞

H(s)

s
≤ 0,

where H(s) =
∫ s

0
h(t) dt.

Then, for every λ ∈ ]0,+∞[, problem (1) has at least one positive solution uλ ∈
BV (Ω) ∩ L∞(Ω).

Proof. Fix λ > 0. As we are assuming (h5), (h13) and (h14) we can argue like in Step 1
of the proof of Theorem 3.3 to get a solution uλ of (1), with uλ ∈ L∞(Ω) and uλ(x) ≥ 0
a.e. in Ω. To prove that uλ is non-trivial, we exploit assumption (h7) exactly as we
did in Step 2 of the proof of Theorem 3.1, observing that (31) and (32) hold with G
replaced by F .
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Potential quadratic at zero and linear at infinity.

We discuss now the existence of positive solutions of the parameter independent prob-
lem {

−div
(
∇u/

√
1 + |∇u|2

)
= f(x, u) in Ω,

u = 0 on ∂Ω,
(49)

in the two limiting cases where the potential F may grow quadratically at 0 or lin-
early at +∞. More precisely, we will replace the subquadraticity conditions at 0 with
assumptions relating the behaviour at 0 of F (x,s)

s2
with the spectral constants λ1 or λ?1,

defined by (12) or (15), and the sublinearity conditions at +∞ with assumptions re-

lating the behaviour at +∞ of F (x,s)
s

with the spectral constants µ1 or µ?1, defined by
(13) or (16).

Theorem 3.6. Assume

(h1) Ω is a bounded domain in RN (N ≥ 2) with a C0,1 boundary ∂Ω;

(h2) f : Ω× R→ R satisfies the Carathéodory conditions;

(h10) there exist constants q ∈ ]1, N
N−1

[, c1 > 0 and a function c2 ∈ L
q
q−1 (Ω) such that

|f(x, s)| ≤ c1s
q−1 + c2(x)

for a.e. x ∈ Ω and every s ∈ [0,+∞[;

(h15) lim inf
s→0+

2F (x, s)

s2
> λ1 uniformly a.e. in Ω, where λ1 is defined by (12).

(h16) lim sup
s→+∞

F (x, s)

s
< µ1 uniformly a.e. in Ω, where µ1 is defined by (13).

Then problem (49) has at least one positive solution.

Proof. We modify the function f , for a.e. x ∈ Ω and every s < 0, like in (36). Then,
arguing as in Step 1 of the proof of Theorem 3.2 and using (h16), we prove the existence
of a solution u of (49), which is a global minimizer of the functional I = J − F . To
show that u(x) ≥ 0 a.e. in Ω we proceed as in Step 2 of the proof of Theorem 3.2. Let
us prove that u is non-trivial. By (h15) there exists a constant r > 0 such that, for a.e.
x ∈ Ω and every s ∈ [0, r],

F (x, s) ≥ λ1

2
s2.
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Denote by ϕ1 the positive principal eigenfunction of −∆ in H1
0 (Ω) such that

∫
Ω
ϕ2

1 dx
= 1. Since ϕ1 ∈ L∞(Ω) (see [20, Theorem 8.15]), there exists ε > 0 such that
ε‖ϕ1‖L∞(Ω) ≤ r. Then we have

I(εϕ1) =

∫
Ω

√
1 + ε2|∇ϕ1|2 dx−

∫
Ω

F (x, εϕ1) dx

<
1

2
ε2
(∫

Ω

|∇ϕ1|2 dx− λ1

∫
Ω

ϕ2
1 dx

)
+ meas(Ω) = I(0),

This implies that I(u) < I(0) and hence u 6= 0.

Remark 3.3 It is clear from this proof that in Theorem 3.6, instead of (h15), it is
sufficient to assume

(h17) there exists a constant r > 0 such that, for a.e. x ∈ Ω and every s ∈ [0, r],

2F (x, s)

s2
≥ λ1,

where λ1 is defined by (12).

The following result is a variant of Theorem 3.6 where only a desultory quadratic
growth at 0 and a desultory linear growth at +∞ are assumed on F .

Theorem 3.7. Assume

(h1) Ω is a bounded domain in RN (N ≥ 2) with a C0,1 boundary ∂Ω;

(h13) f : Ω× R→ R satisfies the Lp-Carathéodory conditions for some p > N ;

(h18) there exist a constant r0 > 0 and a continuous function k : R→ R such that

f(x, s) ≥ k(s) for a.e. x ∈ Ω and every s ∈ [0, r0],

lim inf
s→0+

K(s)

s2
≥ 0

and

lim sup
s→0+

2K(s)

s2
> λ]1,

where K(s) =
∫ s

0
k(t) dt and λ]1 is defined by (17);
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(h19) there exist a constant r1 > 0 and a continuous function h : R→ R such that

f(x, s) ≤ h(s) for a.e. x ∈ Ω and every s ≥ r1

and

lim inf
s→+∞

H(s)

s
< µ?1,

where H(s) =
∫ s

0
h(t) dt and µ?1 is defined by (16).

Then problem (49) has at least one positive solution.

Proof. Condition (h18) implies that f(x, 0) ≥ 0 for a.e. x ∈ Ω. Then, by (h13), we have
that α = 0 is a lower solution of (49). As (h19) holds, we can apply the claim in the
proof of Theorem 3.3, with g = f and ` = h, to get an upper solution β ∈ C2(Ω̄) of
(49) such that minΩ̄ β ≥ r0. By Proposition 2.1 there exists a solution u of (49) such
that 0 ≤ u(x) ≤ β(x) a.e. in Ω and

I(u) = min{I(v) | v ∈ BV (Ω), 0 ≤ v(x) ≤ β(x) a.e. in Ω}.

We show that u is non-trivial by producing a function w ∈ BV (Ω) such that 0 ≤
w(x) ≤ β(x) a.e. in Ω and I(w) < I(0). Let R(Ω) > 0 be the largest R > 0 such that
there is an open ball of radius R contained in Ω. Let B2 be a ball of center x0 and
radius R(Ω), such that B2 ⊂ Ω, and let B1 be the ball of center x0 and radius R(Ω)

2
.

Let w ∈ H1
0 (Ω) be the function defined by

w(x) = max
{

0,min
{

1, 2
(
1− ‖x−x0‖

R(Ω)

)}}
.

By assumption (h18) there exist ε > 0 and a sequence (dn)n such that lim
n→+∞

dn = 0,

dn ≤ r0, K(dn) > 1
2
(λ]1 + ε)d2

n and K(dnw(x)) ≥ −1
4
ε meas(B1)

meas(B2\B1)
d2
n for every n and a.e.

x ∈ Ω. Then we have

I(dnw) =

∫
Ω

√
1 + d2

n|∇w|2 dx−
∫

Ω

F (x, dnw) dx

≤ 1

2
d2
n

∫
B2\B1

|∇w|2 dx+ meas(Ω)−
∫
B1

K(dn) dx−
∫
B2\B1

K(dnw) dx

≤ 1

2
d2
n

(∫
B2\B1

|∇w|2 dx− λ]1meas(B1)− 1

2
εmeas(B1)

)
+ meas(Ω)

=
1

2
d2
nmeas(B1)

(( 2

R(Ω)

)2 meas(B2 \B1)

meas(B1)
− λ]1 −

1

2
ε
)

+ meas(Ω)

= −1

4
d2
nεmeas(B1) + meas(Ω) < I(0).

This implies that I(u) < I(0) and hence u 6= 0.
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Potential superquadratic at zero.

The relevant assumption in this context is (h22). The following theorem is a slightly
more general version of a result first obtained in [12]. Its proof is given in [38] by a
hopefully more transparent argument than the original one.

Theorem 3.8. Assume

(h21) Ω is a bounded domain in RN (N ≥ 2) with a C1,1 boundary ∂Ω;

(h2) f : Ω× R→ R satisfies the Carathéodory conditions;

(h22) there exist constants r > 0, c > 1 and q > 2, with q < 2N
N−2

if N ≥ 3, such that

sq−1 ≤ f(x, s) ≤ csq−1

for a.e. x ∈ Ω and every s ∈ [0, r];

(h23) there exist constants r > 0 and σ ∈ ]0, 1
2
[ such that

F (x, s) ≤ σsf(x, s) (50)

for a.e. x ∈ Ω and every s ∈ [0, r];

(h24) there exists a constant r > 0 such that

f(x, s)

s
≤ f(x, t)

t

for a.e. x ∈ Ω and every s, t ∈ ]0, r], with s < t.

Then, for any given p > N , there exists λ∗ ∈ [0,+∞[ such that, for every λ ∈ ]λ∗,+∞[,
problem (1) has at least one strong solution uλ ∈ W 2,p(Ω), satisfying uλ(x) > 0 for
every x ∈ Ω and ∂uλ

∂ν
(x) < 0 for every x ∈ ∂Ω, ν being the unit outer normal to Ω at

x ∈ ∂Ω,
Iλ(uλ) > Iλ(0) = meas(Ω) and lim

λ→+∞
‖uλ‖W 2,p(Ω) = 0.

Proof. A detailed proof of this theorem can be found in [38].

Remark 3.4 Assumption (h24) implies f(x, ·) increasing in [0, r] for a.e. x ∈ Ω;
moreover it implies (50) with σ = 1

2
. Condition (h22) implies 1

σ
≤ q.
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Potential superlinear at infinity.

The relevant assumption in this context is (h25). The proof of the following theorem
makes use of a regularization procedure inspired from [44]. Related results can be
found in [26] and [29].

