On a result of C.V. Coffman and W.K. Ziemer about the prescribed mean curvature equation

Franco Obersnel and Pierpaolo Omari
Dipartimento di Matematica e Informatica
Università degli Studi di Trieste
Via A. Valerio 12/1, I-34127 Trieste, Italy
E-mail: obersnel@units.it, omari@units.it

Abstract

We produce a detailed proof of a result of C.V. Coffman and W.K. Ziemer [1] on the existence of positive solutions of the Dirichlet problem for the prescribed mean curvature equation $$
-\operatorname{div}\left(\nabla u / \sqrt{1+|\nabla u|^{2}}\right)=\lambda f(x, u) \text { in } \Omega, \quad u=0 \text { on } \partial \Omega,
$$ assuming that f has a superlinear behaviour at $u=0$.

2000 Mathematics Subject Classification: 35J25, 35J20, 35J60. Keywords and Phrases: prescribed mean curvature equation, Dirichlet problem, positive solution, variational method, Nehari method.

1 Statements

In [1] C.V. Coffman and W.K. Ziemer proved the following result concerning the existence of positive solutions of the Dirichlet problem for the prescribed mean curvature equation

$$
\begin{equation*}
-\operatorname{div}\left(\nabla u / \sqrt{1+|\nabla u|^{2}}\right)=\lambda f(x, u) \text { in } \Omega, \quad u=0 \text { on } \partial \Omega . \tag{1}
\end{equation*}
$$

A solution u of problem (1) is intended in the strong sense, namely a function $u \in W^{2, p}(\Omega)$, for some $p>N$, which satisfies the equation in (1) a.e. in Ω and the Dirichlet boundary condition pointwise on $\partial \Omega$.

Theorem 1.1. Assume
$\left(h_{0}\right) \Omega$ is a bounded domain in $\mathbb{R}^{N}(N \geq 2)$ with a $C^{1,1}$ boundary $\partial \Omega$;
$\left(h_{1}\right) f: \bar{\Omega} \times[0,+\infty[\rightarrow \mathbb{R}$ is continuous;
$\left(h_{2}\right)$ there exist constants $r>0, c>1$ and $q>2$, with $q<\frac{2 N}{N-2}$ if $N \geq 3$, such that

$$
s^{q-1} \leq f(x, s) \leq c s^{q-1}
$$

for every $x \in \bar{\Omega}$ and every $s \in[0, r]$;
$\left(h_{3}\right)$ there exist constants $r>0$ and $\varepsilon>0$ such that

$$
\frac{f(x, s)}{s^{1+\varepsilon}}<\frac{f(x, t)}{t^{1+\varepsilon}}
$$

for every $x \in \bar{\Omega}$ and every $s, t \in] 0, r]$, with $s<t$.
Then, for any given $p>N$, there exists $\lambda_{*} \in\left[0,+\infty[\right.$ such that, for every $\lambda \in] \lambda_{*},+\infty[$, problem (1) has at least one non-trivial non-negative solution $u_{\lambda} \in H_{0}^{1}(\Omega) \cap W^{2, p}(\Omega)$ satisfying

$$
\lim _{\lambda \rightarrow+\infty}\left\|u_{\lambda}\right\|_{W^{2, p}(\Omega)}=0
$$

Theorem 1.1 plays an important role in the existence theory of positive solutions for problem (1) (see e.g. [3] and the references therein). Since the rather delicate argument of the original proof was presented in [1] in a rather synthetic form and the involved ideas may be usefully exploited in other situations, we decided to produce here a detailed proof of such result. Actually we will prove the following slightly more general version of Theorem 1.1.

Theorem 1.2. Assume
($\left.i_{0}\right) \Omega$ is a bounded domain in $\mathbb{R}^{N}(N \geq 2)$ with a $C^{1,1}$ boundary $\partial \Omega$;
(i_{1}) $f: \Omega \times[0,+\infty[\rightarrow \mathbb{R}$ satisfies the Carathéodory conditions;
(i_{2}) there exist constants $r>0, c>1$ and $q>2$, with $q<\frac{2 N}{N-2}$ if $N \geq 3$, such that

$$
s^{q-1} \leq f(x, s) \leq c s^{q-1}
$$

for a.e. $x \in \Omega$ and every $s \in[0, r]$;
$\left(i_{3}\right)$ there exist constants $r>0$ and $\vartheta>2$ such that

$$
\vartheta F(x, s) \leq s f(x, s)
$$

for a.e. $x \in \Omega$ and every $s \in[0, r]$, where $F(x, s)=\int_{0}^{s} f(x, t) d t$;
$\left(i_{4}\right)$ there exists a constant $r>0$ such that

$$
\frac{f(x, s)}{s} \leq \frac{f(x, t)}{t}
$$

for a.e. $x \in \Omega$ and every $s, t \in] 0, r]$, with $s<t$.
Then, for any given $p>N$, there exists $\lambda_{*} \in\left[0,+\infty[\right.$ such that, for every $\lambda \in] \lambda_{*},+\infty[$, problem (1) has at least one solution $u_{\lambda} \in H_{0}^{1}(\Omega) \cap W^{2, p}(\Omega)$, satisfying $u_{\lambda}(x)>0$ for every $x \in \Omega$ and $\frac{\partial u_{\lambda}}{\partial n}(x)<0$ for every $x \in \partial \Omega, n$ being the unit outer normal at $x \in \partial \Omega$,

$$
\int_{\Omega}\left(\sqrt{1+\left|\nabla u_{\lambda}\right|^{2}}-1\right) d x-\lambda \int_{\Omega} F\left(x, u_{\lambda}\right) d x>0 \quad \text { and } \quad \lim _{\lambda \rightarrow+\infty}\left\|u_{\lambda}\right\|_{W^{2, p}(\Omega)}=0
$$

