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Abstract

We produce a detailed proof of a result of C.V. Coffman and W.K. Ziemer [1] on the
existence of positive solutions of the Dirichlet problem for the prescribed mean curvature
equation

—div(Vu/y/1+ |Vu|2) = Af(z,u) in Q, uw=0 on 09,

assuming that f has a superlinear behaviour at u =0 .
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1 Statements

In [1] C.V. Coffman and W.K. Ziemer proved the following result concerning the existence of
positive solutions of the Dirichlet problem for the prescribed mean curvature equation

—div(Vu/\/1+ |Vu|2) = Af(z,u) in Q, u=0 on 9. (1)

A solution u of problem (1) is intended in the strong sense, namely a function u € W2P(Q), for
some p > N, which satisfies the equation in (1) a.e. in © and the Dirichlet boundary condition
pointwise on 9.

Theorem 1.1. Assume

(ho) Q is a bounded domain in RN (N > 2) with a C*' boundary 09;

(h1) f: 8 x[0,+00] — R is continuous;

(ha) there exist constants r >0, ¢ > 1 and q > 2, with ¢ < ]\2,7]1'2 if N > 3, such that
sl < flz,s) < cs? 1

for every x € Q and every s € [0,7];



(h3) there exist constants r > 0 and € > 0 such that

fas) _ fla,t)

81+e tl—i—s

for every x € Q and every s,t €10,7], with s < t.

Then, for any given p > N, there exists \. € [0, 4+00[ such that, for every X € |\, +o0[, problem
(1) has at least one non-trivial non-negative solution uy € H}(Q) N W2P(Q) satisfying

)\EIEOO ||U)\||W2,p(9) =0.

Theorem 1.1 plays an important role in the existence theory of positive solutions for problem
(1) (see e.g. [3] and the references therein). Since the rather delicate argument of the original
proof was presented in [1] in a rather synthetic form and the involved ideas may be usefully
exploited in other situations, we decided to produce here a detailed proof of such result. Actually
we will prove the following slightly more general version of Theorem 1.1.

Theorem 1.2. Assume
(ig) Q is a bounded domain in RN (N > 2) with a C*' boundary 09;
(i1) f:Qx[0,4+00[ — R satisfies the Carathéodory conditions;
(i2) there exist constants r >0, ¢ > 1 and g > 2, with ¢ < % if N > 3, such that
s < f(x,s) < es?H
for a.e. x € Q and every s € [0,7];
(i3) there exist constants v > 0 and ¥ > 2 such that
IF (x,s) < sf(x,s)
for a.e. x € Q and every s € [0,r], where F(x,s) = [, f(z,t)dt;
(i4) there exists a constant r > 0 such that

fas) _ f0)

s - t

for a.e. x € Q and every s,t €10,r|, with s < t.

Then, for any given p > N, there exists A, € [0, 400 such that, for every A €|\, +00[, problem
(1) has at least one solution uy € HE(Q) NW?2P(Q), satisfying ux(x) > 0 for every x € Q and
a&(m) < 0 for every x € 9Q, n being the unit outer normal at x € 0S,

on
/(\/1+|VUA|271) d:z:f)\/ F(z,uy)dx >0 and lim luxllw=2r@) = 0.

Q Q A—+o00
Remark 1.1 Assumption (i2) requires f(-, s) to be superlinear near s = 0. Assumption (i3)
is the classical Ambrosetti-Rabinowitz condition near s = 0. Observe that (iz) and (i3) yield
¥ < ¢q. Assumption (i4) has a technical character and allows to implement the Nehari method.

Note that assumption (hs) implies (i3), with ¥ =14 ¢, and (i4).



2 Proof

The proof of Theorem 1.2 proceeds along several steps.