Theorem 3.9. Assume

(h1) Ω is a bounded domain in RN (N ≥ 2) with a C0,1 boundary ∂Ω;

(h2) f : Ω× R→ R satisfies the Carathéodory conditions;

(h5) f(x, 0) ≥ 0 for a.e. x ∈ Ω;

(h10) there exist constants q ∈ ]1, N
N−1

[, c1 > 0 and a function c2 ∈ L
q
q−1 (Ω) such that

|f(x, s)| ≤ c1s
q−1 + c2(x)

for a.e. x ∈ Ω and every s ∈ [0,+∞[;

(h25) there exist a constant p ∈ ]1, N
N−1

[ and a function a∞ ∈ L∞(Ω), with a∞(x) ≥ 0
a.e. in Ω and a∞(x) > 0 in a set of positive measure, such that

lim inf
s→+∞

F (x, s)

sp
≥ a∞(x)

uniformly a.e. in Ω, i.e. for every k > 0 there exists sk > 0 such that F (x, s) ≥
(a∞(x)− k)sp for a.e. x ∈ Ω and every s ≥ sk;

(h26) there exists a constant ϑ ∈ ]0, 1[ such that

lim sup
s→+∞

(F (x, s)

s
− ϑf(x, s)

)
≤ 0

uniformly a.e. in Ω, i.e. for every k > 0 there is sk > 0 such that F (x, s) −
ϑf(x, s)s ≤ ks for a.e. x ∈ Ω and every s ≥ sk.

Then there exist λ∗ ∈ ]0,+∞] and η > 0 such that, for every λ ∈ ]0, λ∗[, problem (1)
has at least one positive solution uλ, satisfying

Iλ(uλ) ≥ Iλ(0) = meas(Ω) or ‖uλ‖Lq(Ω) ≥ ηλ−
1
q ,

where q ∈ ]1, N
N−1

[ is defined in (h10).
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Proof. We modify f by setting f(x, s) = f(x, 0) for a.e. x ∈ Ω and all s < 0. Hence
assumptions (h10) and (h26) imply that there exist constants q ∈ ]1, N

N−1
[, c1 > 0 and

a function c2 ∈ L
q
q−1 (Ω) such that, for a.e. x ∈ Ω and every s ∈ R,

|f(x, s)| ≤ c1|s|q−1 + c2(x) (51)

and that there exists a constant ϑ ∈ ]0, 1[ such that

lim sup
|s|→+∞

(F (x, s)

|s|
− ϑf(x, s)

)
≤ 0 (52)

uniformly a.e. in Ω.
Step 1. The elliptic regularization scheme. For each ε > 0 let us consider the regularized
problem {

−ε div
(
|∇u|r−2∇u

)
− div

(
∇u/

√
1 + |∇u|2

)
= λf(x, u) in Ω,

u = 0 on ∂Ω,
(53)

where r ∈ ]1,min{p, 1
ϑ
}[ is a fixed constant, p ∈ ]1, N

N−1
[ being defined in (h25) and

ϑ ∈ ]0, 1[ in (h26). Note that p ≤ q, where q is defined in (h10). By a solution of (53)
we mean a function u ∈ W 1,r

0 (Ω) such that

ε

∫
Ω

|∇u|r−2∇u∇v dx+

∫
Ω

∇u∇v√
1 + |∇u|2

dx = λ

∫
Ω

f(x, u)v dx (54)

for every v ∈ W 1,r
0 (Ω). Let us define the functionals Jε : W 1,r

0 (Ω)→ R by

Jε(u) = ε
r

∫
Ω

|∇u|r dx+

∫
Ω

√
1 + |∇u|2 dx,

and Iλ,ε : W 1,r
0 (Ω)→ R by

Iλ,ε(u) = Jε(u)− λF(u).

The functionals Jε and Iλ,ε are of class C1. Let u ∈ W 1,r
0 (Ω) be a solution of (53).

Since Jε is convex we have

Jε(v) ≥ Jε(u) + J ′ε(u)(v − u)

for every v ∈ W 1,r
0 (Ω). Testing against v − u in (54), we get

J ′ε(u)(v − u) = λ

∫
Ω

f(x, u)(v − u) dx
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and hence

Jε(v) ≥ Jε(u) + λ

∫
Ω

f(x, u)(v − u) dx. (55)

Step 2. Mountain pass geometry for small λ > 0. Define

S = {u ∈ W 1,r
0 (Ω) | ‖∇u‖L1(Ω) = 1}.

Claim. There exist constants λ0 > 0 and c0 > meas(Ω) such that, for any λ ∈ ]0, λ0],
any ε > 0 and any u ∈ S,

Iλ,ε(u) ≥ c0 > Iλ,ε(0) = meas(Ω). (56)

Moreover, for each λ > 0 and w ∈ W 1,r
0 (Ω), with w(x) > 0 a.e. in Ω, there exists

t = tλ,w > 0 such that, for any ε ∈ ]0, 1],

‖t∇w‖L1(Ω) > 1 and Iλ,ε(tw) < Iλ,ε(0) = meas(Ω). (57)

Condition (51) implies that

|F (x, s)| ≤ c1|s|q + c2(x)|s| (58)

for a.e. x ∈ Ω and every s ∈ R. Using Jensen, Hölder and Poincaré inequalities, we
see that there exists c0 > meas(Ω) such that, for every u ∈ S and any ε > 0,

Iλ,ε(u) ≥
∫

Ω

√
1 + |∇u|2 dx− λ

∫
Ω

c2|u| dx− λc1

∫
Ω

|u|q dx

≥ meas(Ω)

√
1 +

(∫
Ω
|∇u| dx

meas(Ω)

)2

−λ‖c2‖
L

q
q−1 (Ω)

µ−1
q ‖∇u‖L1(Ω) − λc1µ

−q
q

(
‖∇u‖L1(Ω)

)q
=
√

meas(Ω)2 + 1− λ‖c2‖
L

q
q−1 (Ω)

µ−1
q − λc1µ

−q
q ≥ c0 > Iλ,ε(0) = meas(Ω),

for each λ ∈ ]0, λ0], with λ0 > 0 such that

λ0 <
(√

meas(Ω)2 + 1−meas(Ω)
)(
‖c2‖

L
q
q−1 (Ω)

µ−1
q + c1µ

−q
q

)−1

.

This yields the first conclusion of the claim. Next we note that (h25) and (58) imply

that, for every k > 0, there exists ` ∈ L
q
q−1 (Ω) such that

F (x, s) ≥ (a∞(x)− k)sp − `(x) (59)
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for a.e. x ∈ Ω and every s ≥ 0. Fix λ > 0 and choose w ∈ W 1,r
0 (Ω), with w(x) > 0 a.e.

in Ω, and k > 0 such that
∫

Ω
(a∞ − k)wp dx > 0. By (59) we get, for every t ≥ 1 and

every ε ∈ ]0, 1],

Iλ,ε(tw) ≤ tr

r

∫
Ω

|∇w|r dx+ t

∫
Ω

√
1 + |∇w|2 dx− tpλ

∫
Ω

(a∞ − k)wp dx+ λ

∫
Ω

` dx.

Since p > r we derive
lim
t→+∞

Iλ,ε(tw) = −∞

uniformly with respect to ε ∈ ]0, 1]. Accordingly, the last conclusion of the claim is
achieved too.

Step 3. Mountain pass levels. We define, for each λ ∈ ]0, λ0] and ε ∈ ]0, 1], the
mountain pass level

cλ,ε = inf
γ∈Γλ

max
τ∈[0,1]

Iλ,ε(γ(τ)) ≥ c0,

where
Γλ = {γ ∈ C0([0, 1],W 1,r

0 (Ω)) | γ(0) = 0, γ(1) = tw}, (60)

with t, w satisfying (57).

Step 4. Palais-Smale condition. Let λ > 0 and ε > 0 be fixed. Assume (un)n ⊂ W 1,r
0 (Ω)

is a (PS) sequence, i.e.

sup
n
|Iλ,ε(un)| < +∞ and lim

n→+∞
I ′λ,ε(un) = 0 in (W 1,r

0 (Ω))∗.

Then there exist a subsequence of (un)n, which we still denote by (un)n, and u ∈
W 1,r

0 (Ω) such that lim
n→+∞

un = u in W 1,r
0 (Ω). We first prove that (un)n is bounded in

W 1,r
0 (Ω). Since (un)n is a (PS) sequence we have that, for some c > 0 and any n large

enough,

Iλ,ε(un) =
ε

r

∫
Ω

|∇un|r dx+

∫
Ω

√
1 + |∇un|2 dx− λ

∫
Ω

F (x, un) dx ≤ c

and∣∣ϑI ′λ,ε(un)(un)
∣∣ =

∣∣∣∣∣εϑ
∫

Ω

|∇un|r dx+ ϑ

∫
Ω

|∇un|2√
1 + |∇un|2

dx− λϑ
∫

Ω

f(x, un)un dx

∣∣∣∣∣
≤ ‖un‖W 1,r

0 (Ω),

where ϑ comes from (52). Hence we get

ε
(

1
r
− ϑ
)∫

Ω

|∇un|r dx +

∫
Ω

(√
1 + |∇un|2 − ϑ

|∇un|2√
1 + |∇un|2

)
dx

− λ
∫

Ω

(F (x, un)− ϑf(x, un)un) dx ≤ c+ ‖un‖W 1,r
0 (Ω),
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for all large n. By (52) and (51), for every k > 0 there exists ck ∈ L
q
q−1 (Ω) such that

F (x, s)− ϑf(x, s)s ≤ k|s|+ ck(x) (61)

for a.e. x ∈ Ω and every s. Using (20) with η = ϑ, (61) and Poincaré inequality, we
have for all large n

c+ ‖un‖W 1,r
0 (Ω) ≥ ε

(
1
r
− ϑ
)
‖un‖rW 1,r

0 (Ω)
+ 1

2
(1− ϑ)

∫
Ω

|∇un| dx

+ (1− d)meas(Ω)− λk
∫

Ω

|un| dx− λ
∫

Ω

ck dx

≥ ε
(

1
r
− ϑ
)
‖un‖rW 1,r

0 (Ω)
+
(

1
2
(1− ϑ)− λkµ−1

1

) ∫
Ω

|∇un| dx

+ (1− d)meas(Ω)− λ
∫

Ω

ck dx.