Remark 1.1 Assumption (i_{2}) requires $f(\cdot, s)$ to be superlinear near $s=0$. Assumption (i_{3}) is the classical Ambrosetti-Rabinowitz condition near $s=0$. Observe that (i_{2}) and (i_{3}) yield $\vartheta \leq q$. Assumption $\left(i_{4}\right)$ has a technical character and allows to implement the Nehari method. Note that assumption $\left(h_{3}\right)$ implies $\left(i_{3}\right)$, with $\vartheta=1+\varepsilon$, and $\left(i_{4}\right)$.

2 Proof

The proof of Theorem 1.2 proceeds along several steps.
Step 1. A modified problem. Let $a:\left[0,+\infty\left[\rightarrow\left[\frac{1}{2},+\infty[\right.\right.\right.$ be a strictly decreasing continuous function, such that $a(s)=(1+s)^{-1 / 2}$ if $s \in[0,1]$, and set $A(s)=\int_{0}^{s} a(t) d t$. Note that, for every $s \geq 0$,

$$
\begin{equation*}
\frac{1}{2}<a(s) \leq 1 \quad \text { and } \quad \frac{1}{2} s \leq A(s) \leq s \tag{2}
\end{equation*}
$$

We also set, for a.e. $x \in \Omega$ and every $s \in \mathbb{R}$,

$$
\begin{aligned}
g(x, s) & =0 & & \text { if } s<0, \\
& =f(x, s) & & \text { if } s \in[0, r[, \\
& =\frac{f(x, r)}{r^{q-1}} s^{q-1} & & \text { if } s \geq r
\end{aligned}
$$

and

$$
G(x, u)=\int_{0}^{u} g(x, s) d s
$$

where q is defined in $\left(i_{2}\right)$. The function $g: \Omega \times \mathbb{R} \rightarrow[0,+\infty[$ satisfies the Carathéodory conditions and, by $\left(i_{2}\right)$, there exists a constant $\kappa>0$ such that

$$
\begin{equation*}
s^{q-1} \leq g(x, s) \leq \kappa s^{q-1} \tag{3}
\end{equation*}
$$

for a.e. $x \in \Omega$ and every $s \in\left[0,+\infty\left[\right.\right.$. Further, by $\left(i_{3}\right)$, we have

$$
\begin{equation*}
\vartheta G(x, s) \leq s g(x, s) \tag{4}
\end{equation*}
$$

for a.e. $x \in \Omega$ and every $s \in\left[0,+\infty\left[\right.\right.$, with $\vartheta>2$ given in $\left(i_{3}\right)$. We further set, for a.e. $x \in \Omega$ and every $s \in[0,+\infty[$,

$$
\begin{aligned}
\gamma(x, s) & =0 & \text { if } s \leq 0 \\
& =\frac{g(x, s)}{s} & \text { if } s>0
\end{aligned}
$$

Clearly γ satisfies the Carathéodory conditions and, by $\left(i_{4}\right)$,

$$
\begin{equation*}
\gamma(x, s) \leq \gamma(x, t) \tag{5}
\end{equation*}
$$

for a.e. $x \in \Omega$ and every $s, t \in \mathbb{R}$, with $s<t$. Let us consider the modified problem

$$
\begin{equation*}
-\operatorname{div}\left(a\left(|\nabla u|^{2}\right) \nabla u\right)=\lambda g(x, u) \text { in } \Omega, \quad u=0 \text { on } \partial \Omega . \tag{6}
\end{equation*}
$$

We associate with this problem the functional $H_{\lambda}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
H_{\lambda}(u)=\frac{1}{2} \int_{\Omega} A\left(|\nabla u|^{2}\right) d x-\lambda \int_{\Omega} G(x, u) d x
$$

The critical points of H_{λ} are the weak solutions in $H_{0}^{1}(\Omega)$ of (6). Note that any such solution satisfies $u(x) \geq 0$ a.e. in Ω. Indeed, let u be a weak solution in $H_{0}^{1}(\Omega)$ of (6). Testing against $v=-u^{-}$and using (2) and (3) we obtain

$$
\begin{aligned}
\frac{1}{2} \int_{\Omega}\left|\nabla u^{-}\right|^{2} d x & \leq \int_{\Omega} a\left(\left|\nabla u^{-}\right|^{2}\right)\left|\nabla u^{-}\right|^{2} d x \\
& =-\int_{\Omega} a\left(|\nabla u|^{2}\right) \nabla u \cdot \nabla u^{-} d x=-\lambda \int_{\Omega} g(x, u) u^{-} d x \leq 0
\end{aligned}
$$

Therefore $u^{-}=0$, i.e. $u(x) \geq 0$ a.e. in Ω.

