On a result of C.V. Coffman and W.K. Ziemer about the prescribed mean curvature equation

Franco Obersnel and Pierpaolo Omari

Dipartimento di Matematica e Informatica Università degli Studi di Trieste Via A. Valerio 12/1, I-34127 Trieste, Italy E-mail: obersnel@units.it, omari@units.it

Abstract

We produce a detailed proof of a result of C.V. Coffman and W.K. Ziemer [1] on the existence of positive solutions of the Dirichlet problem for the prescribed mean curvature equation

 $-\operatorname{div}\left(\nabla u/\sqrt{1+\left|\nabla u\right|^{2}}\right) = \lambda f(x,u) \text{ in } \Omega, \qquad u = 0 \text{ on } \partial\Omega,$

assuming that f has a superlinear behaviour at u = 0.

2000 Mathematics Subject Classification: 35J25, 35J20, 35J60. Keywords and Phrases: prescribed mean curvature equation, Dirichlet problem, positive solution, variational method, Nehari method.

1 Statements

In [1] C.V. Coffman and W.K. Ziemer proved the following result concerning the existence of positive solutions of the Dirichlet problem for the prescribed mean curvature equation

$$-\operatorname{div}\left(\nabla u/\sqrt{1+\left|\nabla u\right|^{2}}\right) = \lambda f(x,u) \text{ in } \Omega, \qquad u = 0 \text{ on } \partial\Omega.$$
(1)

A solution u of problem (1) is intended in the strong sense, namely a function $u \in W^{2,p}(\Omega)$, for some p > N, which satisfies the equation in (1) a.e. in Ω and the Dirichlet boundary condition pointwise on $\partial\Omega$.

Theorem 1.1. Assume

- (h₀) Ω is a bounded domain in \mathbb{R}^N (N ≥ 2) with a $C^{1,1}$ boundary $\partial \Omega$;
- (h_1) $f: \overline{\Omega} \times [0, +\infty[\rightarrow \mathbb{R} \text{ is continuous;}]$
- (h_2) there exist constants r > 0, c > 1 and q > 2, with $q < \frac{2N}{N-2}$ if $N \ge 3$, such that

$$s^{q-1} \le f(x,s) \le cs^{q-1}$$

for every $x \in \overline{\Omega}$ and every $s \in [0, r]$;

(h₃) there exist constants r > 0 and $\varepsilon > 0$ such that

$$\frac{f(x,s)}{s^{1+\varepsilon}} < \frac{f(x,t)}{t^{1+\varepsilon}}$$

for every $x \in \overline{\Omega}$ and every $s, t \in [0, r]$, with s < t.

Then, for any given p > N, there exists $\lambda_* \in [0, +\infty[$ such that, for every $\lambda \in]\lambda_*, +\infty[$, problem (1) has at least one non-trivial non-negative solution $u_{\lambda} \in H^1_0(\Omega) \cap W^{2,p}(\Omega)$ satisfying

$$\lim_{\lambda \to +\infty} \|u_\lambda\|_{W^{2,p}(\Omega)} = 0$$

Theorem 1.1 plays an important role in the existence theory of positive solutions for problem (1) (see e.g. [3] and the references therein). Since the rather delicate argument of the original proof was presented in [1] in a rather synthetic form and the involved ideas may be usefully exploited in other situations, we decided to produce here a detailed proof of such result. Actually we will prove the following slightly more general version of Theorem 1.1.

Theorem 1.2. Assume

(i₀) Ω is a bounded domain in \mathbb{R}^N ($N \geq 2$) with a $C^{1,1}$ boundary $\partial \Omega$;

- (*i*₁) $f: \Omega \times [0, +\infty] \to \mathbb{R}$ satisfies the Carathéodory conditions;
- (i₂) there exist constants r > 0, c > 1 and q > 2, with $q < \frac{2N}{N-2}$ if $N \ge 3$, such that

 $s^{q-1} \le f(x,s) \le cs^{q-1}$

for a.e. $x \in \Omega$ and every $s \in [0, r]$;

(i₃) there exist constants r > 0 and $\vartheta > 2$ such that

$$\vartheta F(x,s) \le sf(x,s)$$

for a.e. $x \in \Omega$ and every $s \in [0, r]$, where $F(x, s) = \int_0^s f(x, t) dt$;

 (i_4) there exists a constant r > 0 such that

$$\frac{f(x,s)}{s} \le \frac{f(x,t)}{t}$$

for a.e. $x \in \Omega$ and every $s, t \in [0, r]$, with s < t.