Hence, taking k > 0 small enough, we can find K > 0 such that

ε
(

1
r
− ϑ
)
‖un‖rW 1,r

0 (Ω)
≤ K + ‖un‖W 1,r

0 (Ω).

As 1 < r < 1
ϑ
, we conclude that (un)n is bounded in W 1,r

0 (Ω).

Passing to a subsequence if necessary, we may assume that (un)n converges weakly
in W 1,r

0 (Ω) to some function u ∈ W 1,r
0 (Ω). As q < N

N−1
< rN

N−r and hence W 1,r
0 (Ω) is

compactly embedded into Lq(Ω), we may further assume that (un)n converges to u in
Lq(Ω). The strong convergence in W 1,r

0 (Ω) of (un)n to u will follow from [7, Lemma 3].
To this end we define the generalized Dirichlet form

aε(u, v) = ε

∫
Ω

|∇u|r−2∇u∇v dx+

∫
Ω

∇u∇v√
1 + |∇u|2

dx,

for u, v ∈ W 1,r
0 (Ω), and we observe that all hypotheses of [7, Lemma 3] are satis-

fied. Hence Condition (S) therein will guarantee that (un)n converges to u strongly in
W 1,r

0 (Ω), if we show that

lim
n→+∞

(
aε(un, un − u)− aε(u, un − u)

)
= 0.

We have

lim
n→+∞

aε(un, un − u) = lim
n→+∞

(
ε

∫
Ω

|∇un|r−2∇un(∇un −∇u) dx

+

∫
Ω

∇un(∇un −∇u)√
1 + |∇un|2

dx
)

= lim
n→+∞

(
I ′λ,ε(un)(un − u) + λF ′(un)(un − u)

)
= 0.
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Indeed, as lim
n→+∞

I ′λ,ε(un) = 0 in (W 1,r
0 (Ω))∗ and (un)n is bounded in W 1,r

0 (Ω), we see

that
lim

n→+∞
I ′λ,ε(un)(un − u) = 0.

Further, as F : Lq(Ω)→ R is of class C1 and lim
n→+∞

un = u in Lq(Ω), we easily get

lim
n→+∞

F ′(un)(un − u) = 0.

We also have

lim
n→+∞

aε(u, un − u) = lim
n→+∞

(
I ′λ,ε(u)(un − u) + λF ′(u)(un − u) dx

)
= 0.

Indeed, as I ′λ,ε(u) ∈ (W 1,r
0 (Ω))∗ and lim

n→+∞
un = u weakly in W 1,r

0 (Ω), we see that

lim
n→+∞

I ′λ,ε(u)(un − u) = 0.

Finally, as F ′(u) : Lq(Ω)→ R is continuous and lim
n→+∞

un = u in Lq(Ω), it follows that

lim
n→+∞

F ′(u)(un − u) = 0.

Step 5. Existence of solutions of the regularized problem. We are now in position
of proving the existence of solutions of (53), which are obtained as critical points of
mountain pass type of the functional Iλ,ε.
Claim. There exist constants λ0 > 0 and c0 > meas(Ω) such that, for each λ ∈ ]0, λ0]
and each ε ∈ ]0, 1], the functional Iλ,ε has a critical point uλ,ε, which is a non-trivial
non-negative solution of (53), satisfying

Iλ,ε(uλ,ε) ≥ c0. (62)

Further, for each λ ∈ ]0, λ0], there is a constant k1 > 0 such that, for each ε ∈ ]0, 1],

Iλ,ε(uλ,ε) ≤ k1. (63)

Fix λ ∈ ]0, λ0], where λ0 has been obtained in Step 2, and ε ∈ ]0, 1]. The existence of
a non-trivial critical point uλ,ε of Iλ,ε, with

Iλ,ε(uλ,ε) = cλ,ε ≥ c0 > Iλ,ε(0),

follows from Steps 2, 3, 4 and the mountain pass theorem (see e.g. [15, Theorem 5.7]).
Testing (54) against −u−λ,ε ∈ W

1,r
0 (Ω), we get

ε

∫
Ω

|∇u−λ,ε|
r dx+

∫
Ω

|∇u−λ,ε|2√
1 + |∇uλ,ε|2

dx = −λ
∫

Ω

f(x, u−λ,ε)u
−
λ,ε dx.
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As f(x, s) ≥ 0 for a.e. x ∈ Ω and every s ≤ 0, we conclude that u−λ,ε = 0, that is
uλ,ε(x) ≥ 0 a.e. in Ω.

Estimate (62) is a direct consequence of (56). Finally estimate (63) follows from
the observation that

Iλ,ε(uλ,ε) = cλ,ε = inf
γ∈Γλ

max
τ∈[0,1]

Iλ,ε(γ(τ)) ≤ inf
γ∈Γλ

max
τ∈[0,1]

Iλ,1(γ(τ)) = cλ,1,

where Γλ has been defined in (60), by setting k1 = cλ,1.

Step 6. Norm estimates on the solutions of the regularized problem. We want to prove
that, for each λ ∈ ]0, λ0], there is a constant k2 > 0 such that, for each ε ∈ ]0, 1] and
any solution uλ,ε of (53) satisfying (63), we have

‖uλ,ε‖W 1,1
0 (Ω) ≤ k2. (64)

Fix λ ∈ ]0, λ0] and ε ∈ ]0, 1]. Let uλ,ε be a solution of (53) satisfying (63). We have

ε

∫
Ω

|∇uλ,ε|r dx+

∫
Ω

|∇uλ,ε|2√
1 + |∇uλ,ε|2

dx− λ
∫

Ω

f(x, uλ,ε)uλ,ε dx = 0

and
ε

r

∫
Ω

|∇uλ,ε|r dx+

∫
Ω

√
1 + |∇uλ,ε|2 dx− λ

∫
Ω

F (x, uλ,ε) ≤ k1.

We know that for every k > 0 there exists ck ∈ L
q
q−1 (Ω) such that (61) holds. Using

(20) with η = ϑ, (61) and the Poincaré inequality, we obtain

k1 ≥ ε(1
r
− ϑ)

∫
Ω

|∇uλ,ε|r dx

+

∫
Ω

(√
1 + |∇uλ,ε|2 − ϑ

|∇uλ,ε|2√
1 + |∇uλ,ε|2

)
dx

−λ
∫

Ω

(F (x, uλ,ε)− ϑf(x, uλ,ε)uλ,ε) dx

≥ 1
2
(1− ϑ)

∫
Ω

|∇uλ,ε| dx+ (1− d)meas(Ω)− λk
∫

Ω

|uλ,ε| dx− λ
∫

Ω

ck dx

≥
(

1
2
(1− ϑ)− λkµ−1

1

) ∫
Ω

|∇uλ,ε| dx+ (1− d)meas(Ω)− λ
∫

Ω

ck dx.

This yields the existence of a constant k2 > 0 such that (64) holds, for any ε ∈ ]0, 1].

Step 7. Convergence of the regularization scheme. Let (εn)n ⊂ ]0, 1] be such that
lim

n→+∞
εn = 0 and, for any fixed λ ∈ ]0, λ0], let un = uλ,εn be a solution of (53) such
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that (62) and (64) hold. We know that un satisfies (55), that is

εn
r

∫
Ω

|∇w|r dx+

∫
Ω

√
1 + |∇w|2 dx− λ

∫
Ω

f(x, un)w dx

≥ εn
r

∫
Ω

|∇un|r dx+

∫
Ω

√
1 + |∇un|2 dx− λ

∫
Ω

f(x, un)un dx
(65)

for every w ∈ W 1,r
0 (Ω). Since

‖un‖BV (Ω) = ‖un‖W 1,1
0 (Ω) ≤ k2

for every n, by compactness there exists a subsequence of (un)n, which we still denote
by (un)n, and a function u ∈ BV (Ω) such that lim

n→+∞
un = u in Lq(Ω) and, by lower

semicontinuity,
lim inf
n→+∞

J (un) ≥ J (u).

As F : Lq(Ω)→ R is of class C1, we easily get

lim
n→+∞

∫
Ω

f(x, un)un dx = lim
n→+∞

F ′(un)(un) = F ′(u)(u) =

∫
Ω

f(x, u)u dx

and

lim
n→+∞

∫
Ω

f(x, un)w dx = lim
n→+∞

F ′(un)(w) = F ′(u)(w) =

∫
Ω

f(x, u)w dx

for every w ∈ Lq(Ω). Letting n→ +∞ in (65), we obtain for every w ∈ W 1,r
0 (Ω)

J (w)− λ
∫

Ω
f(x, u)w dx =

∫
Ω

√
1 + |∇w|2 dx− λ lim

n→+∞

∫
Ω

f(x, un)w dx

≥ lim inf
n→+∞

εn
r

∫
Ω

|∇un|r dx+ lim inf
n→+∞

∫
Ω

√
1 + |∇un|2 dx− λ lim

n→+∞

∫
Ω

f(x, un)un dx

≥ lim inf
n→+∞

εn
r

∫
Ω

|∇un|r dx+

∫
Ω

√
1 + |Du|2 +

∫
∂Ω

|u|∂Ω| dHN−1 − λ
∫

Ω

f(x, u)u dx

≥ J (u)− λ
∫

Ω

f(x, u)u dx.

(66)
Since W 1,r

0 (Ω) is dense in W 1,1
0 (Ω), J : W 1,1

0 (Ω)→ R is continuous and F : Lq(Ω)→ R
is of class C1, we see that

J (w)− λ
∫

Ω

f(x, u)w dx ≥ J (u)− λ
∫

Ω

f(x, u)u dx
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for every w ∈ W 1,1
0 (Ω). Fix v ∈ BV (Ω). By the approximation property in BV (Ω)

(see Section 2) there exists a sequence (wn)n ⊂ W 1,1
0 (Ω) such that lim

n→+∞
wn = v in

Lq(Ω) and

lim
n→+∞

∫
Ω

√
1 + |∇wn|2 dx =

∫
Ω

√
1 + |Dv|2 +

∫
∂Ω

|v|∂Ω| dHN−1.