Step 1. A modified problem. Let a : [0,400[ — [§,+00[ be a strictly decreasing continuous
function, such that a(s) = (14 s)"'/2 if s € [0,1], and set A(s) = Jy a(t) dt. Note that, for
every s > 0,

1 1
5 < a(s) <1 and 35 < A(s) <s. (2)
We also set, for a.e. x € 2 and every s € R,
g(xz,8) =0 if s <0,
= f(z,s) if s €[0,r],
= f@r) st if s>
ra—1

and "
Gl u) = / oz, s) ds,
0

where ¢ is defined in (iz). The function g : © x R — [0, +oo[ satisfies the Carathéodory
conditions and, by (i2), there exists a constant x > 0 such that

st < g(z,5) < kst (3)
for a.e. € Q and every s € [0,4o0[. Further, by (i3), we have
VG(z, ) < sg(, 5) (4)

for a.e. z € Q and every s € [0, +oo[, with ¢ > 2 given in (i3). We further set, for a.e. z € Q
and every s € [0, +00],
Y(z,s) =0 if s <0,

g(z, s)

= if s> 0.
s

Clearly ~ satisfies the Carathéodory conditions and, by (i),

V(z,s) < 7y(z,t) ()
for a.e. x € Q2 and every s,t € R, with s < ¢t. Let us consider the modified problem
—div(a(|Vul*)Vu) = Ag(z,u) in Q, u=0 on . (6)

We associate with this problem the functional Hy : H}(Q) — R defined by

Hy(u) = %/QAQVMQ) dx—A/gG(xm)dx.

The critical points of H) are the weak solutions in Hg(£2) of (6). Note that any such solution
satisfies u(x) > 0 a.e. in Q. Indeed, let u be a weak solution in HE(Q) of (6). Testing against
v =—u" and using (2) and (3) we obtain
L e e < / ao(|Vu 2) |Vu |2 da
2 Ja Q
= —/ a(|Vul?) Vu - Vu™ dx = —)\/ g(z,u)u” dx <0.
Q Q

Therefore v~ =0, i.e. u(z) > 0 a.e. in .



Step 2. The Nehari manifold and its properties. For any given A > 0 we set
Ny = {ue HY(Q)\ {0} | / a(|Vul2)| Vul? de = )\/ o, wudz).
Q Q

Notice that, if u € N, then u(z) > 0 in a set of positive measure. Observe also that any
non-trivial solution u of (6) belongs to N.

Claim. For every w € HE(Q) \ {0}, with w(z) > 0 a.e. in 2, there is a unique o > 0 such that
aw € Ny. Take w € H} () \ {0}, with w(x) > 0 a.e. in 2, and define h : [0, +00[ — R by

h(t) = Hy (tw) = %/

A(?|Vw|?) d — )\/ G(z,tw) dz.
Q

Q
Note that
B (t) = / a(t?|Vw|?)t| Vw|* dr — )\/ g(z, tw)w dx
Q Q

for all t > 0 and h/(«) = 0 for some « > 0 if and only if

/a(a2|Vw\2)oz\Vw\2dx:/\/ g(z, aw)wdz,
Q Q

i.e. if and only if cw € Ny. Conditions (2) and (3) imply that

1 A 1 A
ftz/ |Vwl|? do — —I{tq/ wldr < h(t) < 7t2/ |Vwl|? do — ftq/ w?dx
4 Ja 7 Ja 2 Ja q Ja

for all ¢t > 0. Therefore there exists > 0 such that h(t) > 0 if ¢ € ]0,d] and h(t) < 0 if
te ]%7 +oo[. As h(0) = 0 we conclude that h has a maximum at some point o > 0. Hence we
have h'(a) = 0 and aw € N). Let us observe that « is unique. Indeed, if a1,y € |0, 400]
are critical points of h and we assume a3 < ao, then, as a is strictly decreasing and v is
non-decreasing, we have

/ a(of |Vw|?)on|Vw|? doz = X [, g(z, cyw)wdz = X [, (2, cyw)ayw? da

Q

< %A/ v(z, pw)agw? de = %)\/ g(z, vew)w de = %/ a(@3|Vw|*)az| Vw|? de
asy  Jo Q2 Jo a2 Jo

< / a(ad|Vw|*)a; | Vw|* d,
Q

which is a contradiction.