Step 2. The Nehari manifold and its properties. For any given $\lambda>0$ we set

$$
\mathcal{N}_{\lambda}=\left\{\left.u \in H_{0}^{1}(\Omega) \backslash\{0\}\left|\int_{\Omega} a\left(|\nabla u|^{2}\right)\right| \nabla u\right|^{2} d x=\lambda \int_{\Omega} g(x, u) u d x\right\}
$$

Notice that, if $u \in \mathcal{N}_{\lambda}$, then $u(x)>0$ in a set of positive measure. Observe also that any non-trivial solution u of (6) belongs to \mathcal{N}_{λ}.
Claim. For every $w \in H_{0}^{1}(\Omega) \backslash\{0\}$, with $w(x) \geq 0$ a.e. in Ω, there is a unique $\alpha>0$ such that $\alpha w \in \mathcal{N}_{\lambda}$. Take $w \in H_{0}^{1}(\Omega) \backslash\{0\}$, with $w(x) \geq 0$ a.e. in Ω, and define $h:[0,+\infty[\rightarrow \mathbb{R}$ by

$$
h(t)=H_{\lambda}(t w)=\frac{1}{2} \int_{\Omega} A\left(t^{2}|\nabla w|^{2}\right) d x-\lambda \int_{\Omega} G(x, t w) d x
$$

Note that

$$
h^{\prime}(t)=\int_{\Omega} a\left(t^{2}|\nabla w|^{2}\right) t|\nabla w|^{2} d x-\lambda \int_{\Omega} g(x, t w) w d x
$$

for all $t \geq 0$ and $h^{\prime}(\alpha)=0$ for some $\alpha>0$ if and only if

$$
\int_{\Omega} a\left(\alpha^{2}|\nabla w|^{2}\right) \alpha|\nabla w|^{2} d x=\lambda \int_{\Omega} g(x, \alpha w) w d x
$$

i.e. if and only if $\alpha w \in \mathcal{N}_{\lambda}$. Conditions (2) and (3) imply that

$$
\frac{1}{4} t^{2} \int_{\Omega}|\nabla w|^{2} d x-\frac{\lambda \kappa}{q} t^{q} \int_{\Omega} w^{q} d x \leq h(t) \leq \frac{1}{2} t^{2} \int_{\Omega}|\nabla w|^{2} d x-\frac{\lambda}{q} t^{q} \int_{\Omega} w^{q} d x
$$

for all $t \geq 0$. Therefore there exists $\delta>0$ such that $h(t)>0$ if $t \in] 0, \delta[$ and $h(t)<0$ if $t \in] \frac{1}{\delta},+\infty[$. As $h(0)=0$ we conclude that h has a maximum at some point $\alpha>0$. Hence we have $h^{\prime}(\alpha)=0$ and $\alpha w \in \mathcal{N}_{\lambda}$. Let us observe that α is unique. Indeed, if $\left.\alpha_{1}, \alpha_{2} \in\right] 0,+\infty[$ are critical points of h and we assume $\alpha_{1}<\alpha_{2}$, then, as a is strictly decreasing and γ is non-decreasing, we have

$$
\begin{aligned}
& \int_{\Omega} a\left(\alpha_{1}^{2}|\nabla w|^{2}\right) \alpha_{1}|\nabla w|^{2} d x=\lambda \int_{\Omega} g\left(x, \alpha_{1} w\right) w d x=\lambda \int_{\Omega} \gamma\left(x, \alpha_{1} w\right) \alpha_{1} w^{2} d x \\
& \leq \frac{\alpha_{1}}{\alpha_{2}} \lambda \int_{\Omega} \gamma\left(x, \alpha_{2} w\right) \alpha_{2} w^{2} d x=\frac{\alpha_{1}}{\alpha_{2}} \lambda \int_{\Omega} g\left(x, \alpha_{2} w\right) w d x=\frac{\alpha_{1}}{\alpha_{2}} \int_{\Omega} a\left(\alpha_{2}^{2}|\nabla w|^{2}\right) \alpha_{2}|\nabla w|^{2} d x \\
& <\int_{\Omega} a\left(\alpha_{1}^{2}|\nabla w|^{2}\right) \alpha_{1}|\nabla w|^{2} d x
\end{aligned}
$$

which is a contradiction.
Step 3. Linear problems parametrized over the Nehari manifold. For any $u \in \mathcal{N}_{\lambda}$ we consider the linear problem

$$
\begin{equation*}
-\operatorname{div}\left(a\left(|\nabla u|^{2}\right) \nabla w\right)=\lambda g(x, u) \text { in } \Omega, \quad w=0 \text { on } \partial \Omega \tag{7}
\end{equation*}
$$

where, by $\left(i_{2}\right), g(\cdot, u) \in L^{2}(\Omega)$. By Lax-Milgram Theorem problem (7) has a unique solution $w \in H_{0}^{1}(\Omega)$. Moreover, since $g(x, u(x)) \geq 0$ for a.e. $x \in \Omega$ and $g(x, u(x))>0$ on a set of positive measure, the weak maximum principle implies that $w(x) \geq 0$ a.e. in Ω and $w(x)>0$ on a set of positive measure.
Claim. Take $u \in \mathcal{N}_{\lambda}$ and let $w \in H_{0}^{1}(\Omega)$ be the solution of (7). Then there exists a unique $\alpha>0$ such that $\alpha w \in \mathcal{N}_{\lambda}$. Moreover

$$
\begin{equation*}
H_{\lambda}(\alpha w) \leq H_{\lambda}(u) \tag{8}
\end{equation*}
$$

and $H_{\lambda}(\alpha w)=H_{\lambda}(u)$ if and only if u is a solution of (6). According to the claim in Step 2 there exists a unique $\alpha>0$ such that $\alpha w \in \mathcal{N}_{\lambda}$. Let us prove that $H_{\lambda}(\alpha w) \leq H_{\lambda}(u)$. Since A is concave in $\left[0,+\infty\left[\right.\right.$, for every $s_{1}, s_{2} \in[0,+\infty[$ we have

$$
A\left(s_{2}\right)-A\left(s_{1}\right) \leq a\left(s_{1}\right)\left(s_{2}-s_{1}\right)
$$