Further we have

lim
n→+∞

∫
Ω

f(x, u)wn dx =

∫
Ω

f(x, u)v dx.

This implies that

J (v)− λ
∫

Ω

f(x, u)v dx ≥ J (u)− λ
∫

Ω

f(x, u)u dx.

Therefore (5) holds for every v ∈ BV (Ω), which means that u is a solution of (1).
Since, for each n, un is a non-negative solution of (53), we have u(x) ≥ 0 in Ω. Let

us prove that u(x) > 0 on a set of positive measure. Assume by contradiction that
u(x) = 0 a.e. in Ω. As lim

n→+∞
un = u = 0 in Lq(Ω) and F : Lq(Ω) → R is of class C1,

we have

lim
n→+∞

∫
Ω

f(x, un)un dx = 0 = lim
n→+∞

∫
Ω

F (x, un) dx.

Taking w = 0 in (65), we get for each n

meas(Ω) ≤ εn
r

∫
Ω

|∇un|r dx+

∫
Ω

√
1 + |∇un|2 dx ≤ λ

∫
Ω

f(x, un)un dx+ meas(Ω)

and hence

lim
n→+∞

(εn
r

∫
Ω

|∇un|r dx+

∫
Ω

√
1 + |∇un|2 dx

)
= meas(Ω).

This yields

lim
n→+∞

Iλ,εn(un) = lim
n→+∞

(εn
r

∫
Ω

|∇un|r dx+

∫
Ω

√
1 + |∇un|2 dx− λ

∫
Ω

F (x, un) dx
)

= meas(Ω),

thus contradicting (62), as c0 > meas(Ω).

Step 8. Behaviour of the solutions as λ→ 0+. We want to prove that there exists η > 0
such that, for each λ ∈ ]0, λ0], a positive solution uλ of (1) can be selected so that

Iλ(uλ) ≥ Iλ(0) = meas(Ω) or ‖uλ‖Lq(Ω) ≥ ηλ−
1
q .
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Fix λ ∈ ]0, λ0] and let uλ be a solution of (1) as obtained in the preceding steps.
Suppose Iλ(uλ) < Iλ(0), then

F(uλ) > 0. (67)

Let (un)n be a sequence of solutions of (53) such that lim
n→+∞

un = uλ in Lq(Ω). Taking

w = 0 in (65), we get for every n∫
Ω

√
1 + |∇un|2 dx ≤ λ

∫
Ω

f(x, un)un dx+ meas(Ω) (68)

Arguing as in Step 7 and possibly passing to a subsequence, we have from (66)

J (w)− λ
∫

Ω

f(x, uλ)w dx ≥ lim
n→+∞

εn
r

∫
Ω

|∇un|r dx+ J (uλ)− λ
∫

Ω

f(x, uλ)uλ dx

for every w ∈ W 1,r
0 (Ω) and hence

J (v)− λ
∫

Ω

f(x, uλ)v dx ≥ lim
n→+∞

εn
r

∫
Ω

|∇un|r dx+ J (uλ)− λ
∫

Ω

f(x, uλ)uλ dx

for every v ∈ BV (Ω). Testing against uλ, we conclude that

lim
n→+∞

εn
r

∫
Ω

|∇un|r dx = 0. (69)

As F : Lq(Ω)→ R is continuous, by (67) we have F(un) > 0 for all large n. Using (62)
we also get for every n

εn
r

∫
Ω

|∇un|r dx+

∫
Ω

√
1 + |∇un|2 dx ≥ c0, (70)

where c0 > meas(Ω) is a constant independent of λ ∈ ]0, λ0]. From (69) and (70) we
get

lim inf
n→+∞

∫
Ω

√
1 + |∇un|2 dx ≥ c0. (71)

Now, letting n→ +∞ in (68) and using (71), we get, as F : Lq(Ω)→ R is of class C1,

λ

∫
Ω

f(x, uλ)uλ dx = λ lim
n→+∞

∫
Ω

f(x, un)un dx

≥ lim inf
n→+∞

∫
Ω

√
1 + |∇un|2 dx−meas(Ω) ≥ c0 −meas(Ω)

and then ∫
Ω

f(x, uλ)uλ dx ≥ 1
λ

(
c0 −meas(Ω)

)
.
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Finally, using (51), we get

1
λ

(
c0 −meas(Ω)

)
≤
∫

Ω

f(x, uλ)uλ dx ≤ c1

∫
Ω

|uλ|q dx+

∫
Ω

c2uλ dx

≤ c1‖uλ‖qLq(Ω) + c3‖uλ‖Lq(Ω)

for some constant c3 > 0.
Hence we conclude that there exist λ∗ ∈ ]0,+∞] and η > 0 such that, for every

λ ∈ ]0, λ∗[, problem (1) has at least one positive solution uλ, satisfying Iλ(uλ) ≥
Iλ(0) = meas(Ω) or ‖uλ‖Lq(Ω) ≥ ηλ−

1
q .

Remark 3.5 Note that, if for some λ ∈ ]0, λ∗[ we have
∫

Ω
F (x, uλ) dx > 0, then we

get ‖uλ‖Lq(Ω) ≥ ηλ−1. Hence, if we assume, in addition to all hypotheses of Theorem
3.9, that

(h27) F (x, s) ≥ 0 for a.e. x ∈ Ω and every s ≥ 0,

then we conclude that lim
λ→0+

‖uλ‖Lq(Ω) = +∞.

Potential superquadratic at zero and superlinear at infinity.

Combining Theorem 3.8 and Theorem 3.9 yields the following result. Unlike the one-
dimensional case we discussed in [5], we are not able here to prove the existence of a
positive solution for each λ > 0. It remains therefore an open question for us to know
whether the intervals ]0, λ∗[ and ]λ∗,+∞[ defined in the statement below overlap.

Theorem 3.10. Assume

(h21) Ω is a bounded domain in RN (N ≥ 2) with a C1,1 boundary ∂Ω;

(h2) f : Ω× R→ R satisfies the Carathéodory conditions;

(h22) there exist constants r > 0, c > 1 and q > 2, with q < 2N
N−2

if N ≥ 3, such that

sq−1 ≤ f(x, s) ≤ csq−1

for a.e. x ∈ Ω and every s ∈ [0, r];

(h23) there exist constants r > 0 and σ ∈ ]0, 1
2
[ such that

F (x, s) ≤ σsf(x, s)

for a.e. x ∈ Ω and every s ∈ [0, r];
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(h24) there exists a constant r > 0 such that

f(x, s)

s
≤ f(x, t)

t

for a.e. x ∈ Ω and every s, t ∈ ]0, r], with s < t.

(h10) there exist constants q ∈ ]1, N
N−1

[, c1 > 0 and a function c2 ∈ L
q
q−1 (Ω) such that

|f(x, s)| ≤ c1s
q−1 + c2(x)

for a.e. x ∈ Ω and every s ∈ [0,+∞[;

(h25) there exist a constant p ∈ ]1, N
N−1

[ and a function a∞ ∈ L∞(Ω), with a∞(x) ≥ 0
a.e. in Ω and a∞(x) > 0 in a set of positive measure, such that

lim inf
s→+∞

F (x, s)

sp
≥ a∞(x)

uniformly a.e. in Ω;

(h26) there exists a constant ϑ ∈ ]0, 1[ such that

lim sup
s→+∞

(F (x, s)

s
− ϑf(x, s)

)
≤ 0

uniformly a.e. in Ω.

Then there exist λ∗ ∈ [0,+∞[ and λ∗ ∈ ]0,+∞], such that, for every λ ∈ ]0, λ∗[ ∪
]λ∗,+∞[, problem (1) has at least one positive solution uλ.

Proof. We combine Theorem 3.8 and Theorem 3.9.

3.2 Existence of at least two positive solutions

We now combine the existence results proved in the preceding section to obtain multiple
solutions, which are distinguished according to their behaviour as λ→ 0+ or λ→ +∞.

Potential subquadratic at zero and superlinear at infinity.

The relevant assumptions here are the desultory subquadraticity condition (h7) and
the superlinearity condition (h25).

Theorem 3.11. Assume
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(h4) Ω is a bounded domain in RN (N ≥ 2) with a C1,σ boundary ∂Ω for some σ ∈
]0, 1];

(h2) f : Ω× R→ R satisfies the Carathéodory conditions;

(h5) f(x, 0) ≥ 0 for a.e. x ∈ Ω;

(h6) there exist constants r > 0 and c > 0 such that |f(x, s)| ≤ c for a.e. x ∈ Ω and
every s ∈ [0, r];

(h7) there exist open sets ω and ω1, with ω̄ ⊂ ω1 ⊆ Ω, such that

lim sup
s→0+

∫
ω
F (x, s) dx

s2
= +∞

and

lim inf
s→0+

∫
ω1\ω F (x, s) dx

s2
> −∞;

(h10) there exist constants q ∈ ]1, N
N−1

[, c1 > 0 and a function c2 ∈ L
q
q−1 (Ω) such that

|f(x, s)| ≤ c1s
q−1 + c2(x)

for a.e. x ∈ Ω and every s ∈ [0,+∞[;

(h25) there exist a constant p ∈ ]1, N
N−1

[ and a function a∞ ∈ L∞(Ω), with a∞(x) ≥ 0
a.e. in Ω and a∞(x) > 0 in a set of positive measure, such that

lim inf
s→+∞

F (x, s)

sp
≥ a∞(x)

uniformly a.e. in Ω;

(h26) there exists a constant ϑ ∈ ]0, 1[ such that

lim sup
s→+∞

(F (x, s)

s
− ϑf(x, s)

)
≤ 0

uniformly a.e. in Ω.