Step 8. Linear problems parametrized over the Nehari manifold. For any u € Ny we consider
the linear problem

—div(a(|Vul*)Vw) = Ag(z,u) in €, w =0 on 09, (7)

where, by (i2), g(-,u) € L?(2). By Lax-Milgram Theorem problem (7) has a unique solution
w € H (). Moreover, since g(z,u(x)) > 0 for a.e. z € Q and g(z,u(z)) > 0 on a set of
positive measure, the weak maximum principle implies that w(z) > 0 a.e. in Q and w(x) > 0
on a set of positive measure.

Claim. Take u € Ny and let w € H}(Q) be the solution of (7). Then there exists a unique
a > 0 such that cw € Ny. Moreover

Hj(aw) < Hy(u) (8)



and Hy(aw) = Hx(u) if and only if u is a solution of (6). According to the claim in Step 2
there exists a unique a > 0 such that aw € N,. Let us prove that Hy(aw) < Hy(u). Since A
is concave in [0, +oo], for every sy, s2 € [0, +00[ we have

A(sg) — A(s1) < a(s1)(s2 — s1).

Since, by (5), the function G(x,1/+) is convex in [0, +-o0], for all € Q and every sy, s2 € [0, +00]
we have

G(.’L‘, \/5) - G(l‘, \/g) >

Setting v = aw we get

Y(x,v/51)(s2 — s1).

N |

2(Hx(v) — Hx(u)) = /Q (A(|Vol?) = A(|Vul?)) dz — 2X ; (G(z,v) — G(z,u)) dx
< /Qa(|Vu| )(IVol? = [Vl )dx—)\/ﬂv(x,u)(v —u?) dzx
:oz)\/ﬂg(:z:,u)vd:rf)\/Q'y(:n,u)v2 dx
:/\(Oz/ﬂ'y(x,u)uvdxf/Q’y(:zc,u)v2 dz).

By Schwarz inequality we get

a)\/Q'y(z,u)uz dx = Qa(|Vu|2)VvVudx
< (/Qa(|Vu|2)|Vv|2dm)l/Q(/Qa(|Vu|2)|Vu|2dx)1/2 (9)
= (a)\/ﬂv(m,u)uvdm)l/z()\/Q'y(amu)u2 dm)l/Q.
Therefore we have
(a/{)’y(m,u)uz dz)'* < (/ny(x,u)uvdx)lm (10)

and hence, using Schwarz inequality again,

2 1/2 1/2
(a/ﬂ’y(x,u)u dz) (/Qw(xm)uvdx) < Q'y(;v,u)uvdac

< (/QW(ﬂlf,u)u2 dm)1/2(/ (@, w)o? dx)l/Q.

Q
This yields
a/’y(az,u)uvdfcg/’y(x,u)v2 dx
Q Q

and therefore
1
Hy(v) — Hy(u) < 5/\(a/ ¥(z, w)uv dx — / ¥(z, u)v* dr) < 0.
Q Q
On the other hand, if Hy(v) = Hx(u), then

oz/v(:z:,u)uvdx:/’y(an,u)v2 dx
Q

Q



and
a/ ~y(z, w)uv dr = (a/ y(z, u)u? dx)1/2(/ 'y(x,u)uvdx)l/Z.
Q Q Q
This implies that

cy/v(gc,u)u2 dx:/v(%u)uvdx
Q )

and, from (9),

2 = a U2 U2 1‘1/2 a u2 U2 371/2.
[ a1Vl ouds = ([ aval) 9o o) ([ a(vup)Ivaf? o

Therefore v and v are proportional and hence there is ¢ > 0 such that w = tu. This means that
u 18 a solution of

—div (a(|Vu|*)Vu) = %g(m,u) in Q, u=0 on 9N

and hence, as u € N, t =1 and w is a solution of (6).