Then, for any given p > N, there exists $\lambda_* \in [0, +\infty[$ such that, for every $\lambda \in]\lambda_*, +\infty[$, problem (1) has at least one solution $u_{\lambda} \in H_0^1(\Omega) \cap W^{2,p}(\Omega)$, satisfying $u_{\lambda}(x) > 0$ for every $x \in \Omega$ and $\frac{\partial u_{\lambda}}{\partial n}(x) < 0$ for every $x \in \partial\Omega$, n being the unit outer normal at $x \in \partial\Omega$,

$$\int_{\Omega} (\sqrt{1+|\nabla u_{\lambda}|^2}-1) \, dx - \lambda \int_{\Omega} F(x,u_{\lambda}) \, dx > 0 \quad and \quad \lim_{\lambda \to +\infty} \|u_{\lambda}\|_{W^{2,p}(\Omega)} = 0.$$

Remark 1.1 Assumption (i_2) requires $f(\cdot, s)$ to be superlinear near s = 0. Assumption (i_3) is the classical Ambrosetti-Rabinowitz condition near s = 0. Observe that (i_2) and (i_3) yield $\vartheta \leq q$. Assumption (i_4) has a technical character and allows to implement the Nehari method. Note that assumption (h_3) implies (i_3) , with $\vartheta = 1 + \varepsilon$, and (i_4) .

2 Proof

The proof of Theorem 1.2 proceeds along several steps.

Step 1. A modified problem. Let $a : [0, +\infty[\to [\frac{1}{2}, +\infty[$ be a strictly decreasing continuous function, such that $a(s) = (1+s)^{-1/2}$ if $s \in [0,1]$, and set $A(s) = \int_0^s a(t) dt$. Note that, for every $s \ge 0$,

$$\frac{1}{2} < a(s) \le 1 \qquad \text{and} \qquad \frac{1}{2}s \le A(s) \le s.$$
(2)

We also set, for a.e. $x \in \Omega$ and every $s \in \mathbb{R}$,

$$\begin{split} g(x,s) &= 0 & \text{if } s < 0, \\ &= f(x,s) & \text{if } s \in [0,r[, \\ &= \frac{f(x,r)}{r^{q-1}} \, s^{q-1} & \text{if } s \geq r \end{split}$$

and

$$G(x,u) = \int_0^u g(x,s) \, ds$$

where q is defined in (i_2) . The function $g : \Omega \times \mathbb{R} \to [0, +\infty[$ satisfies the Carathéodory conditions and, by (i_2) , there exists a constant $\kappa > 0$ such that

$$s^{q-1} \le g(x,s) \le \kappa s^{q-1} \tag{3}$$

for a.e. $x \in \Omega$ and every $s \in [0, +\infty[$. Further, by (i_3) , we have

$$\Im G(x,s) \le sg(x,s)$$
 (4)

for a.e. $x \in \Omega$ and every $s \in [0, +\infty[$, with $\vartheta > 2$ given in (i_3) . We further set, for a.e. $x \in \Omega$ and every $s \in [0, +\infty[$,

$$\begin{split} \gamma(x,s) &= 0 & \text{if } s \leq 0, \\ &= \frac{g(x,s)}{s} & \text{if } s > 0. \end{split}$$

Clearly γ satisfies the Carathéodory conditions and, by (i_4) ,

$$\gamma(x,s) \le \gamma(x,t) \tag{5}$$

for a.e. $x \in \Omega$ and every $s, t \in \mathbb{R}$, with s < t. Let us consider the modified problem

$$-\operatorname{div}\left(a(|\nabla u|^2)\nabla u\right) = \lambda g(x, u) \text{ in } \Omega, \qquad u = 0 \text{ on } \partial\Omega.$$
(6)

We associate with this problem the functional $H_{\lambda}: H_0^1(\Omega) \to \mathbb{R}$ defined by

$$H_{\lambda}(u) = \frac{1}{2} \int_{\Omega} A(|\nabla u|^2) \, dx - \lambda \int_{\Omega} G(x, u) \, dx.$$

The critical points of H_{λ} are the weak solutions in $H_0^1(\Omega)$ of (6). Note that any such solution satisfies $u(x) \ge 0$ a.e. in Ω . Indeed, let u be a weak solution in $H_0^1(\Omega)$ of (6). Testing against $v = -u^-$ and using (2) and (3) we obtain

$$\frac{1}{2} \int_{\Omega} |\nabla u^{-}|^{2} dx \leq \int_{\Omega} a(|\nabla u^{-}|^{2}) |\nabla u^{-}|^{2} dx$$
$$= -\int_{\Omega} a(|\nabla u|^{2}) \nabla u \cdot \nabla u^{-} dx = -\lambda \int_{\Omega} g(x, u) u^{-} dx \leq 0.$$

Therefore $u^- = 0$, i.e. $u(x) \ge 0$ a.e. in Ω .

Step 2. The Nehari manifold and its properties. For any given $\lambda > 0$ we set

$$\mathcal{N}_{\lambda} = \left\{ u \in H_0^1(\Omega) \setminus \{0\} \mid \int_{\Omega} a(|\nabla u|^2) |\nabla u|^2 \, dx = \lambda \int_{\Omega} g(x, u) u \, dx \right\}.$$

Notice that, if $u \in \mathcal{N}_{\lambda}$, then u(x) > 0 in a set of positive measure. Observe also that any non-trivial solution u of (6) belongs to \mathcal{N}_{λ} .