Then there exists λ∗ ∈ ]0,+∞] such that, for every λ ∈ ]0, λ∗[, problem (1) has at least
two positive solutions, one of which is a weak solution.

Proof. Let η > 0 be the constant defined in Theorem 3.9. By Theorem 3.1 we know
that, for all small λ > 0, a positive solution u

(1)
λ of (1) exists such that ‖u(1)

λ ‖Lq(Ω) < η

and Iλ(u(1)
λ ) < Iλ(0). On the other hand, by Theorem 3.9 we know that, for all small

λ > 0, a positive solution u
(2)
λ of (1) exists such that either ‖u(2)

λ ‖Lq(Ω) > η or Iλ(u(2)
λ ) ≥

Iλ(0). In particular we conclude that u
(1)
λ 6= u

(2)
λ .
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Potential superquadratic at zero and sublinear at infinity.

The relevant assumptions here are the superquadraticity condition (h22) and the sub-
linearity condition (h11), in Theorem 3.12, and the desultory sublinearity condition
(h14), in Theorem 3.13.

Theorem 3.12. Assume

(h21) Ω is a bounded domain in RN (N ≥ 2) with a C1,1 boundary ∂Ω;

(h2) f : Ω× R→ R satisfies the Carathéodory conditions;

(h22) there exist constants r > 0, c > 1 and q > 2, with q < 2N
N−2

if N ≥ 3, such that

sq−1 ≤ f(x, s) ≤ csq−1

for a.e. x ∈ Ω and every s ∈ [0, r];

(h23) there exist constants r > 0 and σ ∈ ]0, 1
2
[ such that

F (x, s) ≤ σsf(x, s)

for a.e. x ∈ Ω and every s ∈ [0, r];

(h24) there exists a constant r > 0 such that

f(x, s)

s
≤ f(x, t)

t

for a.e. x ∈ Ω and every s, t ∈ ]0, r], with s < t.

(h10) there exist constants q ∈ ]1, N
N−1

[, c1 > 0 and a function c2 ∈ L
q
q−1 (Ω) such that

|f(x, s)| ≤ c1s
q−1 + c2(x)

for a.e. x ∈ Ω and every s ∈ [0,+∞[;

(h11)

lim sup
s→+∞

F (x, s)

s
≤ 0

uniformly a.e. in Ω.

Then there exists λ∗ ∈ [0,+∞[ such that, for every λ ∈ ]λ∗,+∞[, problem (1) has at
least two positive solutions, one of which is a weak solution.
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Proof. By Theorem 3.2 we know that, for all large λ > 0, a positive solution u
(1)
λ

of (1) exists such that lim inf
λ→+∞

‖u(1)
λ ‖Lq(Ω) > 0. On the other hand, by Theorem 3.8

we know that, for all large λ > 0, a positive solution u
(2)
λ of (1) exists such that

lim
λ→+∞

‖u(2)
λ ‖Lq(Ω) = 0. In particular we have that u

(1)
λ 6= u

(2)
λ .

Theorem 3.13. Assume

(h21) Ω is a bounded domain in RN (N ≥ 2) with a C1,1 boundary ∂Ω;

(h13) f : Ω× R→ R satisfies the Lp-Carathéodory conditions for some p > N ;

(h22) there exist constants r > 0, c > 1 and q > 2, with q < 2N
N−2

if N ≥ 3, such that

sq−1 ≤ f(x, s) ≤ csq−1

for a.e. x ∈ Ω and every s ∈ [0, r];

(h23) there exist constants r > 0 and σ ∈ ]0, 1
2
[ such that

F (x, s) ≤ σsf(x, s)

for a.e. x ∈ Ω and every s ∈ [0, r];

(h24) there exists a constant r > 0 such that

f(x, s)

s
≤ f(x, t)

t

for a.e. x ∈ Ω and every s, t ∈ ]0, r], with s < t;

(h14) there exist a constant r and a continuous function h : R→ R such that

f(x, s) ≤ h(s) for a.e. x ∈ Ω and every s ≥ r

and

lim inf
s→+∞

H(s)

s
≤ 0,

where H(s) =
∫ s

0
h(t) dt.

Then there exists λ∗ ∈ [0,+∞[ such that, for every λ ∈ ]λ∗,+∞[, problem (1) has at
least two positive solutions, one of which is a weak solution.

Proof. By Theorem 3.3 we know that, for all large λ > 0, a positive solution u
(1)
λ of

(1) exists such that Iλ(u(1)
λ ) < Iλ(0) = meas(Ω). On the other hand, by Theorem 3.8

we know that, for all large λ > 0, a positive solution u
(2)
λ of (1) exists such that

Iλ(u(2)
λ ) > Iλ(0) = meas(Ω). In particular we have that u

(1)
λ 6= u

(2)
λ .
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3.3 Existence of at least three positive solutions

Potential superquadratic at zero and superlinear at infinity depending on
two parameters.

In this section we reconsider the case of a potential F which is superquadratic at 0
and superlinear at +∞. The introduction of a second parameter into the equation will
allow us to prove the existence of more solutions. Namely, let us consider the model
two-parameters problem{

−div
(
∇u/

√
1 + |∇u|2

)
= min{λ(u+)p−1, µ(u+)q−1} in Ω,

u = 0 on ∂Ω.
(72)

By performing a sharp analysis of the geometric features of the action functional as-
sociated with this problem, we can prove the existence of three solutions under some
specific configurations of the parameters.

Theorem 3.14. Assume that

(h4) Ω is a bounded domain in RN (N ≥ 2) with a C1,σ boundary ∂Ω for some σ ∈
]0, 1];

and

(h28) p ∈ ]1, N
N−1

[ and q > 2, with q < 2N
N−2

if N ≥ 3.

Then there exist λ∗ ∈ ]0,+∞] and a function µ∗ : ]0, λ∗[ → [0,+∞[ such that, for
every λ ∈ ]0, λ∗[ and µ ∈ ]µ∗(λ),+∞[, problem (72) has at least three positive solutions

u
(1)
λ,µ, u

(2)
λ,µ, u

(3)
λ,µ with, for each i = 2, 3, u

(i)
λ,µ ∈ C1,τ (Ω̄) for some τ ∈ ]0, 1], u

(i)
λ,µ(x) > 0

for every x ∈ Ω and
∂u

(i)
λ,µ

∂ν
(x) < 0 for every x ∈ ∂Ω, ν being the unit outer normal at

x ∈ ∂Ω.

Proof. For each λ, µ > 0, let us set

gλ,µ(s) = min{(s+)p−1, µ
λ
(s+)q−1}

and

Gλ,µ(s) =

∫ s

0

gλ,µ(t) dt

for every s ∈ R. Note that

Gλ,µ(s) = µ
λ

1
q
(s+)q if s ≤ (λ

µ
)

1
q−p ,

= 1
p
sp − (1

p
− 1

q
)(λ
µ
)

p
q−p if s > (λ

µ
)

1
q−p .

Further, for any fixed s0 > 0, we have gλ,µ(s) = µ
λ
(s+)q−1 in ] − ∞, s0], if λ, µ > 0

satisfy s0 ≤ (λ
µ
)

1
q−p , and gλ,µ(s) = sp−1 in [s0,+∞[, if λ, µ > 0 satisfy (λ

µ
)

1
q−p ≤ s0.
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Step 1. There exists λ0 ∈ ]0,+∞[ such that, for every λ ∈ ]0, λ0[ and every µ ≥ λ,

problem (72) has at least one solution u
(1)
λ,µ with ess sup

Ω
u

(1)
λ,µ > 1. The functions gλ,µ

and Gλ,µ satisfy conditions (h2), (h5), (h10), (h26) and (h27), uniformly with respect
to λ, µ > 0. Moreover, for any fixed κ0 > 0, condition (h25) is fulfilled uniformly with
respect to λ, µ > 0 with λ

µ
≤ κ0. Take κ0 = 1. Theorem 3.9 and Remark 3.5 then yield

the existence of λ0 ∈ ]0,+∞[ such that, for every λ ∈ ]0, λ0[ and every µ ≥ λ, problem
(72) has at least one solution uλ,µ satisfying

lim
λ→0+

‖uλ,µ‖Lp(Ω) = +∞

uniformly with respect to µ ≥ λ. Possibly reducing λ0, we can suppose that ‖uλ,µ‖Lp(Ω)

> meas(Ω). Hence the conclusion follows.

Let us set µ0 = 2
q−p
p λ0. If we assume λ ∈ ]0, λ0[ and µ ∈ ]µ0,+∞[, then we have in

particular µ > λ and hence (λ
µ
)

1
q−p < 1.

Step 2. A modified problem. Like in the proof of Theorem 3.1, let a : [0,+∞[→ [0,+∞[
be the C1,1 non-increasing function defined by (21) and let A : [0,+∞[ → [0,+∞[ be
the potential of a defined by (22). Recall that the functions a and A satisfy conditions
(23) and (24), respectively. As we already noticed, the structure and the regularity
conditions assumed in [19] hold. Let χ : R→ [0, 1] be a continuous function such that

χ(s) = 1 if s ≤ 1,

= 0 if s ≥ 2.

For each λ, µ > 0, we define
hλ,µ(s) = χ(s) gλ,µ(s) (73)

and

Hλ,µ(s) =

∫ s

0

hλ,µ(t) dt,

for every s ∈ R. Note that, for each λ ∈ ]0, λ0[ and µ ∈ ]µ0,+∞[, we have

0 ≤ hλ,µ(s) ≤ 2p−1 (74)

and

0 ≤ Hλ,µ(s) ≤ 2p

p
(75)

for every s ∈ R. Let us consider the modified problem{
−div

(
a(|∇u|2)∇u

)
= λhλ,µ(u) in Ω,

u = 0 on ∂Ω.
(76)
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A solution of (76) is a function u ∈ H1
0 (Ω) satisfying∫

Ω

a(|∇u|2)∇u∇v dx = λ

∫
Ω

hλ,µ(u)v dx (77)

for every v ∈ H1
0 (Ω). We define the functional Kλ,µ : H1

0 (Ω)→ R by

Kλ,µ(u) =
1

2

∫
Ω

A(|∇u|2) dx− λ
∫

Ω

Hλ,µ(u) dx.

