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Abstract

We produce a detailed proof of a result of C.V. Coffman and W.K. Ziemer [1] on the
existence of positive solutions of the Dirichlet problem for the prescribed mean curvature
equation
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q
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´
= λf(x, u) in Ω, u = 0 on ∂Ω,

assuming that f has a superlinear behaviour at u = 0 .
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1 Statements

In [1] C.V. Coffman and W.K. Ziemer proved the following result concerning the existence of
positive solutions of the Dirichlet problem for the prescribed mean curvature equation

−div
(
∇u/

√
1 + |∇u|2

)
= λf(x, u) in Ω, u = 0 on ∂Ω. (1)

A solution u of problem (1) is intended in the strong sense, namely a function u ∈W 2,p(Ω), for
some p > N , which satisfies the equation in (1) a.e. in Ω and the Dirichlet boundary condition
pointwise on ∂Ω.

Theorem 1.1. Assume

(h0) Ω is a bounded domain in RN (N ≥ 2) with a C1,1 boundary ∂Ω;

(h1) f : Ω̄× [0,+∞[→ R is continuous;

(h2) there exist constants r > 0, c > 1 and q > 2, with q < 2N
N−2 if N ≥ 3, such that

sq−1 ≤ f(x, s) ≤ csq−1

for every x ∈ Ω̄ and every s ∈ [0, r];
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(h3) there exist constants r > 0 and ε > 0 such that

f(x, s)
s1+ε

<
f(x, t)
t1+ε

for every x ∈ Ω̄ and every s, t ∈ ]0, r], with s < t.

Then, for any given p > N , there exists λ∗ ∈ [0,+∞[ such that, for every λ ∈ ]λ∗,+∞[, problem
(1) has at least one non-trivial non-negative solution uλ ∈ H1

0 (Ω) ∩W 2,p(Ω) satisfying

lim
λ→+∞

‖uλ‖W 2,p(Ω) = 0.

Theorem 1.1 plays an important role in the existence theory of positive solutions for problem
(1) (see e.g. [3] and the references therein). Since the rather delicate argument of the original
proof was presented in [1] in a rather synthetic form and the involved ideas may be usefully
exploited in other situations, we decided to produce here a detailed proof of such result. Actually
we will prove the following slightly more general version of Theorem 1.1.

Theorem 1.2. Assume

(i0) Ω is a bounded domain in RN (N ≥ 2) with a C1,1 boundary ∂Ω;

(i1) f : Ω× [0,+∞[→ R satisfies the Carathéodory conditions;

(i2) there exist constants r > 0, c > 1 and q > 2, with q < 2N
N−2 if N ≥ 3, such that

sq−1 ≤ f(x, s) ≤ csq−1

for a.e. x ∈ Ω and every s ∈ [0, r];

(i3) there exist constants r > 0 and ϑ > 2 such that

ϑF (x, s) ≤ sf(x, s)

for a.e. x ∈ Ω and every s ∈ [0, r], where F (x, s) =
∫ s

0
f(x, t) dt;

(i4) there exists a constant r > 0 such that

f(x, s)
s

≤ f(x, t)
t

for a.e. x ∈ Ω and every s, t ∈ ]0, r], with s < t.

Then, for any given p > N , there exists λ∗ ∈ [0,+∞[ such that, for every λ ∈ ]λ∗,+∞[, problem
(1) has at least one solution uλ ∈ H1

0 (Ω) ∩W 2,p(Ω), satisfying uλ(x) > 0 for every x ∈ Ω and
∂uλ
∂n (x) < 0 for every x ∈ ∂Ω, n being the unit outer normal at x ∈ ∂Ω,∫

Ω

(
√

1 + |∇uλ|2 − 1) dx− λ
∫

Ω

F (x, uλ) dx > 0 and lim
λ→+∞

‖uλ‖W 2,p(Ω) = 0.