Since, by (5), the function $G(x, \sqrt{\cdot})$ is convex in $\left[0,+\infty\left[\right.\right.$, for all $x \in \bar{\Omega}$ and every $s_{1}, s_{2} \in[0,+\infty[$ we have

$$
G\left(x, \sqrt{s_{2}}\right)-G\left(x, \sqrt{s_{1}}\right) \geq \frac{1}{2} \gamma\left(x, \sqrt{s_{1}}\right)\left(s_{2}-s_{1}\right)
$$

Setting $v=\alpha w$ we get

$$
\begin{aligned}
2\left(H_{\lambda}(v)-H_{\lambda}(u)\right) & =\int_{\Omega}\left(A\left(|\nabla v|^{2}\right)-A\left(|\nabla u|^{2}\right)\right) d x-2 \lambda \int_{\Omega}(G(x, v)-G(x, u)) d x \\
& \leq \int_{\Omega} a\left(|\nabla u|^{2}\right)\left(|\nabla v|^{2}-|\nabla u|^{2}\right) d x-\lambda \int_{\Omega} \gamma(x, u)\left(v^{2}-u^{2}\right) d x \\
& =\alpha \lambda \int_{\Omega} g(x, u) v d x-\lambda \int_{\Omega} \gamma(x, u) v^{2} d x \\
& =\lambda\left(\alpha \int_{\Omega} \gamma(x, u) u v d x-\int_{\Omega} \gamma(x, u) v^{2} d x\right)
\end{aligned}
$$

By Schwarz inequality we get

$$
\begin{align*}
\alpha \lambda \int_{\Omega} \gamma(x, u) u^{2} d x & =\int_{\Omega} a\left(|\nabla u|^{2}\right) \nabla v \nabla u d x \\
& \leq\left(\int_{\Omega} a\left(|\nabla u|^{2}\right)|\nabla v|^{2} d x\right)^{1 / 2}\left(\int_{\Omega} a\left(|\nabla u|^{2}\right)|\nabla u|^{2} d x\right)^{1 / 2} \tag{9}\\
& =\left(\alpha \lambda \int_{\Omega} \gamma(x, u) u v d x\right)^{1 / 2}\left(\lambda \int_{\Omega} \gamma(x, u) u^{2} d x\right)^{1 / 2}
\end{align*}
$$

Therefore we have

$$
\begin{equation*}
\left(\alpha \int_{\Omega} \gamma(x, u) u^{2} d x\right)^{1 / 2} \leq\left(\int_{\Omega} \gamma(x, u) u v d x\right)^{1 / 2} \tag{10}
\end{equation*}
$$

and hence, using Schwarz inequality again,

$$
\begin{aligned}
\left(\alpha \int_{\Omega} \gamma(x, u) u^{2} d x\right)^{1 / 2}\left(\int_{\Omega} \gamma(x, u) u v d x\right)^{1 / 2} & \leq \int_{\Omega} \gamma(x, u) u v d x \\
& \leq\left(\int_{\Omega} \gamma(x, u) u^{2} d x\right)^{1 / 2}\left(\int_{\Omega} \gamma(x, u) v^{2} d x\right)^{1 / 2}
\end{aligned}
$$

This yields

$$
\alpha \int_{\Omega} \gamma(x, u) u v d x \leq \int_{\Omega} \gamma(x, u) v^{2} d x
$$

and therefore

$$
H_{\lambda}(v)-H_{\lambda}(u) \leq \frac{1}{2} \lambda\left(\alpha \int_{\Omega} \gamma(x, u) u v d x-\int_{\Omega} \gamma(x, u) v^{2} d x\right) \leq 0
$$

On the other hand, if $H_{\lambda}(v)=H_{\lambda}(u)$, then

$$
\alpha \int_{\Omega} \gamma(x, u) u v d x=\int_{\Omega} \gamma(x, u) v^{2} d x
$$

and

$$
\alpha \int_{\Omega} \gamma(x, u) u v d x=\left(\alpha \int_{\Omega} \gamma(x, u) u^{2} d x\right)^{1 / 2}\left(\int_{\Omega} \gamma(x, u) u v d x\right)^{1 / 2}
$$

This implies that

$$
\alpha \int_{\Omega} \gamma(x, u) u^{2} d x=\int_{\Omega} \gamma(x, u) u v d x
$$

and, from (9),

$$
\int_{\Omega} a\left(|\nabla u|^{2}\right) \nabla v \nabla u d x=\left(\int_{\Omega} a\left(|\nabla u|^{2}\right)|\nabla v|^{2} d x\right)^{1 / 2}\left(\int_{\Omega} a\left(|\nabla u|^{2}\right)|\nabla u|^{2} d x\right)^{1 / 2}
$$