Claim. For every $w \in H_0^1(\Omega) \setminus \{0\}$, with $w(x) \ge 0$ a.e. in Ω , there is a unique $\alpha > 0$ such that $\alpha w \in \mathcal{N}_{\lambda}$. Take $w \in H_0^1(\Omega) \setminus \{0\}$, with $w(x) \ge 0$ a.e. in Ω , and define $h : [0, +\infty[\to \mathbb{R}$ by

$$h(t) = H_{\lambda}(tw) = \frac{1}{2} \int_{\Omega} A(t^2 |\nabla w|^2) \, dx - \lambda \int_{\Omega} G(x, tw) \, dx.$$

Note that

$$h'(t) = \int_{\Omega} a(t^2 |\nabla w|^2) t |\nabla w|^2 \, dx - \lambda \int_{\Omega} g(x, tw) w \, dx$$

for all $t \ge 0$ and $h'(\alpha) = 0$ for some $\alpha > 0$ if and only if

$$\int_{\Omega} a(\alpha^2 |\nabla w|^2) \alpha |\nabla w|^2 \, dx = \lambda \int_{\Omega} g(x, \alpha w) w \, dx,$$

i.e. if and only if $\alpha w \in \mathcal{N}_{\lambda}$. Conditions (2) and (3) imply that

$$\frac{1}{4}t^2 \int_{\Omega} |\nabla w|^2 \, dx - \frac{\lambda \kappa}{q} t^q \int_{\Omega} w^q \, dx \le h(t) \le \frac{1}{2}t^2 \int_{\Omega} |\nabla w|^2 \, dx - \frac{\lambda}{q}t^q \int_{\Omega} w^q \, dx$$

for all $t \ge 0$. Therefore there exists $\delta > 0$ such that h(t) > 0 if $t \in]0, \delta[$ and h(t) < 0 if $t \in]\frac{1}{\delta}, +\infty[$. As h(0) = 0 we conclude that h has a maximum at some point $\alpha > 0$. Hence we have $h'(\alpha) = 0$ and $\alpha w \in \mathcal{N}_{\lambda}$. Let us observe that α is unique. Indeed, if $\alpha_1, \alpha_2 \in]0, +\infty[$ are critical points of h and we assume $\alpha_1 < \alpha_2$, then, as a is strictly decreasing and γ is non-decreasing, we have

$$\begin{split} &\int_{\Omega} a(\alpha_1^2 |\nabla w|^2) \alpha_1 |\nabla w|^2 \, dx = \lambda \int_{\Omega} g(x, \alpha_1 w) w \, dx = \lambda \int_{\Omega} \gamma(x, \alpha_1 w) \alpha_1 w^2 \, dx \\ &\leq \frac{\alpha_1}{\alpha_2} \lambda \int_{\Omega} \gamma(x, \alpha_2 w) \alpha_2 w^2 \, dx = \frac{\alpha_1}{\alpha_2} \lambda \int_{\Omega} g(x, \alpha_2 w) w \, dx = \frac{\alpha_1}{\alpha_2} \int_{\Omega} a(\alpha_2^2 |\nabla w|^2) \alpha_2 |\nabla w|^2 \, dx \\ &< \int_{\Omega} a(\alpha_1^2 |\nabla w|^2) \alpha_1 |\nabla w|^2 \, dx, \end{split}$$

which is a contradiction.

r

Step 3. Linear problems parametrized over the Nehari manifold. For any $u \in \mathcal{N}_{\lambda}$ we consider the linear problem

$$-\operatorname{div}\left(a(|\nabla u|^2)\nabla w\right) = \lambda g(x, u) \text{ in } \Omega, \qquad w = 0 \text{ on } \partial\Omega, \tag{7}$$

where, by (i_2) , $g(\cdot, u) \in L^2(\Omega)$. By Lax-Milgram Theorem problem (7) has a unique solution $w \in H_0^1(\Omega)$. Moreover, since $g(x, u(x)) \ge 0$ for a.e. $x \in \Omega$ and g(x, u(x)) > 0 on a set of positive measure, the weak maximum principle implies that $w(x) \ge 0$ a.e. in Ω and w(x) > 0 on a set of positive measure.