Remark 1.1 Assumption (i2) requires f(·, s) to be superlinear near s = 0. Assumption (i3)
is the classical Ambrosetti-Rabinowitz condition near s = 0. Observe that (i2) and (i3) yield
ϑ ≤ q. Assumption (i4) has a technical character and allows to implement the Nehari method.
Note that assumption (h3) implies (i3), with ϑ = 1 + ε, and (i4).
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2 Proof

The proof of Theorem 1.2 proceeds along several steps.
Step 1. A modified problem. Let a : [0,+∞[ → [ 1

2 ,+∞[ be a strictly decreasing continuous
function, such that a(s) = (1 + s)−1/2 if s ∈ [0, 1], and set A(s) =

∫ s
0
a(t) dt. Note that, for

every s ≥ 0,
1
2
< a(s) ≤ 1 and

1
2
s ≤ A(s) ≤ s. (2)

We also set, for a.e. x ∈ Ω and every s ∈ R,

g(x, s) = 0 if s < 0,
= f(x, s) if s ∈ [0, r[,

=
f(x, r)
rq−1

sq−1 if s ≥ r

and
G(x, u) =

∫ u

0

g(x, s) ds,

where q is defined in (i2). The function g : Ω × R → [0,+∞[ satisfies the Carathéodory
conditions and, by (i2), there exists a constant κ > 0 such that

sq−1 ≤ g(x, s) ≤ κsq−1 (3)

for a.e. x ∈ Ω and every s ∈ [0,+∞[. Further, by (i3), we have

ϑG(x, s) ≤ sg(x, s) (4)

for a.e. x ∈ Ω and every s ∈ [0,+∞[, with ϑ > 2 given in (i3). We further set, for a.e. x ∈ Ω
and every s ∈ [0,+∞[,

γ(x, s) = 0 if s ≤ 0,

=
g(x, s)
s

if s > 0.

Clearly γ satisfies the Carathéodory conditions and, by (i4),

γ(x, s) ≤ γ(x, t) (5)

for a.e. x ∈ Ω and every s, t ∈ R, with s < t. Let us consider the modified problem

−div
(
a(|∇u|2)∇u

)
= λg(x, u) in Ω, u = 0 on ∂Ω. (6)

We associate with this problem the functional Hλ : H1
0 (Ω)→ R defined by

Hλ(u) =
1
2

∫
Ω

A(|∇u|2) dx− λ
∫

Ω

G(x, u) dx.

The critical points of Hλ are the weak solutions in H1
0 (Ω) of (6). Note that any such solution

satisfies u(x) ≥ 0 a.e. in Ω. Indeed, let u be a weak solution in H1
0 (Ω) of (6). Testing against

v = −u− and using (2) and (3) we obtain

1
2

∫
Ω

|∇u−|2 dx ≤
∫

Ω

a(|∇u−|2) |∇u−|2 dx

= −
∫

Ω

a(|∇u|2)∇u · ∇u− dx = −λ
∫

Ω

g(x, u)u− dx ≤ 0.

Therefore u− = 0, i.e. u(x) ≥ 0 a.e. in Ω.



4

Step 2. The Nehari manifold and its properties. For any given λ > 0 we set

Nλ =
{
u ∈ H1

0 (Ω) \ {0} |
∫

Ω

a(|∇u|2)|∇u|2 dx = λ

∫
Ω

g(x, u)u dx
}
.

Notice that, if u ∈ Nλ, then u(x) > 0 in a set of positive measure. Observe also that any
non-trivial solution u of (6) belongs to Nλ.
Claim. For every w ∈ H1

0 (Ω) \ {0}, with w(x) ≥ 0 a.e. in Ω, there is a unique α > 0 such that
αw ∈ Nλ. Take w ∈ H1

0 (Ω) \ {0}, with w(x) ≥ 0 a.e. in Ω, and define h : [0,+∞[→ R by

h(t) = Hλ(tw) =
1
2

∫
Ω

A(t2|∇w|2) dx− λ
∫

Ω

G(x, tw) dx.