Therefore u and v are proportional and hence there is $t>0$ such that $w=t u$. This means that u is a solution of

$$
-\operatorname{div}\left(a\left(|\nabla u|^{2}\right) \nabla u\right)=\frac{\lambda}{t} g(x, u) \text { in } \Omega, \quad u=0 \text { on } \partial \Omega
$$

and hence, as $u \in \mathcal{N}_{\lambda}, t=1$ and u is a solution of (6).
Step 4. Estimates on the functional H_{λ} on \mathcal{N}_{λ}. For all $u \in \mathcal{N}_{\lambda}$ we have

$$
\begin{equation*}
\frac{1}{2} \frac{\vartheta-2}{2 \vartheta}\|u\|_{H_{0}^{1}(\Omega)}^{2} \leq \frac{1}{2} \frac{\vartheta-2}{2 \vartheta} \int_{\Omega} a\left(|\nabla u|^{2}\right)|\nabla u|^{2} d x \leq H_{\lambda}(u) \leq \frac{1}{2}\|u\|_{H_{0}^{1}(\Omega)}^{2} \tag{11}
\end{equation*}
$$

ϑ being defined in $\left(i_{3}\right)$. Indeed we have

$$
H_{\lambda}(u)=\frac{1}{2} \int_{\Omega} A\left(|\nabla u|^{2}\right) d x-\lambda \int_{\Omega} G(x, u) d x \leq \frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x
$$

and, by (4) and (2),

$$
\begin{aligned}
H_{\lambda}(u) & \geq \frac{1}{2} \int_{\Omega} a\left(|\nabla u|^{2}\right)|\nabla u|^{2} d x-\frac{\lambda}{\vartheta} \int_{\Omega} g(x, u) d x \\
& =\left(\frac{1}{2}-\frac{1}{\vartheta}\right) \int_{\Omega} a\left(|\nabla u|^{2}\right)|\nabla u|^{2} d x \geq \frac{1}{2} \frac{\vartheta-2}{2 \vartheta}\|u\|_{H_{0}^{1}(\Omega)}^{2} .
\end{aligned}
$$

We also notice that H_{λ} is bounded away from zero on \mathcal{N}_{λ}. Indeed, for all $u \in \mathcal{N}_{\lambda}$, using (3), (2) and the embedding of $H_{0}^{1}(\Omega)$ into $L^{q}(\Omega)$, we get

$$
\begin{aligned}
\int_{\Omega} a\left(|\nabla u|^{2}\right)|\nabla u|^{2} d x & =\lambda \int_{\Omega} g(x, u) u d x \leq \lambda \kappa \int_{\Omega} u^{q} d x \\
& \leq \lambda \rho\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{q / 2} \leq \lambda \rho 2^{q / 2}\left(\int_{\Omega} a\left(|\nabla u|^{2}\right)|\nabla u|^{2} d x\right)^{q / 2}
\end{aligned}
$$

for some constant $\rho>0$, and hence

$$
\int_{\Omega} a\left(|\nabla u|^{2}\right)|\nabla u|^{2} d x \geq\left(2^{q / 2} \lambda \rho\right)^{-\frac{2}{q-2}} .
$$

By (11) we conclude

$$
\begin{equation*}
H_{\lambda}(u) \geq \frac{1}{2} \frac{\vartheta-2}{2 \vartheta}\left(2^{q / 2} \rho\right)^{-\frac{2}{q-2}} \lambda^{-\frac{2}{q-2}} . \tag{12}
\end{equation*}
$$

Step 5. Estimate on the coefficients α (defined in Step 2).

Claim. For all $u \in \mathcal{N}_{\lambda}$, if w is a solution of (7) and α is such that $\alpha w \in \mathcal{N}_{\lambda}$, then

$$
\begin{equation*}
\alpha \leq \sqrt{\frac{4 \vartheta}{\vartheta-2}} . \tag{13}
\end{equation*}
$$

By inequality (10) we get, setting $v=\alpha w$,

$$
\begin{equation*}
\alpha\left(\int_{\Omega} a\left(|\nabla u|^{2}\right)|\nabla u|^{2} d x\right)^{1 / 2} \leq\left(\int_{\Omega} a\left(|\nabla u|^{2}\right)|\nabla v|^{2} d x\right)^{1 / 2} . \tag{14}
\end{equation*}
$$

As, by (11) and (2),

$$
H_{\lambda}(u) \leq \int_{\Omega} a\left(|\nabla u|^{2}\right)|\nabla u|^{2} d x
$$

we obtain, using (14), (2) and (11),

$$
\begin{aligned}
\alpha\left(H_{\lambda}(u)\right)^{\frac{1}{2}} & \leq \alpha\left(\int_{\Omega} a\left(|\nabla u|^{2}\right)|\nabla u|^{2} d x\right)^{\frac{1}{2}} \leq\left(\int_{\Omega} a\left(|\nabla u|^{2}\right)|\nabla v|^{2} d x\right)^{\frac{1}{2}} \\
& \leq\left(\int_{\Omega}|\nabla v|^{2} d x\right)^{\frac{1}{2}} \leq\left(2 \int_{\Omega} a\left(|\nabla v|^{2}\right)|\nabla v|^{2} d x\right)^{\frac{1}{2}} \\
& \leq\left(\frac{8 \vartheta}{\vartheta-2} H_{\lambda}(u)\right)^{\frac{1}{2}},
\end{aligned}
$$