Claim. Take $u \in \mathcal{N}_{\lambda}$ and let $w \in H_0^1(\Omega)$ be the solution of (7). Then there exists a unique $\alpha > 0$ such that $\alpha w \in \mathcal{N}_{\lambda}$. Moreover

$$H_{\lambda}(\alpha w) \le H_{\lambda}(u) \tag{8}$$

and $H_{\lambda}(\alpha w) = H_{\lambda}(u)$ if and only if u is a solution of (6). According to the claim in Step 2 there exists a unique $\alpha > 0$ such that $\alpha w \in \mathcal{N}_{\lambda}$. Let us prove that $H_{\lambda}(\alpha w) \leq H_{\lambda}(u)$. Since A is concave in $[0, +\infty[$, for every $s_1, s_2 \in [0, +\infty[$ we have

$$A(s_2) - A(s_1) \le a(s_1)(s_2 - s_1).$$

Since, by (5), the function $G(x, \sqrt{\cdot})$ is convex in $[0, +\infty[$, for all $x \in \overline{\Omega}$ and every $s_1, s_2 \in [0, +\infty[$ we have

$$G(x, \sqrt{s_2}) - G(x, \sqrt{s_1}) \ge \frac{1}{2}\gamma(x, \sqrt{s_1})(s_2 - s_1).$$

Setting $v = \alpha w$ we get

$$2(H_{\lambda}(v) - H_{\lambda}(u)) = \int_{\Omega} \left(A(|\nabla v|^2) - A(|\nabla u|^2) \right) dx - 2\lambda \int_{\Omega} \left(G(x,v) - G(x,u) \right) dx$$

$$\leq \int_{\Omega} a(|\nabla u|^2) \left(|\nabla v|^2 - |\nabla u|^2 \right) dx - \lambda \int_{\Omega} \gamma(x,u) (v^2 - u^2) dx$$

$$= \alpha \lambda \int_{\Omega} g(x,u) v \, dx - \lambda \int_{\Omega} \gamma(x,u) v^2 \, dx$$

$$= \lambda \left(\alpha \int_{\Omega} \gamma(x,u) uv \, dx - \int_{\Omega} \gamma(x,u) v^2 \, dx \right).$$

By Schwarz inequality we get

$$\alpha\lambda \int_{\Omega} \gamma(x,u)u^{2} dx = \int_{\Omega} a(|\nabla u|^{2})\nabla v \nabla u dx$$

$$\leq \left(\int_{\Omega} a(|\nabla u|^{2})|\nabla v|^{2} dx\right)^{1/2} \left(\int_{\Omega} a(|\nabla u|^{2})|\nabla u|^{2} dx\right)^{1/2} \qquad (9)$$

$$= \left(\alpha\lambda \int_{\Omega} \gamma(x,u)uv dx\right)^{1/2} \left(\lambda \int_{\Omega} \gamma(x,u)u^{2} dx\right)^{1/2}.$$

Therefore we have

$$\left(\alpha \int_{\Omega} \gamma(x, u) u^2 \, dx\right)^{1/2} \le \left(\int_{\Omega} \gamma(x, u) uv \, dx\right)^{1/2} \tag{10}$$

and hence, using Schwarz inequality again,

$$\left(\alpha \int_{\Omega} \gamma(x,u)u^2 \, dx\right)^{1/2} \left(\int_{\Omega} \gamma(x,u)uv \, dx\right)^{1/2} \leq \int_{\Omega} \gamma(x,u)uv \, dx \\ \leq \left(\int_{\Omega} \gamma(x,u)u^2 \, dx\right)^{1/2} \left(\int_{\Omega} \gamma(x,u)v^2 \, dx\right)^{1/2}.$$

This yields

$$\alpha \int_{\Omega} \gamma(x, u) uv \, dx \leq \int_{\Omega} \gamma(x, u) v^2 \, dx$$

and therefore

$$H_{\lambda}(v) - H_{\lambda}(u) \leq \frac{1}{2}\lambda \left(\alpha \int_{\Omega} \gamma(x, u) uv \, dx - \int_{\Omega} \gamma(x, u) v^2 \, dx\right) \leq 0.$$

On the other hand, if $H_{\lambda}(v) = H_{\lambda}(u)$, then

$$\alpha \int_{\Omega} \gamma(x, u) uv \, dx = \int_{\Omega} \gamma(x, u) v^2 \, dx$$

and

$$\alpha \int_{\Omega} \gamma(x, u) uv \, dx = \left(\alpha \int_{\Omega} \gamma(x, u) u^2 \, dx \right)^{1/2} \left(\int_{\Omega} \gamma(x, u) uv \, dx \right)^{1/2}.$$

This implies that

$$\alpha \int_{\Omega} \gamma(x, u) u^2 \, dx = \int_{\Omega} \gamma(x, u) uv \, dx$$

and, from (9),

$$\int_{\Omega} a(|\nabla u|^2) \nabla v \nabla u \, dx = \left(\int_{\Omega} a(|\nabla u|^2) |\nabla v|^2 \, dx\right)^{1/2} \left(\int_{\Omega} a(|\nabla u|^2) |\nabla u|^2 \, dx\right)^{1/2}.$$

Therefore u and v are proportional and hence there is t > 0 such that w = tu. This means that u is a solution of

$$-\operatorname{div}\left(a(|\nabla u|^2)\nabla u\right) = \frac{\lambda}{t}g(x,u) \text{ in }\Omega, \qquad u = 0 \text{ on }\partial\Omega$$

and hence, as $u \in \mathcal{N}_{\lambda}$, t = 1 and u is a solution of (6).