Note that
h′(t) =

∫
Ω

a(t2|∇w|2)t|∇w|2 dx− λ
∫

Ω

g(x, tw)w dx

for all t ≥ 0 and h′(α) = 0 for some α > 0 if and only if∫
Ω

a(α2|∇w|2)α|∇w|2 dx = λ

∫
Ω

g(x, αw)w dx,

i.e. if and only if αw ∈ Nλ. Conditions (2) and (3) imply that

1
4
t2
∫

Ω

|∇w|2 dx− λκ

q
tq
∫

Ω

wq dx ≤ h(t) ≤ 1
2
t2
∫

Ω

|∇w|2 dx− λ

q
tq
∫

Ω

wq dx

for all t ≥ 0. Therefore there exists δ > 0 such that h(t) > 0 if t ∈ ]0, δ[ and h(t) < 0 if
t ∈ ] 1

δ ,+∞[. As h(0) = 0 we conclude that h has a maximum at some point α > 0. Hence we
have h′(α) = 0 and αw ∈ Nλ. Let us observe that α is unique. Indeed, if α1, α2 ∈ ]0,+∞[
are critical points of h and we assume α1 < α2, then, as a is strictly decreasing and γ is
non-decreasing, we have∫

Ω

a(α2
1|∇w|2)α1|∇w|2 dx = λ

∫
Ω
g(x, α1w)w dx = λ

∫
Ω
γ(x, α1w)α1w

2 dx

≤ α1

α2
λ

∫
Ω

γ(x, α2w)α2w
2 dx =

α1

α2
λ

∫
Ω

g(x, α2w)w dx =
α1

α2

∫
Ω

a(α2
2|∇w|2)α2|∇w|2 dx

<

∫
Ω

a(α2
1|∇w|2)α1|∇w|2 dx,

which is a contradiction.

Step 3. Linear problems parametrized over the Nehari manifold. For any u ∈ Nλ we consider
the linear problem

−div
(
a(|∇u|2)∇w

)
= λg(x, u) in Ω, w = 0 on ∂Ω, (7)

where, by (i2), g(·, u) ∈ L2(Ω). By Lax-Milgram Theorem problem (7) has a unique solution
w ∈ H1

0 (Ω). Moreover, since g(x, u(x)) ≥ 0 for a.e. x ∈ Ω and g(x, u(x)) > 0 on a set of
positive measure, the weak maximum principle implies that w(x) ≥ 0 a.e. in Ω and w(x) > 0
on a set of positive measure.
Claim. Take u ∈ Nλ and let w ∈ H1

0 (Ω) be the solution of (7). Then there exists a unique
α > 0 such that αw ∈ Nλ. Moreover

Hλ(αw) ≤ Hλ(u) (8)
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and Hλ(αw) = Hλ(u) if and only if u is a solution of (6). According to the claim in Step 2
there exists a unique α > 0 such that αw ∈ Nλ. Let us prove that Hλ(αw) ≤ Hλ(u). Since A
is concave in [0,+∞[, for every s1, s2 ∈ [0,+∞[ we have

A(s2)−A(s1) ≤ a(s1)(s2 − s1).

Since, by (5), the function G(x,
√
·) is convex in [0,+∞[, for all x ∈ Ω̄ and every s1, s2 ∈ [0,+∞[

we have
G(x,

√
s2)−G(x,

√
s1) ≥ 1

2
γ(x,
√
s1)(s2 − s1).

Setting v = αw we get

2
(
Hλ(v)−Hλ(u)

)
=
∫

Ω

(
A(|∇v|2)−A(|∇u|2)

)
dx− 2λ

∫
Ω

(
G(x, v)−G(x, u)

)
dx

≤
∫

Ω

a(|∇u|2)
(
|∇v|2 − |∇u|2

)
dx− λ

∫
Ω

γ(x, u)
(
v2 − u2

)
dx

= αλ

∫
Ω

g(x, u)v dx− λ
∫

Ω

γ(x, u)v2 dx

= λ
(
α

∫
Ω

γ(x, u)uv dx−
∫

Ω

γ(x, u)v2 dx
)
.