Step 6. The map T_{λ}. In case $N=2$, we set $\eta_{0}=1$. In case $N \geq 3$, we set

$$
\eta_{0}=\frac{2^{*}}{q-1}=\frac{2 N}{N-2} \frac{1}{q-1} .
$$

If $\eta_{0} \geq \frac{N}{2}$, we set $l=0$.
Claim. If $\eta_{0}<\frac{N}{2}$, there exists an integer $l \geq 1$, depending only on N and q, and real numbers $\eta_{1}, \eta_{2}, \ldots, \eta_{l}$ defined by

$$
\eta_{i}^{*}=\frac{N \eta_{i}}{N-2 \eta_{i}} \quad \text { and } \quad \eta_{i+1}=\frac{\eta_{i}^{*}}{q-1}
$$

for all $i=0, \ldots, l-1$, such that $\eta_{0}<\eta_{1}<\cdots<\eta_{l-1}<N / 2 \leq \eta_{l}$. As $q<\frac{2 N}{N-2}$ we obtain

$$
\frac{N}{\left(N-2 \eta_{0}\right)(q-1)}>1,
$$

so that we can pick $\varepsilon>0$ such that

$$
1+\varepsilon<\frac{N}{\left(N-2 \eta_{0}\right)(q-1)}
$$

Observe that

$$
\eta_{1}-\eta_{0}=\eta_{0}\left(\frac{N}{\left(N-2 \eta_{0}\right)(q-1)}-1\right)>\varepsilon \eta_{0} .
$$

By a recursive argument we obtain

$$
\eta_{i+1}-\eta_{i}=\eta_{i}\left(\frac{N}{\left(N-2 \eta_{i}\right)(q-1)}-1\right)>\eta_{0}\left(\frac{N}{\left(N-2 \eta_{0}\right)(q-1)}-1\right)>\varepsilon \eta_{0}
$$

which proves the claim.

Fix $p>N$ and let $u \in W^{2, p}(\Omega) \cap \mathcal{N}_{\lambda}$. We define by induction a finite sequence $\left(u_{n}\right)_{0 \leq n \leq l+2}$, with $u_{n} \in W^{2, p}(\Omega) \cap \mathcal{N}_{\lambda}$, as follows: let w_{n+1} be the solution of the linear problem

$$
\begin{cases}-\operatorname{div}\left(a\left(\left|\nabla u_{n}\right|^{2}\right) \nabla w\right)=\lambda g\left(x, u_{n}\right) & \text { in } \Omega \tag{15}\\ w=0 & \text { on } \partial \Omega\end{cases}
$$

according to the claim in Step 2 there exists a unique α_{n+1} such that $\alpha_{n+1} w_{n+1} \in \mathcal{N}_{\lambda}$, hence we can define

$$
\begin{equation*}
u_{n+1}=\alpha_{n+1} w_{n+1} \in \mathcal{N}_{\lambda} . \tag{16}
\end{equation*}
$$

As $u_{n} \in W^{2, p}(\Omega)$, we get $a\left(\left|\nabla u_{n}\right|^{2}\right) \in W^{1, p}(\Omega)$; then by the L^{p}-regularity theory (see [2, Ch. 9.5] and in particular the note at p. 241) we have $u_{n+1} \in W^{2, p}(\Omega)$. Moreover, by (8), we have

$$
\begin{equation*}
H_{\lambda}\left(u_{n+1}\right) \leq H_{\lambda}\left(u_{0}\right) \tag{17}
\end{equation*}
$$

for all n. Let us define the mapping $T_{\lambda}: \mathcal{N}_{\lambda} \cap W^{2, p}(\Omega) \rightarrow \mathcal{N}_{\lambda} \cap W^{2, p}(\Omega)$ by $T_{\lambda}(u)=u_{l+2}$.
Step 7. Norm estimates on T_{λ}. Fix an arbitrary $\kappa_{0}>0$ (a suitable value of κ_{0} will be chosen in Step 8). For any $u_{0} \in W^{2, p}(\Omega)$ let $u_{1}, \ldots, u_{l+2}=T_{\lambda}(u)$ be defined as in Step 6. Assume

$$
\left\|u_{0}\right\|_{W^{2, p}(\Omega)} \leq 1 \quad \text { and } \quad H_{\lambda}\left(u_{0}\right) \leq \kappa_{0} \lambda^{-\frac{2}{q-2}}
$$

In the following argument the symbols $\kappa_{1}, \kappa_{2}, \ldots$ will denote various constants independent of λ. Suppose $l>1$. Then, by (11), we obtain

$$
\left\|u_{0}\right\|_{H_{0}^{1}(\Omega)} \leq \kappa_{1} \lambda^{-\frac{1}{q-2}}
$$

By the embedding of $H_{0}^{1}(\Omega)$ into $L^{2^{*}}(\Omega)$ we get

$$
\left\|u_{0}\right\|_{L^{2^{*}}(\Omega)} \leq \kappa_{2} \lambda^{-\frac{1}{q-2}}
$$

By (3) we obtain

$$
\left\|\lambda g\left(\cdot, u_{0}\right)\right\|_{L^{\eta_{0}}(\Omega)} \leq \lambda \kappa\left\|u_{0}^{q-1}\right\|_{L^{\eta_{0}}(\Omega)}=\lambda \kappa\left\|u_{0}\right\|_{L^{2^{*}}(\Omega)}^{q-1} \leq \kappa_{3} \lambda^{-\frac{1}{q-2}} .
$$

As $u_{0} \in W^{2, p}(\Omega)$ we have $a\left(\left|\nabla u_{0}\right|^{2}\right) \in W^{1, p}(\Omega)$; by the L^{p}-regularity theory [2, Ch. 9.5] we have $u_{1} \in W^{2, p}(\Omega)$ and

$$
\left\|u_{1}\right\|_{W^{2, \eta_{0}}(\Omega)} \leq \kappa_{4} \lambda^{-\frac{1}{q-2}} .
$$