Step 4. Estimates on the functional Hy on N. For all u € N we have

19— 19—-2

1
Sl < 5 ase [ a(VuP)Vul dr < Hyw) < Sluliye, ()

¥ being defined in (i3). Indeed we have

1 1

= 7/ A(|Vu|2)dm—)\/ G(z,u)dzx < 7/ |Vu|? da
2 Ja Q 2 Jo

/ a(|Vul|?)|Vul? dz — 7/ z,u) dx

19—
(% %) Vu| )| Vude > §WHUHH1(Q)

and, by (4) and (2),

H(u)

vV
N | =

We also notice that H) is bounded away from zero on N). Indeed, for all u € N}, using (3),
(2) and the embedding of HE(Q) into LI(Q), we get

/ a(|Vul?)|Vul? de = )\/ gz, v)udr < )\n/ u? dx
Q Q Q
< )\p(/ \Vu|2d1:)Q/2 < )\p2q/2(/ a(|Vu|2)|Vu|2dx)Q/2,
Q Q
for some constant p > 0, and hence
/a(|Vu|2)\Vu\2dx > (29/72p) 7R,
Q

By (11) we conclude
19—

=2 20
Step 5. Estimate on the coefficients o (defined in Step 2).

Hy(u) > (2q/2 )T (12)



Claim. For allw € Ny, if w is a solution of (7) and « is such that aw € Ny, then
49
<4f—. 13
Y=V 2 (13)
By inequality (10) we get, setting v = aw,
a(/ a(|Vul)|Vul? do) '/ < (/ a(|Vul?)|Vol? dz) 2. (14)
Q Q

As, by (11) and (2),
Hy(u) < / a(|Vul|?)|Vul? dz,
Q

we obtain, using (14), (2) and (11),
o(Hx(u))? Sa(/Qa(|Vu| )| Vul? dz)? < (/Qa(|Vu| )| Vol* dx)?
v|* dx a(|Vo]?)|Vo|? dz) ?
(lQV| dz)? < (2 [ aVeP)Vel do)
8 3

(mHA(u» )

Nl

IN

IN

Step 6. The map T. In case N =2, we set g = 1. In case N > 3, we set

2" 2N 1

=1 N-2q-1

If g > 4§, we set [ = 0.
Claim. If no < &, there exists an integer | > 1, depending only on N and q, and real numbers
1,02, ..., M defined by

*

i
-1’

and Ni+1 =

oralli=0,...,1—1, such that no <m < --- <m_1 < N/2<m. Asq< 2~ we obtain
Ul n Ul n N—-2

N
(N = 2n0)(qg — 1)

so that we can pick € > 0 such that

> 1,

N

SRR TR PRty

Observe that
N

N —2n9)(qg -1

771_770:770(( )—1)>5770.
By a recursive argument we obtain

Nit1 — 0 = i N —1) > o N -1)
(N —2n;)(qg — 1) (N —2m0)(qg —1)

> €No,

which proves the claim.



Fix p > N and let u € W2P(Q) N N). We define by induction a finite sequence (uy)o<n<i+2,
with u,, € W2P(Q) NNy, as follows: let w, 1 be the solution of the linear problem

(15)

—div (a(|Vun[*)Vw) = Ag(z,u,) in Q,
w =70 on 0€);

according to the claim in Step 2 there exists a unique oy, 41 such that a,1w,11 € Ny, hence
we can define

Up4+1 = Op41Wp41 € N)\. (16)

As u, € W2P(Q), we get a(|Vu,|?) € WHP(Q); then by the LP-regularity theory (see [2, Ch.
9.5] and in particular the note at p. 241) we have u, 11 € W2P(Q). Moreover, by (8), we have

Hx(unt1) < Hx(uo), (17)
for all n. Let us define the mapping T : Ny N W2P(Q) — Ny N W2P(Q) by T (u) = ujyo.