By Schwarz inequality we get

αλ

∫
Ω

γ(x, u)u2 dx =
∫

Ω

a(|∇u|2)∇v∇u dx

≤
( ∫

Ω

a(|∇u|2)|∇v|2 dx
)1/2( ∫

Ω

a(|∇u|2)|∇u|2 dx
)1/2

=
(
αλ

∫
Ω

γ(x, u)uv dx
)1/2(

λ

∫
Ω

γ(x, u)u2 dx
)1/2

.

(9)

Therefore we have (
α

∫
Ω

γ(x, u)u2 dx
)1/2 ≤ ( ∫

Ω

γ(x, u)uv dx
)1/2 (10)

and hence, using Schwarz inequality again,(
α

∫
Ω

γ(x, u)u2 dx
)1/2( ∫

Ω

γ(x, u)uv dx
)1/2 ≤ ∫

Ω

γ(x, u)uv dx

≤
( ∫

Ω

γ(x, u)u2 dx
)1/2( ∫

Ω

γ(x, u)v2 dx
)1/2

.

This yields

α

∫
Ω

γ(x, u)uv dx ≤
∫

Ω

γ(x, u)v2 dx

and therefore

Hλ(v)−Hλ(u) ≤ 1
2
λ
(
α

∫
Ω

γ(x, u)uv dx−
∫

Ω

γ(x, u)v2 dx
)
≤ 0.

On the other hand, if Hλ(v) = Hλ(u), then

α

∫
Ω

γ(x, u)uv dx =
∫

Ω

γ(x, u)v2 dx
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and
α

∫
Ω

γ(x, u)uv dx =
(
α

∫
Ω

γ(x, u)u2 dx
)1/2( ∫

Ω

γ(x, u)uv dx
)1/2

.

This implies that

α

∫
Ω

γ(x, u)u2 dx =
∫

Ω

γ(x, u)uv dx

and, from (9),∫
Ω

a(|∇u|2)∇v∇u dx =
( ∫

Ω

a(|∇u|2)|∇v|2 dx
)1/2( ∫

Ω

a(|∇u|2)|∇u|2 dx
)1/2

.

Therefore u and v are proportional and hence there is t > 0 such that w = tu. This means that
u is a solution of

−div
(
a(|∇u|2)∇u

)
=
λ

t
g(x, u) in Ω, u = 0 on ∂Ω

and hence, as u ∈ Nλ, t = 1 and u is a solution of (6).

Step 4. Estimates on the functional Hλ on Nλ. For all u ∈ Nλ we have

1
2
ϑ− 2

2ϑ
‖u‖2H1

0 (Ω) ≤
1
2
ϑ− 2

2ϑ

∫
Ω

a(|∇u|2)|∇u|2 dx ≤ Hλ(u) ≤ 1
2
‖u‖2H1

0 (Ω), (11)

ϑ being defined in (i3). Indeed we have

Hλ(u) =
1
2

∫
Ω

A(|∇u|2) dx− λ
∫

Ω

G(x, u) dx ≤ 1
2

∫
Ω

|∇u|2 dx

and, by (4) and (2),

Hλ(u) ≥ 1
2

∫
Ω

a(|∇u|2)|∇u|2 dx− λ

ϑ

∫
Ω

g(x, u) dx

=
(

1
2 −

1
ϑ

) ∫
Ω
a(|∇u|2)|∇u|2 dx ≥ 1

2
ϑ− 2

2ϑ
‖u‖2H1

0 (Ω).