Step 4. Estimates on the functional H_{λ} on \mathcal{N}_{λ} . For all $u \in \mathcal{N}_{\lambda}$ we have

$$\frac{1}{2}\frac{\vartheta - 2}{2\vartheta} \|u\|_{H_0^1(\Omega)}^2 \le \frac{1}{2}\frac{\vartheta - 2}{2\vartheta} \int_{\Omega} a(|\nabla u|^2) |\nabla u|^2 \, dx \le H_{\lambda}(u) \le \frac{1}{2} \|u\|_{H_0^1(\Omega)}^2, \tag{11}$$

 ϑ being defined in (i_3) . Indeed we have

$$H_{\lambda}(u) = \frac{1}{2} \int_{\Omega} A(|\nabla u|^2) \, dx - \lambda \int_{\Omega} G(x, u) \, dx \le \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx$$

and, by (4) and (2),

$$\begin{aligned} H_{\lambda}(u) &\geq \frac{1}{2} \int_{\Omega} a(|\nabla u|^2) |\nabla u|^2 \, dx - \frac{\lambda}{\vartheta} \int_{\Omega} g(x, u) \, dx \\ &= \left(\frac{1}{2} - \frac{1}{\vartheta}\right) \int_{\Omega} a(|\nabla u|^2) |\nabla u|^2 \, dx \geq \frac{1}{2} \frac{\vartheta - 2}{2\vartheta} \|u\|_{H_0^1(\Omega)}^2. \end{aligned}$$

We also notice that H_{λ} is bounded away from zero on \mathcal{N}_{λ} . Indeed, for all $u \in \mathcal{N}_{\lambda}$, using (3), (2) and the embedding of $H_0^1(\Omega)$ into $L^q(\Omega)$, we get

$$\int_{\Omega} a(|\nabla u|^2) |\nabla u|^2 \, dx = \lambda \int_{\Omega} g(x, u) u \, dx \le \lambda \kappa \int_{\Omega} u^q \, dx$$
$$\le \lambda \rho \Big(\int_{\Omega} |\nabla u|^2 \, dx \Big)^{q/2} \le \lambda \rho 2^{q/2} \Big(\int_{\Omega} a(|\nabla u|^2) |\nabla u|^2 \, dx \Big)^{q/2},$$

for some constant $\rho > 0$, and hence

$$\int_{\Omega} a(|\nabla u|^2) |\nabla u|^2 \, dx \ge \left(2^{q/2} \lambda \rho\right)^{-\frac{2}{q-2}}.$$

By (11) we conclude

$$H_{\lambda}(u) \ge \frac{1}{2} \frac{\vartheta - 2}{2\vartheta} \left(2^{q/2} \rho \right)^{-\frac{2}{q-2}} \lambda^{-\frac{2}{q-2}}.$$
(12)

Step 5. Estimate on the coefficients α (defined in Step 2).

Claim. For all $u \in \mathcal{N}_{\lambda}$, if w is a solution of (7) and α is such that $\alpha w \in \mathcal{N}_{\lambda}$, then

$$\alpha \le \sqrt{\frac{4\vartheta}{\vartheta - 2}}.\tag{13}$$

By inequality (10) we get, setting $v = \alpha w$,

$$\alpha \Big(\int_{\Omega} a(|\nabla u|^2) |\nabla u|^2 \, dx\Big)^{1/2} \le \Big(\int_{\Omega} a(|\nabla u|^2) |\nabla v|^2 \, dx\Big)^{1/2}. \tag{14}$$

As, by (11) and (2),

$$H_{\lambda}(u) \leq \int_{\Omega} a(|\nabla u|^2) |\nabla u|^2 \, dx,$$

we obtain, using (14), (2) and (11),

$$\begin{aligned} \alpha \big(H_{\lambda}(u) \big)^{\frac{1}{2}} &\leq \alpha \big(\int_{\Omega} a(|\nabla u|^2) |\nabla u|^2 \, dx \big)^{\frac{1}{2}} \leq \big(\int_{\Omega} a(|\nabla u|^2) |\nabla v|^2 \, dx \big)^{\frac{1}{2}} \\ &\leq \big(\int_{\Omega} |\nabla v|^2 \, dx \big)^{\frac{1}{2}} \leq \big(2 \int_{\Omega} a(|\nabla v|^2) |\nabla v|^2 \, dx \big)^{\frac{1}{2}} \\ &\leq \big(\frac{8\vartheta}{\vartheta - 2} H_{\lambda}(u) \big)^{\frac{1}{2}}, \end{aligned}$$