We can assume λ to have been chosen so large that

$$
\kappa_{4} \lambda^{-\frac{1}{q-2}} \leq 1 .
$$

By the embedding of $W^{2, \eta_{0}}(\Omega)$ into $L^{\eta_{0}^{*}}(\Omega)$ we get

$$
\left\|u_{1}\right\|_{L^{\eta_{0}^{*}(\Omega)}} \leq \kappa_{5} \lambda^{-\frac{1}{q-2}} .
$$

Applying recursively the same argument to $u_{1}, u_{2}, \ldots, u_{l}$, we finally obtain

$$
\begin{gathered}
\left\|\lambda g\left(\cdot, u_{l-1}\right)\right\|_{L^{\eta_{l-1}(\Omega)}} \leq \lambda \kappa\left\|u_{l-1}^{q-1}\right\|_{L^{\eta_{l-1}(\Omega)}}=\lambda \kappa\left\|u_{l-1}\right\|_{L^{\eta_{l-1}^{*}(\Omega)}}^{q-1} \leq \kappa_{6} \lambda^{-\frac{1}{q-2}}, \\
\left\|u_{l}\right\|_{W^{2, \eta_{l-1}}(\Omega)} \leq \kappa_{7} \lambda^{-\frac{1}{q-2}}, \quad\left\|u_{l}\right\|_{L^{\eta_{l-1}^{*}(\Omega)}} \leq \kappa_{8} \lambda^{-\frac{1}{q-2}},
\end{gathered}
$$

and

$$
\left\|\lambda g\left(\cdot, u_{l}\right)\right\|_{L^{\eta_{l-1}(\Omega)}} \leq \kappa_{9} \lambda^{-\frac{1}{q-2}}, \quad\left\|u_{l+1}\right\|_{W^{2, \eta_{l}(\Omega)}} \leq \kappa_{10} \lambda^{-\frac{1}{q-2}}
$$

By the embedding of $W^{2, \eta_{l}}(\Omega)$ into $L^{p(q-1)}(\Omega)$ we also obtain

$$
\begin{gathered}
\left\|u_{l+1}\right\|_{L^{p(q-1)}(\Omega)} \leq \kappa_{11} \lambda^{-\frac{1}{q-2}}, \\
\left\|\lambda g\left(u_{l+1}\right)\right\|_{L^{p}(\Omega)} \leq \lambda \kappa\left\|u_{l+1}^{q-1}\right\|_{L^{p}(\Omega)}=\lambda \kappa\left\|u_{l+1}\right\|_{L^{p(q-1)}(\Omega)}^{q-1} \leq \kappa_{12} \lambda^{-\frac{1}{q-2}}
\end{gathered}
$$

and finally

$$
\begin{equation*}
\left\|T_{\lambda}(u)\right\|_{W^{2, p}(\Omega)}=\left\|u_{l+2}\right\|_{W^{2, p}(\Omega)} \leq \kappa_{13} \lambda^{-\frac{1}{q-2}} . \tag{18}
\end{equation*}
$$

We can assume λ to have been chosen so large that $\left\|u_{n+1}\right\|_{W^{2, \eta_{n}(\Omega)}} \leq 1$, for each $n=1, \ldots, l$, and $\left\|u_{l+2}\right\|_{W^{2, p}(\Omega)} \leq 1$.
Step 8. The set S_{λ}. Fix any $\hat{w} \in C_{c}^{\infty}(\bar{\Omega}) \backslash\{0\}$, with $\hat{w}(x) \geq 0$ in Ω. According to the claim in Step 2 there exists $\hat{\alpha}$ such that $\hat{\alpha} \hat{w} \in \mathcal{N}_{\lambda}$. We have, by (2) and (3),

$$
\hat{\alpha}^{2} \int_{\Omega}|\nabla \hat{w}|^{2} d x \geq \int_{\Omega} a\left(|\nabla \hat{\alpha} \hat{w}|^{2}\right)|\nabla \hat{\alpha} \hat{w}|^{2} d x=\lambda \int_{\Omega} g(x, \hat{\alpha} \hat{w}) \hat{\alpha} \hat{w} d x \geq \lambda \hat{\alpha}^{q} \int_{\Omega}|\hat{w}|^{q} d x
$$

so that

$$
\hat{\alpha} \leq \lambda^{-\frac{1}{q-2}}\|\hat{w}\|_{H_{0}^{1}(\Omega)}^{\frac{2}{q-2}}\|\hat{w}\|_{L^{q}(\Omega)}^{-\frac{q}{q-2}} .
$$

At the beginning of Step 7 we fixed an arbitrary constant $\kappa_{0}>0$. Now we choose

$$
\begin{equation*}
\kappa_{0}=\frac{1}{2}\|\hat{w}\|_{H_{0}^{1}(\Omega)}^{\frac{2 q}{q-2}}\|\hat{w}\|_{L^{q}(\Omega)}^{-\frac{2 q}{q-2}} \tag{19}
\end{equation*}
$$

We also set

$$
\begin{equation*}
m_{1}=\max \left\{\kappa_{13},\|\hat{w}\|_{W^{2, p}(\Omega)}\|\hat{w}\|_{H_{0}^{1}(\Omega)}^{\frac{2}{q-2}}\|\hat{w}\|_{L^{q}(\Omega)}^{-\frac{q}{q-2}}\right\} \tag{20}
\end{equation*}
$$

with κ_{13} defined in Step 7 . Set $\hat{u}=\hat{\alpha} \hat{w}$, then

$$
\begin{equation*}
\|\hat{u}\|_{W^{2, p}(\Omega)} \leq m_{1} \lambda^{-\frac{1}{q-2}} \tag{21}
\end{equation*}
$$

and, by (11),

$$
\begin{equation*}
H_{\lambda}(\hat{u}) \leq \kappa_{0} \lambda^{-\frac{2}{q-2}} . \tag{22}
\end{equation*}
$$