We also notice that Hλ is bounded away from zero on Nλ. Indeed, for all u ∈ Nλ, using (3),
(2) and the embedding of H1

0 (Ω) into Lq(Ω), we get∫
Ω

a(|∇u|2)|∇u|2 dx = λ

∫
Ω

g(x, u)u dx ≤ λκ
∫

Ω

uq dx

≤ λρ
( ∫

Ω

|∇u|2 dx
)q/2 ≤ λρ2q/2

( ∫
Ω

a(|∇u|2)|∇u|2 dx
)q/2

,

for some constant ρ > 0, and hence∫
Ω

a(|∇u|2)|∇u|2 dx ≥
(
2q/2λρ

)− 2
q−2 .

By (11) we conclude

Hλ(u) ≥ 1
2
ϑ− 2

2ϑ
(
2q/2ρ

)− 2
q−2λ−

2
q−2 . (12)

Step 5. Estimate on the coefficients α (defined in Step 2).
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Claim. For all u ∈ Nλ, if w is a solution of (7) and α is such that αw ∈ Nλ, then

α ≤
√

4ϑ
ϑ− 2

. (13)

By inequality (10) we get, setting v = αw,

α
( ∫

Ω

a(|∇u|2)|∇u|2 dx
)1/2 ≤ ( ∫

Ω

a(|∇u|2)|∇v|2 dx
)1/2

. (14)

As, by (11) and (2),

Hλ(u) ≤
∫

Ω

a(|∇u|2)|∇u|2 dx,

we obtain, using (14), (2) and (11),

α
(
Hλ(u)

) 1
2 ≤ α

( ∫
Ω

a(|∇u|2)|∇u|2 dx
) 1

2 ≤
( ∫

Ω

a(|∇u|2)|∇v|2 dx
) 1

2

≤
( ∫

Ω

|∇v|2 dx
) 1

2 ≤
(
2
∫

Ω

a(|∇v|2)|∇v|2 dx
) 1

2

≤
( 8ϑ
ϑ− 2

Hλ(u)
) 1

2 ,

Step 6. The map Tλ. In case N = 2, we set η0 = 1. In case N ≥ 3, we set

η0 =
2∗

q − 1
=

2N
N − 2

1
q − 1

.

If η0 ≥ N
2 , we set l = 0.

Claim. If η0 <
N
2 , there exists an integer l ≥ 1, depending only on N and q, and real numbers

η1, η2, . . . , ηl defined by

η∗i =
Nηi

N − 2ηi
and ηi+1 =

η∗i
q − 1

,

for all i = 0, . . . , l − 1, such that η0 < η1 < · · · < ηl−1 < N/2 ≤ ηl. As q < 2N
N−2 we obtain

N

(N − 2η0)(q − 1)
> 1,

so that we can pick ε > 0 such that

1 + ε <
N

(N − 2η0)(q − 1)
.

Observe that
η1 − η0 = η0

( N

(N − 2η0)(q − 1)
− 1
)
> εη0.

By a recursive argument we obtain

ηi+1 − ηi = ηi
( N

(N − 2ηi)(q − 1)
− 1
)
> η0

( N

(N − 2η0)(q − 1)
− 1
)
> εη0,

which proves the claim.
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Fix p > N and let u ∈ W 2,p(Ω) ∩ Nλ. We define by induction a finite sequence (un)0≤n≤l+2,
with un ∈W 2,p(Ω) ∩Nλ, as follows: let wn+1 be the solution of the linear problem{

−div
(
a(|∇un|2)∇w

)
= λg(x, un) in Ω,

w = 0 on ∂Ω;
(15)

according to the claim in Step 2 there exists a unique αn+1 such that αn+1wn+1 ∈ Nλ, hence
we can define

un+1 = αn+1wn+1 ∈ Nλ. (16)

As un ∈ W 2,p(Ω), we get a(|∇un|2) ∈ W 1,p(Ω); then by the Lp-regularity theory (see [2, Ch.
9.5] and in particular the note at p. 241) we have un+1 ∈W 2,p(Ω). Moreover, by (8), we have

Hλ(un+1) ≤ Hλ(u0), (17)

for all n. Let us define the mapping Tλ : Nλ ∩W 2,p(Ω)→ Nλ ∩W 2,p(Ω) by Tλ(u) = ul+2.