Step 6. The map T_{λ} . In case N = 2, we set $\eta_0 = 1$. In case $N \ge 3$, we set

$$\eta_0 = \frac{2^*}{q-1} = \frac{2N}{N-2} \frac{1}{q-1}.$$

If $\eta_0 \geq \frac{N}{2}$, we set l = 0. Claim. If $\eta_0 < \frac{N}{2}$, there exists an integer $l \geq 1$, depending only on N and q, and real numbers $\eta_1, \eta_2, \ldots, \eta_l$ defined by

$$\eta_i^* = \frac{N\eta_i}{N - 2\eta_i}$$
 and $\eta_{i+1} = \frac{\eta_i^*}{q - 1}$

for all $i = 0, \ldots, l-1$, such that $\eta_0 < \eta_1 < \cdots < \eta_{l-1} < N/2 \le \eta_l$. As $q < \frac{2N}{N-2}$ we obtain

$$\frac{N}{(N-2\eta_0)(q-1)} > 1,$$

so that we can pick $\varepsilon > 0$ such that

$$1 + \varepsilon < \frac{N}{(N - 2\eta_0)(q - 1)}.$$

Observe that

$$\eta_1 - \eta_0 = \eta_0 \left(\frac{N}{(N - 2\eta_0)(q - 1)} - 1 \right) > \varepsilon \eta_0.$$

By a recursive argument we obtain

$$\eta_{i+1} - \eta_i = \eta_i \left(\frac{N}{(N-2\eta_i)(q-1)} - 1\right) > \eta_0 \left(\frac{N}{(N-2\eta_0)(q-1)} - 1\right) > \varepsilon \eta_0,$$

which proves the claim.

Fix p > N and let $u \in W^{2,p}(\Omega) \cap \mathcal{N}_{\lambda}$. We define by induction a finite sequence $(u_n)_{0 \le n \le l+2}$, with $u_n \in W^{2,p}(\Omega) \cap \mathcal{N}_{\lambda}$, as follows: let w_{n+1} be the solution of the linear problem

$$\begin{cases} -\operatorname{div}\left(a(|\nabla u_n|^2)\nabla w\right) = \lambda g(x, u_n) & \text{in } \Omega, \\ w = 0 & \text{on } \partial\Omega; \end{cases}$$
(15)

according to the claim in Step 2 there exists a unique α_{n+1} such that $\alpha_{n+1}w_{n+1} \in \mathcal{N}_{\lambda}$, hence we can define

$$u_{n+1} = \alpha_{n+1} w_{n+1} \in \mathcal{N}_{\lambda}.$$
(16)

As $u_n \in W^{2,p}(\Omega)$, we get $a(|\nabla u_n|^2) \in W^{1,p}(\Omega)$; then by the L^p -regularity theory (see [2, Ch. 9.5] and in particular the note at p. 241) we have $u_{n+1} \in W^{2,p}(\Omega)$. Moreover, by (8), we have

$$H_{\lambda}(u_{n+1}) \le H_{\lambda}(u_0),\tag{17}$$

for all n. Let us define the mapping $T_{\lambda} : \mathcal{N}_{\lambda} \cap W^{2,p}(\Omega) \to \mathcal{N}_{\lambda} \cap W^{2,p}(\Omega)$ by $T_{\lambda}(u) = u_{l+2}$.

Step 7. Norm estimates on T_{λ} . Fix an arbitrary $\kappa_0 > 0$ (a suitable value of κ_0 will be chosen in Step 8). For any $u_0 \in W^{2,p}(\Omega)$ let $u_1, \ldots, u_{l+2} = T_{\lambda}(u)$ be defined as in Step 6. Assume

$$||u_0||_{W^{2,p}(\Omega)} \le 1$$
 and $H_{\lambda}(u_0) \le \kappa_0 \lambda^{-\frac{2}{q-2}}$.

In the following argument the symbols $\kappa_1, \kappa_2, \ldots$ will denote various constants independent of λ . Suppose l > 1. Then, by (11), we obtain

$$||u_0||_{H^1_0(\Omega)} \le \kappa_1 \lambda^{-\frac{1}{q-2}}.$$

By the embedding of $H_0^1(\Omega)$ into $L^{2^*}(\Omega)$ we get

$$||u_0||_{L^{2^*}(\Omega)} \le \kappa_2 \lambda^{-\frac{1}{q-2}}.$$

By (3) we obtain

$$\|\lambda g(\cdot, u_0)\|_{L^{\eta_0}(\Omega)} \le \lambda \kappa \|u_0^{q-1}\|_{L^{\eta_0}(\Omega)} = \lambda \kappa \|u_0\|_{L^{2^*}(\Omega)}^{q-1} \le \kappa_3 \lambda^{-\frac{1}{q-2}}.$$