Kλ,µ is of class C1 and weakly lower semicontinuous. Moreover, u ∈ H1
0 (Ω) is a solution

of (76) if and only if u is a critical point of Kλ,µ.

Step 3. There exists a function µ∗ : ]0, λ0[ → ]µ0, +∞[ such that, for any λ ∈ ]0, λ0[

and µ ∈ ]µ∗(λ),+∞[, the functional Kλ,µ has a global minimizer u
(2)
λ,µ ∈ H1

0 (Ω) with

Kλ,µ(u
(2)
λ,µ) < 0. Fix any λ ∈ ]0, λ0[ and µ ∈ ]µ0,+∞[. By (24) and (75) the functional

Kλ,µ is coercive and bounded from below in H1
0 (Ω) and hence it has a global minimizer

u
(2)
λ,µ ∈ H1

0 (Ω). Set dµ = 2
1
p (λ0

µ
)

1
q−p . We have dµ ∈ ](λ

µ
)

1
q−p , 1[ and

Hλ,µ(dµ) = 1
p
dpµ − (1

p
− 1

q
)(λ
µ
)

p
q−p

≥ 1
p
dpµ − 1

p
(λ
µ
)

p
q−p ≥ 1

p
[dpµ − 1

2
(2

1
p (λ0

µ
)

1
q−p )p]

= 1
p
[dpµ − 1

2
dpµ] = 1

2
1
p
dpµ.

Take w ∈ H1
0 (Ω) such that w(x) ≥ 0 in Ω and w(x) = 1 in some open subset ω of Ω.

We get

Kλ,µ(dµw) =
1

2

∫
Ω

A(d2
µ|∇w|2) dx− λ

∫
ω

Hλ,µ(dµw) dx− λ
∫

Ω\ω
Hλ,µ(dµw) dx

≤ d2
µ

(1

2

∫
Ω

|∇w|2 dx− λd−2
µ

∫
ω

Hλ,µ(dµ) dx
)

≤ 1

2
d2
µ

(∫
Ω

|∇w|2 dx− λ

p
meas(ω)dp−2

µ

)
< 0,

provided λdp−2
µ > p

meas(ω)

∫
Ω
|∇w|2 dx, or equivalently

µ > µ0( p
meas(ω)

∫
Ω
|∇w|2 dx)

q−p
2−p λ−

q−p
2−p .

This implies that
Kλ,µ(u

(2)
λ,µ) = min

u∈H1
0 (Ω)
Kλ,µ(u) < 0 (78)

and hence in particular u
(2)
λ,µ 6= 0. We finally define, for every λ ∈ ]0, λ0[,

µ∗(λ) = max{µ0, µ0( p
meas(ω)

∫
Ω
|∇w|2 dx)

q−p
2−p λ−

q−p
2−p}.
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Step 4. For each λ ∈ ]0, λ0[ and µ ∈ ]µ∗(λ),+∞[ the functional Kλ,µ has a critical

point u
(3)
λ,µ ∈ H1

0 (Ω) with Kλ,µ(u
(3)
λ,µ) > 0. We first prove that Kλ,µ has a mountain pass

geometry around 0. Fix λ ∈ ]0, λ0[ and µ ∈ ]µ0,+∞[. By (h28), thanks also to (24)

and the fact that Hλ,µ(s) ≤ µ
λ
|s|q
q

for all s ∈ R, the continuous embedding of H1
0 (Ω)

into Lq(Ω) implies the existence of a constant c > 0 such that

Kλ,µ(u) =
1

2

∫
Ω

A(|∇u|2) dx− λ
∫

Ω

Hλ,µ(u) dxdx

≥ 7
√

2

32

∫
Ω

|∇u|2 dx− µ

q

∫
Ω

|u|q dx

≥ ‖∇u‖2
L2(Ω)

(7
√

2

32
− µ

q
c‖∇u‖q−2

L2(Ω)

)
for every u ∈ H1

0 (Ω). Taking r ∈ ]0,
(
q
µc

7
√

2
32

) 1
q−2

[ we have

inf
‖u‖

H1
0(Ω)

=r
Kλ,µ(u) > 0. (79)

Therefore, for each λ ∈ ]0, λ0[ and µ ∈ ]µ∗(λ),+∞[, we can take r > 0 such that (79)

and (78) hold, with ‖u(2)
λ,µ‖H1

0 (Ω) > r, that is Kλ,µ has a mountain pass geometry around
0.

Next we prove that Kλ,µ satisfies the Palais-Smale condition. Assume (un)n is a
(PS) sequence in H1

0 (Ω), i.e.

sup
n
|Kλ,µ(un)| < +∞ and lim

n→+∞
K′λ,µ(un) = 0 in H−1(Ω).

We want to prove that there exist a subsequence of (un)n, which we still denote by
(un)n, and u ∈ H1

0 (Ω) such that lim
n→+∞

un = u. We first notice that, as Kλ,µ is coercive,

the sequence (un)n is bounded in H1
0 (Ω). Passing to a subsequence if necessary, we

may assume that (un)n converges weakly in H1
0 (Ω) to some function u ∈ H1

0 (Ω). The
strong convergence of (un)n to u in H1

0 (Ω) will follow from [7, Lemma 3]. To this end
we define the generalized Dirichlet form

a(u, v) =

∫
Ω

a(|∇u|2)∇u∇v dx,

for u, v ∈ H1
0 (Ω), and we observe that all hypotheses of [7, Lemma 3] are satisfied.

Hence Condition (S) therein will guarantee that (un)n converges strongly to u if we
show that

lim
n→+∞

(
a(un, un − u)− a(u, un − u)

)
= 0.
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We have

lim
n→+∞

a(un, un − u) = lim
n→+∞

∫
Ω

a(|∇un|2)∇un (∇un −∇u) dx

= lim
n→+∞

(
K′λ,µ(un)(un − u) + λ

∫
Ω

hλ,µ(un)(un − u) dx
)

= 0.

Indeed, as lim
n→+∞

K′λ,ε(un) = 0 in H−1(Ω) and (un)n is bounded in H1
0 (Ω), we see that

lim
n→+∞

K′λ,µ(un)(un − u) = 0.

Further, the compact embedding of H1
0 (Ω) into L1(Ω) implies that lim

n→+∞
un = u in

L1(Ω). Condition (74) then yields

lim
n→+∞

∫
Ω

hλ,µ(un)(un − u) dx = 0.

We also have

lim
n→+∞

a(u, un − u) = lim
n→+∞

(
K′λ,µ(u)(un − u) + λ

∫
Ω

hλ,µ(u)(un − u) dx
)

= 0.

Indeed, as K′λ,µ(u) ∈ H−1(Ω) and lim
n→+∞

un = u weakly in H1
0 (Ω), we see that

lim
n→+∞

K′λ,µ(u)(un − u) = 0.

Finally, as hλ,µ(u) ∈ L∞(Ω) and lim
n→+∞

un = u in L1(Ω), it follows that

lim
n→+∞

∫
Ω

hλ,µ(u)(un − u) dx = 0.

This proves that Kλ,µ satisfies the Palais-Smale condition.

The existence of a critical point u
(3)
λ,µ ∈ H1

0 (Ω) of Kλ,µ, with Kλ,µ(u
(3)
λ,µ) > 0, for any

given λ ∈ ]0, λ0[ and µ ∈ ]µ∗(λ),+∞[, then follows from the mountain pass theorem
(see e.g. [15, Theorem 5.7]).

Step 5. There exists λ∗ > 0 such that, if uλ,µ is a solution of (76) for some λ ∈ ]0, λ∗[
and µ ∈ ]µ0,+∞[, then uλ,µ ∈ C1,τ (Ω̄) for some τ ∈ ]0, 1], uλ,µ(x) > 0 for every x ∈ Ω,
∂uλ,µ
∂ν

(x) < 0 for every x ∈ ∂Ω, ν being the unit outer normal to Ω at x ∈ ∂Ω, and

‖uλ,µ‖C1(Ω̄) ≤ 1. (80)
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Let uλ,µ be a critical point of Kλ,µ for some λ ∈ ]0, λ0[ and µ ∈ ]µ0,+∞[. Recall
that uλ,µ satisfies (77). Testing (77) against (uλ,µ − 2)+, which belongs to H1

0 (Ω) by
Stampacchia theorem (see [45, Section 1.8]), and using (23) and (73), we get

7
√

2
16

∫
Ω

|∇(uλ,µ − 2)+|2 dx ≤
∫

Ω

a(|∇uλ,µ|2) |∇(uλ,µ − 2)+|2 dx

=

∫
Ω

a(|∇uλ,µ|2)∇uλ,µ∇(uλ,µ − 2)+ dx

= λ

∫
Ω

χ(uλ,µ)gλ,µ(uλ,µ)(uλ,µ − 2)+ dx = 0.

Therefore we have (uλ,µ − 2)+ = 0, i.e. uλ,µ(x) ≤ 2 a.e. in Ω. Testing (77) against
−u−λ,µ and using (23) and (73), we obtain

7
√

2
16

∫
Ω

|∇u−λ,µ|
2 dx ≤

∫
Ω

a(|∇u−λ,µ|
2) |∇u−λ,µ|

2 dx

= −
∫

Ω

a(|∇uλ,µ|2)∇uλ,µ∇u−λ,µ dx

= −λ
∫

Ω

χ(uλ,µ)gλ,µ(uλ,µ)u−λ,µ dx = 0.