Step 7. Norm estimates on Tλ. Fix an arbitrary κ0 > 0 (a suitable value of κ0 will be chosen
in Step 8). For any u0 ∈W 2,p(Ω) let u1, . . . , ul+2 = Tλ(u) be defined as in Step 6. Assume

‖u0‖W 2,p(Ω) ≤ 1 and Hλ(u0) ≤ κ0λ
− 2
q−2 .

In the following argument the symbols κ1, κ2, . . . will denote various constants independent of
λ. Suppose l > 1. Then, by (11), we obtain

‖u0‖H1
0 (Ω) ≤ κ1λ

− 1
q−2 .

By the embedding of H1
0 (Ω) into L2∗(Ω) we get

‖u0‖L2∗ (Ω) ≤ κ2λ
− 1
q−2 .

By (3) we obtain

‖λg(·, u0)‖Lη0 (Ω) ≤ λκ‖uq−1
0 ‖Lη0 (Ω) = λκ‖u0‖q−1

L2∗ (Ω)
≤ κ3λ

− 1
q−2 .

As u0 ∈ W 2,p(Ω) we have a(|∇u0|2) ∈ W 1,p(Ω); by the Lp−regularity theory [2, Ch. 9.5] we
have u1 ∈W 2,p(Ω) and

‖u1‖W 2,η0 (Ω) ≤ κ4λ
− 1
q−2 .

We can assume λ to have been chosen so large that

κ4λ
− 1
q−2 ≤ 1.

By the embedding of W 2,η0(Ω) into Lη
∗
0 (Ω) we get

‖u1‖Lη∗0 (Ω)
≤ κ5λ

− 1
q−2 .

Applying recursively the same argument to u1, u2, . . . , ul, we finally obtain

‖λg(·, ul−1)‖Lηl−1 (Ω) ≤ λκ‖u
q−1
l−1 ‖Lηl−1 (Ω) = λκ‖ul−1‖q−1

L
η∗
l−1 (Ω)

≤ κ6λ
− 1
q−2 ,

‖ul‖W 2,ηl−1 (Ω) ≤ κ7λ
− 1
q−2 , ‖ul‖Lη∗l−1 (Ω)

≤ κ8λ
− 1
q−2 ,
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and
‖λg(·, ul)‖Lηl−1 (Ω) ≤ κ9λ

− 1
q−2 , ‖ul+1‖W 2,ηl (Ω) ≤ κ10λ

− 1
q−2 .

By the embedding of W 2,ηl(Ω) into Lp(q−1)(Ω) we also obtain

‖ul+1‖Lp(q−1)(Ω) ≤ κ11λ
− 1
q−2 ,

‖λg(ul+1)‖Lp(Ω) ≤ λκ‖uq−1
l+1 ‖Lp(Ω) = λκ‖ul+1‖q−1

Lp(q−1)(Ω)
≤ κ12λ

− 1
q−2

and finally
‖Tλ(u)‖W 2,p(Ω) = ‖ul+2‖W 2,p(Ω) ≤ κ13λ

− 1
q−2 . (18)

We can assume λ to have been chosen so large that ‖un+1‖W 2,ηn (Ω) ≤ 1, for each n = 1, . . . , l,
and ‖ul+2‖W 2,p(Ω) ≤ 1.

Step 8. The set Sλ. Fix any ŵ ∈ C∞c (Ω̄) \ {0}, with ŵ(x) ≥ 0 in Ω. According to the claim in
Step 2 there exists α̂ such that α̂ŵ ∈ Nλ. We have, by (2) and (3),

α̂2

∫
Ω

|∇ŵ|2 dx ≥
∫

Ω

a(|∇α̂ŵ|2)|∇α̂ŵ|2 dx = λ

∫
Ω

g(x, α̂ŵ)α̂ŵ dx ≥ λα̂q
∫

Ω

|ŵ|q dx,

so that
α̂ ≤ λ−

1
q−2 ‖ŵ‖

2
q−2

H1
0 (Ω)

‖ŵ‖−
q
q−2

Lq(Ω).