As $u_0 \in W^{2,p}(\Omega)$ we have $a(|\nabla u_0|^2) \in W^{1,p}(\Omega)$; by the L^p -regularity theory [2, Ch. 9.5] we have $u_1 \in W^{2,p}(\Omega)$ and

$$||u_1||_{W^{2,\eta_0}(\Omega)} \le \kappa_4 \lambda^{-\frac{1}{q-2}}.$$

We can assume λ to have been chosen so large that

$$\kappa_4 \lambda^{-\frac{1}{q-2}} \le 1.$$

By the embedding of $W^{2,\eta_0}(\Omega)$ into $L^{\eta_0^*}(\Omega)$ we get

$$\|u_1\|_{L^{\eta_0^*}(\Omega)} \le \kappa_5 \lambda^{-\frac{1}{q-2}}.$$

Applying recursively the same argument to u_1, u_2, \ldots, u_l , we finally obtain

$$\begin{aligned} \|\lambda g(\cdot, u_{l-1})\|_{L^{\eta_{l-1}}(\Omega)} &\leq \lambda \kappa \|u_{l-1}^{q-1}\|_{L^{\eta_{l-1}}(\Omega)} = \lambda \kappa \|u_{l-1}\|_{L^{\eta_{l-1}^*}(\Omega)}^{q-1} \leq \kappa_6 \lambda^{-\frac{1}{q-2}}, \\ \|u_l\|_{W^{2,\eta_{l-1}}(\Omega)} &\leq \kappa_7 \lambda^{-\frac{1}{q-2}}, \qquad \|u_l\|_{L^{\eta_{l-1}^*}(\Omega)} \leq \kappa_8 \lambda^{-\frac{1}{q-2}}, \end{aligned}$$

9

and

$$\|\lambda g(\cdot, u_l)\|_{L^{\eta_{l-1}}(\Omega)} \le \kappa_9 \lambda^{-\frac{1}{q-2}}, \qquad \|u_{l+1}\|_{W^{2,\eta_l}(\Omega)} \le \kappa_{10} \lambda^{-\frac{1}{q-2}}.$$

By the embedding of $W^{2,\eta_l}(\Omega)$ into $L^{p(q-1)}(\Omega)$ we also obtain

$$\|u_{l+1}\|_{L^{p(q-1)}(\Omega)} \leq \kappa_{11}\lambda^{-\frac{1}{q-2}},$$

$$\|\lambda g(u_{l+1})\|_{L^{p}(\Omega)} \leq \lambda \kappa \|u_{l+1}^{q-1}\|_{L^{p}(\Omega)} = \lambda \kappa \|u_{l+1}\|_{L^{p(q-1)}(\Omega)}^{q-1} \leq \kappa_{12}\lambda^{-\frac{1}{q-2}}$$

and finally

$$\|T_{\lambda}(u)\|_{W^{2,p}(\Omega)} = \|u_{l+2}\|_{W^{2,p}(\Omega)} \le \kappa_{13}\lambda^{-\frac{1}{q-2}}.$$
(18)

We can assume λ to have been chosen so large that $||u_{n+1}||_{W^{2,\eta_n}(\Omega)} \leq 1$, for each $n = 1, \ldots, l$, and $||u_{l+2}||_{W^{2,p}(\Omega)} \leq 1$.

Step 8. The set S_{λ} . Fix any $\hat{w} \in C_c^{\infty}(\overline{\Omega}) \setminus \{0\}$, with $\hat{w}(x) \geq 0$ in Ω . According to the claim in Step 2 there exists $\hat{\alpha}$ such that $\hat{\alpha}\hat{w} \in \mathcal{N}_{\lambda}$. We have, by (2) and (3),

$$\hat{\alpha}^2 \int_{\Omega} |\nabla \hat{w}|^2 \, dx \ge \int_{\Omega} a(|\nabla \hat{\alpha} \hat{w}|^2) |\nabla \hat{\alpha} \hat{w}|^2 \, dx = \lambda \int_{\Omega} g(x, \hat{\alpha} \hat{w}) \hat{\alpha} \hat{w} \, dx \ge \lambda \hat{\alpha}^q \int_{\Omega} |\hat{w}|^q \, dx,$$

so that

$$\hat{\alpha} \le \lambda^{-\frac{1}{q-2}} \|\hat{w}\|_{H^1_0(\Omega)}^{\frac{2}{q-2}} \|\hat{w}\|_{L^q(\Omega)}^{-\frac{q}{q-2}}.$$

At the beginning of Step 7 we fixed an arbitrary constant $\kappa_0 > 0$. Now we choose

$$\kappa_0 = \frac{1}{2} \|\hat{w}\|_{H_0^1(\Omega)}^{\frac{2q}{q-2}} \|\hat{w}\|_{L^q(\Omega)}^{-\frac{2q}{q-2}}.$$
(19)

We also set

$$m_1 = \max\left\{\kappa_{13}, \, \|\hat{w}\|_{W^{2,p}(\Omega)} \|\hat{w}\|_{H^1_0(\Omega)}^{\frac{2}{q-2}} \, \|\hat{w}\|_{L^q(\Omega)}^{-\frac{q}{q-2}}\right\}$$
(20)

with κ_{13} defined in Step 7. Set $\hat{u} = \hat{\alpha}\hat{w}$, then

$$\|\hat{u}\|_{W^{2,p}(\Omega)} \le m_1 \lambda^{-\frac{1}{q-2}} \tag{21}$$

and, by (11),

$$H_{\lambda}(\hat{u}) \le \kappa_0 \lambda^{-\frac{2}{q-2}}.$$
(22)