Therefore we have u−λ,µ = 0, i.e. uλ,µ(x) ≥ 0 a.e. in Ω. Thus we conclude that

0 ≤ uλ,µ(x) ≤ 2 (81)

for a.e. x ∈ Ω. Due to (81) and (74), the regularity theory for (76) (see [19]) yields the
existence of τ ∈ ]0, 1] and K > 0, independent of uλ,µ, such that

‖uλ,µ‖C1,τ (Ω̄) ≤ K. (82)

Moreover, if uλ,µ 6= 0, the strong maximum principle and the boundary point lemma

[42, Corollary 8.3, Corollary 8.4] imply that uλ,µ(x) > 0 for every x ∈ Ω and
∂uλ,µ
∂ν

(x) <
0 for every x ∈ ∂Ω, where ν is the unit outer normal to Ω at x ∈ ∂Ω.

Finally, we prove that there exists λ∗ ∈ ]0, λ0[ such that, for every λ ∈ ]0, λ∗[
and µ ∈ ]µ0,+∞[, uλ,µ satisfies (80). Let (uλn,µn)n be a sequence of solutions of (76)
corresponding to some sequences (λn)n ⊂ ]0, λ0[, and (µn)n ⊂ ]µ0,+∞[. Assume that
lim

n→+∞
λn = 0. Estimate (82) and the Arzelà-Ascoli theorem yield the existence of a

subsequence (uk)k = (uλnk ,µnk )k converging in C1(Ω̄) to some function u ∈ C1(Ω̄) with
u(x) = 0 on ∂Ω. Testing (77) against uk and using (23), (74) and (81), we get

7
√

2
16

∫
Ω

|∇uk|2 dx ≤
∫

Ω

a(|∇uk|2)|∇uk|2 dx

= λnk

∫
Ω

hλnk ,µnk (uk)uk dx ≤ λnk 2p meas(Ω)
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and hence, passing to the limit, u = 0 in Ω. Therefore we deduce that

lim
λ→0+

‖uλ,µ‖C1(Ω̄) = 0.

Using Step 1, Step 3, Step 4 and Step 5, we conclude that there exists λ∗ ∈ ]0,+∞]
such that, for any λ ∈ ]0, λ∗[ and µ ∈ ]µ∗(λ),+∞[, problem (72) has at least three

positive solutions u
(1)
λ,µ, u

(2)
λ,µ, u

(3)
λ,µ, with, for i = 2, 3, u

(i)
λ,µ ∈ C1,τ (Ω̄) for some τ ∈ ]0, 1],

u
(i)
λ,µ(x) > 0 for every x ∈ Ω and

∂u
(i)
λ,µ

∂ν
(x) < 0 for every x ∈ ∂Ω.

3.4 Existence of infinitely many positive solutions

In this section we deal with cases where the potential is neither subquadratic nor
superquadratic at zero and it is neither sublinear nor superlinear at infinity, but it
oscillates in between. In this frame we can establish the existence of infinitely many
positive solutions. The proof combines the lower and upper solutions method, local
minimization and critical values estimates, and exploits some ideas from [39, 22, 37]
too.

Potential oscillatory at zero.

Theorem 3.15. Assume

(h4) Ω is a bounded domain in RN (N ≥ 2) with a C1,σ boundary ∂Ω for some σ ∈
]0, 1];

(h2) f : Ω× R→ R satisfies the Carathéodory conditions;

(h5) f(x, 0) ≥ 0 for a.e. x ∈ Ω;

(h6) there exist constants r > 0 and c > 0 such that |f(x, s)| ≤ c for a.e. x ∈ Ω and
every s ∈ [0, r];

(h29) there exist a constant r > 0 and a continuous function h : R→ R such that

f(x, s) ≤ h(s) for a.e. x ∈ Ω and every s ∈ [0, r]

and

lim inf
s→0+

H(s)

s2
≤ 0,

where H(s) =
∫ s

0
h(t) dt;
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(h7) there exist open sets ω and ω1, with ω̄ ⊂ ω1 ⊆ Ω, such that

lim sup
s→0+

∫
ω
F (x, s) dx

s2
= +∞

and

lim inf
s→0+

∫
ω1\ω F (x, s) dx

s2
> −∞.

Then, for every λ > 0, problem (1) has an infinite sequence (un)n of weak solutions,
with un ∈ C1,τ (Ω̄) for some τ ∈ ]0, 1], satisfying un(x) > 0 for every x ∈ Ω and
∂un
∂ν

(x) < 0 for every x ∈ ∂Ω, ν being the unit outer normal to Ω at x ∈ ∂Ω, and

lim
n→+∞

‖un‖C1(Ω̄) = 0.

Proof. Fix λ > 0. Let us consider, as in the proof of Theorem 3.1, the modified problem
(28), where a and g are respectively defined by (21) and (25). By a lower solution of
(28) we mean a function α ∈ C1(Ω̄) such that α(x) ≤ 0 on ∂Ω and∫

Ω

a(|∇α|2)∇α∇v dx ≤ λ

∫
Ω

g(x, α)v dx

for every v ∈ H1
0 (Ω), with v(x) ≥ 0 a.e. in Ω. An upper solution β of (28) is defined

similarly by reversing the first two inequalities written above. It is a known fact (see
e.g. [39, Lemma 2.1]) that if there are a lower solution α and an upper solution β of
(28), with α(x) ≤ β(x) in Ω, then there exists at least one solution u of (28) such that
u ∈ C1,τ (Ω̄) for some τ ∈ ]0, 1], α(x) ≤ u(x) ≤ β(x) in Ω and

Kλ(u) = min{Kλ(v) | v ∈ H1
0 (Ω), α(x) ≤ v(x) ≤ β(x) a.e. in Ω},

where Kλ is the functional associated with (28) as defined in (30).
Step 1. There exists a sequence (βn)n of upper solutions of (28) satisfying βn ∈ C2(Ω̄)
and βn(x) > 0 in Ω, for every n, and lim

n→+∞
‖βn‖L∞(Ω) = 0. Suppose first that inf{s >

0 | h(s) ≤ 0} = 0. Then there exists a sequence of positive constant upper solutions
(βn)n with lim

n→+∞
βn = 0. Suppose next that there is r1 ∈ ]0, r[ such that h(s) > 0 for

each s ∈ ]0, r1]. By (h29) there exists K ∈ ]0, λ?1[, where λ?1 is defined in (15), such that

lim inf
s→0+

2λH(s)−Ks2

s2
< 0.

Therefore we can find a decreasing sequence (Rn)n such that lim
n→+∞

Rn = 0 and, for

each n, Rn ∈ ]0, r1[,
λH(Rn) < 1− 1√

2
, (83)
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1
2
KR2

n < 1, (84)

and
λ (H(Rn)−H(s)) ≤ 1

2
K(R2

n − s2) (85)

for every s ∈ [0, Rn]. Fix n and consider the initial value problem

−
(
v′/
√

1 + |v′|2
)′

= λh(v), v(0) = Rn, v
′(0) = 0. (86)

Let v ∈ C2(]− ω, ω[) be an even non-extendible solution of (86). Then v|[0,ω[
is decreas-

ing, concave and satisfies the energy relation

1− 1√
1 + |v′(t)|2

= λ(H(Rn)−H(v(t))) (87)

in [0, ω[. Define
T = sup

{
t ∈ [0, ω[ | v(t) > 0

}
.

By (83) and (87), we see that |v′(t)| ≤ 1 for every t ∈ ]− T, T [. Therefore T < ω and
v ∈ C2([−T, T ]). Using (87), (85), (84) and the fact that the function χ(t) = 1−t√

2−t is

decreasing in [0, 1], we get

T =

∫ T

0

−v′(t) 1− λ (H(Rn)−H(v(t)))√
2λ (H(Rn)−H(v(t)))− (λ(H(Rn)−H(v(t))))2

dt

=

∫ v(0)

v(T )

1√
λ (H(Rn)−H(s))

χ (λ (H(Rn)−H(s))) ds

≥
∫ Rn

0

1√
K
2

(R2
n − s2)

χ
(
K
2

(
R2
n − s2

))
ds

≥ χ
(
K
2
R2
n

) √
2
K

∫ Rn

0

1√
R2
n − s2

ds = χ
(
K
2
R2
n

)
1√
2

π√
K
.

(88)

Let ê ∈ SN−1 be such that Lê(Ω) = min
e∈SN−1

Le(Ω) and set, for every x ∈ Ω̄,

βn(x) = v(x ê− 1
2
(aê(Ω) + bê(Ω))),

where Lê(Ω), aê(Ω) and bê(Ω) are defined by (14). As K < λ?1 =
(

π
Lê(Ω)

)2

we have
π√
K
> Lê(Ω) and, as lim

n→+∞
χ
(
K
2
R2
n

)
= χ(0) = 1√

2
, we conclude from (88) that, for all
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n large, T > 1
2
Lê(Ω) and hence βn(x) > 0 for every x ∈ Ω. Note that βn ∈ C2(Ω̄),

|∇βn(x)| = |v′(x ê− 1
2
(aê(Ω) + bê(Ω)))| ≤ 1 in Ω and

−div
(
a(|∇βn|2)∇βn

)
= −div

(
∇βn/

√
1 + |∇βn|2

)
= −v′′/(1 + |v′|2)

3
2 = λh(v) ≥ λg(x, βn)

a.e. in Ω. Therefore βn is an upper solution of (28). Further we have lim
n→+∞

‖βn‖L∞(Ω)

= 0.

Step 2. Existence of solutions of (1). Condition (h5) implies that α = 0 is a lower
solution of (28). Hence there exists a solution u1 ∈ H1

0 (Ω) ∩ L∞(Ω) of (28) such that
0 ≤ u1(x) ≤ β1(x) in Ω and

Kλ(u1) = min{Kλ(v) | v ∈ H1
0 (Ω), 0 ≤ v(x) ≤ β1(x) a.e. in Ω}.