At the beginning of Step 7 we fixed an arbitrary constant κ0 > 0. Now we choose

κ0 =
1
2
‖ŵ‖

2q
q−2

H1
0 (Ω)

‖ŵ‖−
2q
q−2

Lq(Ω). (19)

We also set
m1 = max

{
κ13, ‖ŵ‖W 2,p(Ω)‖ŵ‖

2
q−2

H1
0 (Ω)

‖ŵ‖−
q
q−2

Lq(Ω)

}
(20)

with κ13 defined in Step 7. Set û = α̂ŵ, then

‖û‖W 2,p(Ω) ≤ m1λ
− 1
q−2 (21)

and, by (11),
Hλ(û) ≤ κ0λ

− 2
q−2 . (22)

We define the set

Sλ =
{
u ∈ Nλ ∩W 2,p(Ω) | ‖u‖W 2,p(Ω) ≤ m1λ

− 1
q−2 , Hλ(u) ≤ κ0λ

− 2
q−2
}
.

Notice that, due to (21) and (22), Sλ is not empty. Moreover, by choosing λ ≥ mq−2
1 , we

guarantee, for all u ∈ Sλ,
‖u‖W 2,p(Ω) ≤ 1 (23)

and, by (17),
Hλ(Tλ(u)) ≤ κ0λ

− 2
q−2 . (24)

Notice finally that, by (24), (23), (18), (19) and (20), Tλ maps the set Sλ into itself.
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Step 9. Existence of a positive solution of (6) for all large λ. Pick λ ≥ mq−2
1 so that (23)

holds. We will show that Hλ has minimum in Sλ. By (12) Hλ is bounded from below in Sλ.
Let (uk)k be a minimizing sequence in Sλ. As (uk)k is bounded in W 2,p(Ω) and W 2,p(Ω) is
reflexive, there exists a subsequence of (uk)k, we still denote by (uk)k, weakly convergent in
W 2,p(Ω) and, hence strongly convergent in C1(Ω̄), to a function ū ∈W 2,p(Ω). As Nλ is closed
in C1(Ω̄), Hλ is continuous with respect to the C1(Ω̄) convergence and

‖ū‖W 2,p(Ω) ≤ lim inf
n→+∞

‖un‖W 2,p(Ω),

we have ū ∈ Sλ and Hλ(ū) = min
Sλ

Hλ(u). Recalling the recursive definitions given in Step 6 of

ū0 = ū, ū1, . . . , ūl+2 = Tλ(ū), we obtain, by (17),

Hλ(ū) ≤ Hλ(Tλ(ū)) = Hλ(ūl+2) ≤ · · · ≤ Hλ(ū1) ≤ Hλ(ū)

and hence, in particular,
Hλ(ū) = Hλ(ū1).

By the claim in Step 3 we conclude that ū is a solution of (6). As a limit of non-negative
functions, ū is also non-negative. Further, by (12), ū is non-trivial.

Step 10. Existence of a positive solution uλ ∈W 2,p(Ω) of (1) for all large λ. Set

λ∗ =
( m1

min{1, r}

)q−2

,

where m1 is defined in Step 8, and fix λ ∈ ]λ∗,+∞[. Let uλ ∈ W 2,p(Ω) be the solution of (6)
whose existence is proved in Step 9. Since ‖∇uλ‖∞ ≤ 1 and ‖uλ‖∞ ≤ r, uλ is a non-trivial
non-negative solution of (1) too. The strong maximum principle and the Hopf boundary lemma
imply that u(x) > 0 in Ω and ∂u

∂n (x) < 0 on ∂Ω. Finally, estimates (11) and (21) yield∫
Ω

(
√

1 + |∇uλ|2 − 1) dx− λ
∫

Ω

F (x, uλ) dx > 0

and
lim

λ→+∞
‖uλ‖W 2,p(Ω) = 0.
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