We define the set

$$S_{\lambda} = \left\{ u \in \mathcal{N}_{\lambda} \cap W^{2,p}(\Omega) \mid \|u\|_{W^{2,p}(\Omega)} \le m_1 \lambda^{-\frac{1}{q-2}}, H_{\lambda}(u) \le \kappa_0 \lambda^{-\frac{2}{q-2}} \right\}.$$

Notice that, due to (21) and (22), S_{λ} is not empty. Moreover, by choosing $\lambda \geq m_1^{q-2}$, we guarantee, for all $u \in S_{\lambda}$,

$$\|u\|_{W^{2,p}(\Omega)} \le 1$$
 (23)

and, by (17),

$$H_{\lambda}(T_{\lambda}(u)) \le \kappa_0 \lambda^{-\frac{2}{q-2}}.$$
(24)

Notice finally that, by (24), (23), (18), (19) and (20), T_{λ} maps the set S_{λ} into itself.

Step 9. Existence of a positive solution of (6) for all large λ . Pick $\lambda \geq m_1^{q-2}$ so that (23) holds. We will show that H_{λ} has minimum in S_{λ} . By (12) H_{λ} is bounded from below in S_{λ} . Let $(u_k)_k$ be a minimizing sequence in S_{λ} . As $(u_k)_k$ is bounded in $W^{2,p}(\Omega)$ and $W^{2,p}(\Omega)$ is reflexive, there exists a subsequence of $(u_k)_k$, we still denote by $(u_k)_k$, weakly convergent in $W^{2,p}(\Omega)$ and, hence strongly convergent in $C^1(\overline{\Omega})$, to a function $\overline{u} \in W^{2,p}(\Omega)$. As \mathcal{N}_{λ} is closed in $C^1(\overline{\Omega})$, H_{λ} is continuous with respect to the $C^1(\overline{\Omega})$ convergence and

$$\|\bar{u}\|_{W^{2,p}(\Omega)} \le \liminf_{n \to +\infty} \|u_n\|_{W^{2,p}(\Omega)},$$

we have $\bar{u} \in S_{\lambda}$ and $H_{\lambda}(\bar{u}) = \min_{S_{\lambda}} H_{\lambda}(u)$. Recalling the recursive definitions given in Step 6 of $\bar{u}_0 = \bar{u}, \bar{u}_1, \dots, \bar{u}_{l+2} = T_{\lambda}(\bar{u})$, we obtain, by (17),

$$H_{\lambda}(\bar{u}) \leq H_{\lambda}(T_{\lambda}(\bar{u})) = H_{\lambda}(\bar{u}_{l+2}) \leq \cdots \leq H_{\lambda}(\bar{u}_{1}) \leq H_{\lambda}(\bar{u})$$

and hence, in particular,

$$H_{\lambda}(\bar{u}) = H_{\lambda}(\bar{u}_1).$$

By the claim in Step 3 we conclude that \bar{u} is a solution of (6). As a limit of non-negative functions, \bar{u} is also non-negative. Further, by (12), \bar{u} is non-trivial.

Step 10. Existence of a positive solution $u_{\lambda} \in W^{2,p}(\Omega)$ of (1) for all large λ . Set

$$\lambda_* = \left(\frac{m_1}{\min\{1,r\}}\right)^{q-2},$$

where m_1 is defined in Step 8, and fix $\lambda \in]\lambda_*, +\infty[$. Let $u_\lambda \in W^{2,p}(\Omega)$ be the solution of (6) whose existence is proved in Step 9. Since $\|\nabla u_\lambda\|_{\infty} \leq 1$ and $\|u_\lambda\|_{\infty} \leq r$, u_λ is a non-trivial non-negative solution of (1) too. The strong maximum principle and the Hopf boundary lemma imply that u(x) > 0 in Ω and $\frac{\partial u}{\partial n}(x) < 0$ on $\partial\Omega$. Finally, estimates (11) and (21) yield

$$\int_{\Omega} (\sqrt{1 + |\nabla u_{\lambda}|^2} - 1) \, dx - \lambda \int_{\Omega} F(x, u_{\lambda}) \, dx > 0$$

and

$$\lim_{\lambda \to +\infty} \|u_{\lambda}\|_{W^{2,p}(\Omega)} = 0.$$

References

- C.V. Coffman and W.K. Ziemer, A prescribed mean curvature problem on domains without radial symmetry, SIAM J. Math. Anal. 22, 982–990 (1991).
- [2] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Second Edition. Springer-Verlag, Berlin, 1983.
- [3] F. Obersnel and P. Omari, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation, preprint (2009).