We define the set

$$
S_{\lambda}=\left\{u \in \mathcal{N}_{\lambda} \cap W^{2, p}(\Omega) \left\lvert\,\|u\|_{W^{2, p}(\Omega)} \leq m_{1} \lambda^{-\frac{1}{q-2}}\right., H_{\lambda}(u) \leq \kappa_{0} \lambda^{-\frac{2}{q-2}}\right\}
$$

Notice that, due to (21) and (22), S_{λ} is not empty. Moreover, by choosing $\lambda \geq m_{1}^{q-2}$, we guarantee, for all $u \in S_{\lambda}$,

$$
\begin{equation*}
\|u\|_{W^{2, p}(\Omega)} \leq 1 \tag{23}
\end{equation*}
$$

and, by (17),

$$
\begin{equation*}
H_{\lambda}\left(T_{\lambda}(u)\right) \leq \kappa_{0} \lambda^{-\frac{2}{q-2}} . \tag{24}
\end{equation*}
$$

Notice finally that, by $(24),(23),(18),(19)$ and (20), T_{λ} maps the set S_{λ} into itself.

Step 9. Existence of a positive solution of (6) for all large λ. Pick $\lambda \geq m_{1}^{q-2}$ so that (23) holds. We will show that H_{λ} has minimum in S_{λ}. By (12) H_{λ} is bounded from below in S_{λ}. Let $\left(u_{k}\right)_{k}$ be a minimizing sequence in S_{λ}. As $\left(u_{k}\right)_{k}$ is bounded in $W^{2, p}(\Omega)$ and $W^{2, p}(\Omega)$ is reflexive, there exists a subsequence of $\left(u_{k}\right)_{k}$, we still denote by $\left(u_{k}\right)_{k}$, weakly convergent in $W^{2, p}(\Omega)$ and, hence strongly convergent in $C^{1}(\bar{\Omega})$, to a function $\bar{u} \in W^{2, p}(\Omega)$. As \mathcal{N}_{λ} is closed in $C^{1}(\bar{\Omega}), H_{\lambda}$ is continuous with respect to the $C^{1}(\bar{\Omega})$ convergence and

$$
\|\bar{u}\|_{W^{2, p}(\Omega)} \leq \liminf _{n \rightarrow+\infty}\left\|u_{n}\right\|_{W^{2, p}(\Omega)}
$$

we have $\bar{u} \in S_{\lambda}$ and $H_{\lambda}(\bar{u})=\min _{S_{\lambda}} H_{\lambda}(u)$. Recalling the recursive definitions given in Step 6 of $\bar{u}_{0}=\bar{u}, \bar{u}_{1}, \ldots, \bar{u}_{l+2}=T_{\lambda}(\bar{u})$, we obtain, by (17),

$$
H_{\lambda}(\bar{u}) \leq H_{\lambda}\left(T_{\lambda}(\bar{u})\right)=H_{\lambda}\left(\bar{u}_{l+2}\right) \leq \cdots \leq H_{\lambda}\left(\bar{u}_{1}\right) \leq H_{\lambda}(\bar{u})
$$

and hence, in particular,

$$
H_{\lambda}(\bar{u})=H_{\lambda}\left(\bar{u}_{1}\right) .
$$

By the claim in Step 3 we conclude that \bar{u} is a solution of (6). As a limit of non-negative functions, \bar{u} is also non-negative. Further, by (12), \bar{u} is non-trivial.

Step 10. Existence of a positive solution $u_{\lambda} \in W^{2, p}(\Omega)$ of (1) for all large λ. Set

$$
\lambda_{*}=\left(\frac{m_{1}}{\min \{1, r\}}\right)^{q-2}
$$

where m_{1} is defined in Step 8, and fix $\left.\lambda \in\right] \lambda_{*},+\infty\left[\right.$. Let $u_{\lambda} \in W^{2, p}(\Omega)$ be the solution of (6) whose existence is proved in Step 9. Since $\left\|\nabla u_{\lambda}\right\|_{\infty} \leq 1$ and $\left\|u_{\lambda}\right\|_{\infty} \leq r, u_{\lambda}$ is a non-trivial non-negative solution of (1) too. The strong maximum principle and the Hopf boundary lemma imply that $u(x)>0$ in Ω and $\frac{\partial u}{\partial n}(x)<0$ on $\partial \Omega$. Finally, estimates (11) and (21) yield

$$
\int_{\Omega}\left(\sqrt{1+\left|\nabla u_{\lambda}\right|^{2}}-1\right) d x-\lambda \int_{\Omega} F\left(x, u_{\lambda}\right) d x>0
$$

and

$$
\lim _{\lambda \rightarrow+\infty}\left\|u_{\lambda}\right\|_{W^{2, p}(\Omega)}=0
$$

References

[1] C.V. Coffman and W.K. Ziemer, A prescribed mean curvature problem on domains without radial symmetry, SIAM J. Math. Anal. 22, 982-990 (1991).
[2] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Second Edition. Springer-Verlag, Berlin, 1983.
[3] F. Obersnel and P. Omari, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation, preprint (2009).