Arguing as in Step 2 of the proof of Theorem 3.1, we exploit assumption (h7) to show
that Kλ(u1) < 0 and, hence, u1 6= 0. Next we pick an upper solution β2 of (28) such that
‖β2‖L∞(Ω) < ‖u1‖L∞(Ω). Proceeding as above we find a solution u2 ∈ H1

0 (Ω)∩L∞(Ω) of
(28) such that 0 ≤ u2(x) ≤ β2(x) in Ω and u2 6= 0. Iterating this argument we obtain
a sequence of non-trivial non-negative solutions of (28) such that

lim
n→+∞

‖un‖L∞(Ω) = 0.

Using (26), which follows from (h6), and the regularity theory for (28) (see [19]), we
infer that there are constants τ ∈ ]0, 1[ and κ > 0 such that, for every n, un ∈
H1

0 (Ω) ∩ C1,τ (Ω̄) and
‖un‖C1,τ (Ω̄) ≤ κ.

Hence, by the Arzelà-Ascoli theorem we deduce that

lim
n→+∞

‖un‖C1(Ω̄) = 0.

Accordingly we conclude that, for all n sufficiently large, un is a positive weak solution
of (1). The strong maximum principle and the boundary point lemma [42, Corollary
8.3, Corollary 8.4] finally yield un(x) > 0 for every x ∈ Ω and ∂un

∂ν
(x) < 0 for every

x ∈ ∂Ω.

The following result shows that for the parameter independent problem (49) the
assumptions (h7) and (h29) on the oscillatory behaviour of F at 0 can be replaced by
some conditions involving the spectral constants λ]1 and λ?1.

Theorem 3.16. Assume
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(h4) Ω is a bounded domain in RN (N ≥ 2) with a C1,σ boundary ∂Ω for some σ ∈
]0, 1];

(h2) f : Ω× R→ R satisfies the Carathéodory conditions;

(h30) there exist a constant r > 0 and a continuous function h : R→ R such that

f(x, s) ≤ h(s) for a.e. x ∈ Ω and every s ∈ [0, r]

and

lim inf
s→0+

2H(s)

s2
< λ?1,

where H(s) =
∫ s

0
h(t) dt and λ?1 is defined by (15);

(h18) there exist a constant r > 0 and a continuous function k : R→ R such that

f(x, s) ≥ k(s) for a.e. x ∈ Ω and every s ∈ [0, r],

lim inf
s→0+

K(s)

s2
≥ 0

and

lim sup
s→0+

2K(s)

s2
> λ]1,

where K(s) =
∫ s

0
k(t) dt and λ]1 is defined by (17).

Then problem (49) has an infinite sequence (un)n of weak solutions, with un ∈ C1,τ (Ω̄)
for some τ ∈ ]0, 1[, satisfying un(x) > 0 for every x ∈ Ω and ∂un

∂ν
(x) < 0 for every

x ∈ ∂Ω, ν being the unit outer normal to Ω at x ∈ ∂Ω, and

lim
n→+∞

‖un‖C1(Ω̄) = 0.

Proof. The conclusion follows arguing like in the proofs of Theorem 3.15 and Theo-
rem 3.7.

Potential oscillatory at infinity.

Theorem 3.17. Assume

(h1) Ω is a bounded domain in RN (N ≥ 2) with a C0,1 boundary ∂Ω;

(h5) f(x, 0) ≥ 0 for a.e. x ∈ Ω;

(h13) f : Ω× R→ R satisfies the Lp-Carathéodory conditions for some p > N ;
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(h14) there exist a constant r and a continuous function h : R→ R such that

f(x, s) ≤ h(s) for a.e. x ∈ Ω and every s ≥ r

and

lim inf
s→+∞

H(s)

s
≤ 0,

where H(s) =
∫ s

0
h(t) dt;

(h31) there exists a Caccioppoli set B ⊆ Ω such that

lim sup
s→+∞

∫
B

F (x, s)

s
dx = +∞.

Then, for every λ > 0, problem (1) has an infinite sequence (un)n of positive solutions,
with un ∈ L∞(Ω), satisfying

lim
n→+∞

‖un‖L∞(Ω) = +∞ and lim
n→+∞

Iλ(un) = −∞.

Proof. Fix λ > 0. Conditions (h5) and (h13) imply that α = 0 is a lower solution of (1).
By (h14) we can apply the claim in the proof of Theorem 3.3 to get a sequence (βn)n
of upper solutions of (1) such that, for each n, βn ∈ C2(Ω̄) and lim

n→+∞
(min

Ω̄
βn) = +∞.

By (h31) there is a sequence (cn)n such that lim
n→+∞

cn = +∞ and

lim
n→+∞

∫
B

λF (x, cn)

cn
dx > Per(B),

where Per(B) =
∫

Ω
|DχB|+

∫
∂Ω
χB |∂ΩdHN−1 is the perimeter of B in RN (χB denoting

the characteristic function of the set B). We have

Iλ(cnχB) = J (cnχB)−
∫
B

λF (x, cn) dx

≤ meas(Ω) + cn

(∫
B

|DχB|+
∫
∂Ω

χB |∂Ω dHN−1 −
∫
B

λF (x, cn)

cn
dx
)

= meas(Ω) + cn

(
Per(B)−

∫
B

λF (x, cn)

cn
dx
)

and hence
lim

n→+∞
Iλ(cnχB) = −∞.

Therefore we can find a constant, say c1, such that Iλ(c1χB) < Iλ(0). Pick an upper
solution, say β1, such that β1(x) ≥ c1χB(x) in Ω. By Proposition 2.1 there exists a
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solution u1 of (1) such that 0 ≤ u1(x) ≤ β1(x) a.e. in Ω. Moreover, we have u1 6= 0, as
Iλ(u1) = min{Iλ(v) | v ∈ BV (Ω), 0 ≤ v(x) ≤ β1(x) for a.e. x ∈ Ω} < Iλ(0). Pick now
a constant, say c2, such that Iλ(c2χB) < Iλ(u1) and an upper solution, say β2, such
that β2(x) ≥ c2χB(x) in Ω. By Proposition 2.1 there exists a solution u2 of (1) such
that 0 ≤ u2(x) ≤ β2(x) a.e. in Ω and Iλ(u2) ≤ Iλ(c2χB) < Iλ(u1). Hence, we have in
particular u1 6= u2 and ess sup

Ω
u2 > min

Ω̄
β1. Iterating this procedure we can construct

a sequence (un)n of solutions of (1) such that, for each n, un ∈ BV (Ω) ∩ L∞(Ω) and
Iλ(un+1) ≤ Iλ(cn+1χB) < Iλ(un), lim

n→+∞
ess sup

Ω
un = +∞ and lim

n→+∞
Iλ(un) = −∞.

The following result is the counterpart of Theorem 3.16 when an oscillatory be-
haviour of F at +∞ is considered.

Theorem 3.18. Assume

(h1) Ω is a bounded domain in RN (N ≥ 2) with a C0,1 boundary ∂Ω;

(h5) f(x, 0) ≥ 0 for a.e. x ∈ Ω;

(h13) f : Ω× R→ R satisfies the Lp-Carathéodory conditions for some p > N ;

(h19) there exist a constant r > 0 and a continuous function h : R→ R such that

f(x, s) ≤ h(s) for a.e. x ∈ Ω and every s ≥ r

and

lim inf
s→+∞

H(s)

s
< µ?1,

where H(s) =
∫ s

0
h(t) dt and µ?1 is defined by (16);

(h32) there exist a constant r > 0 and a continuous function k : R→ R such that

f(x, s) ≥ k(s) for a.e. x ∈ Ω and every s ≥ r

and

lim sup
s→+∞

K(s)

s
> µ]1,

where K(s) =
∫ s

0
k(t) dt and µ]1 is defined by (19).

Then problem (49) has an infinite sequence (un)n of positive solutions, with un ∈
L∞(Ω), satisfying

lim
n→+∞

‖un‖L∞(Ω) = +∞.
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Proof. The conclusion follows as in the proof of Theorem 3.17, once we observe that
(h19) is sufficient to apply the claim in the proof of Theorem 3.3 and (h32) implies the
existence of a sequence (cn)n such that lim

n→+∞
cn = +∞ and

lim
n→+∞

∫
Ω

F (x, cn)

cn
dx > Per(Ω).

Remark 3.6 Assumption (h32) can be replaced by

(h33) there exists a Caccioppoli set B ⊆ Ω such that

lim sup
s→+∞

∫
B

F (x, s)

s
dx > Per(Ω).
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[11] Ph. Clément, R. Manásevich and E. Mitidieri, On a modified capillary equation,
J. Differential Equations 124 (1996), 343–358.

[12] C.V. Coffman and W.K. Ziemer, A prescribed mean curvature problem on domains
without radial symmetry, SIAM J. Math. Anal. 22 (1991), 982–990.

[13] M. Conti and F. Gazzola, Existence of ground states and free-boundary problems
for the prescribed mean-curvature equation, Adv. Differential Equations 7 (2002),
667–694.

[14] F. Demengel, Some existence’s results for noncoercive “1-Laplacian” operator,
Asymptotic Analysis 43 (2005), 287–322.

[15] D.G. de Figueiredo, Lectures on the Ekeland variational principle with applica-
tions and detours. Tata Institute of Fundamental Research Lectures on Mathe-
matics and Physics, 81. Published for the Tata Institute of Fundamental Research,
Bombay, by Springer-Verlag, Berlin, 1989.

[16] M. del Pino and I. Guerra, Ground states of a prescribed mean curvature equation,
J. Differential Equations 241 (2007), 112–129.

[17] B. Franchi, E. Lanconelli and J. Serrin, Existence and uniqueness of nonnegative
solutions of quasilinear equations in Rn, Adv. Math. 118 (1996), 177–243.
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