Step 7. Norm estimates on Ty. Fix an arbitrary ko > 0 (a suitable value of kg will be chosen
in Step 8). For any ug € W2P(Q) let uy,...,u42 = T\(u) be defined as in Step 6. Assume

2
Huonz,p(Q) <1 and H)\<’u,0) < KoM~ @2,

In the following argument the symbols x1, ko, ... will denote various constants independent of
A. Suppose [ > 1. Then, by (11), we obtain

HUOHH(%(Q) < fﬂ)\*ﬁ-

By the embedding of H} () into L? () we get
1
uoll 2% () < K2A™ 2.

By (3) we obtain

1

_ — 1
H)\g(”u,o)| Lng(Q) S )\Ii”’ug 1| L"iO(Q) = )\HHU()”iz* (Q) S KJ3)\ a—2

As ug € W2P(Q) we have a(|Vug|?) € WHP(Q); by the LP—regularity theory [2, Ch. 9.5] we
have u; € WP(Q) and

_ 1
[t llw2.mo () < KaA™ 72,

We can assume A to have been chosen so large that
1
KaA~ a2 < 1.

By the embedding of W27 (Q) into L (Q) we get

_a
||U1||L1,(’; @) S :‘<L5)\ q—2
Applying recursively the same argument to uy, us, .. ., u;, we finally obtain
-1 -1 _1
IAG (s tr—1)l mi-r () < Aklluf =) [Lm-r () = >\f<é||uzlean;71(Q) < KgAT T2,
_a _a
lwllyyzm 1 (q) < K7AT T2, lall oz () < AT 72,



and ) )
[AGCsu)llzm-1() < oA 72, Jlugallwzm @) < K1oA” 2.

By the embedding of W2 (Q) into LP(4~1)(Q) we also obtain
1l o0y < K1IATTE,

_ _ _ 1
IAg (w1l Loy < Asllufy [l Le) = >\fi||ul+1|\qu<lq—1>(sz) < K12AT T
and finally
_ 1
1T\ (W)l w2p ) = lwrzllwzr @) < KigA”a-2. (18)

We can assume A to have been chosen so large that ||u,11][w2m. () <1, for each n=1,...,1,
and ||Ul+2HW2,p(Q) S 1.

Step 8. The set Sx. Fix any w € C(Q) \ {0}, with w(z) > 0 in Q. According to the claim in
Step 2 there exists & such that di € Ny. We have, by (2) and (3),

d2/ |V1D|2dx2/a(|V&w|2)|V&w|2dz:/\/g(x,&w)dwdeA&q/ |w]? d,
Q Q Q Q

so that 2
R __1 T3 AT q—2
& < AT [[d] ) 191 Lao)-

At the beginning of Step 7 we fixed an arbitrary constant ko > 0. Now we choose

Lo
Ro = 5”“’”1(1{3(9) Hw”qu(g;)' (19)

We also set ) .
my = max {1z, [@llw2r@ll0ll5o) Il ) (20)

with k13 defined in Step 7. Set 4 = &, then
][ w2r ) < my A\ (21)
and, by (11),
Hy(@) < roh ™72, (22)
We define the set

Sy = {u € MANW?P(Q) | [|ullw=r (o) < My AT T2, Hy (u) < ;@0/\*%}.

Notice that, due to (21) and (22), Sy is not empty. Moreover, by choosing A > m‘f_Q, we

guarantee, for all u € Sy,
lullwzr@) <1 (23)
and, by (17),
H (T (1)) < koA~ 77 (24)

Notice finally that, by (24), (23), (18), (19) and (20), T maps the set Sy into itself.
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Step 9. Existence of a positive solution of (6) for all large X. Pick A > mfz so that (23)
holds. We will show that H, has minimum in Sy. By (12) H is bounded from below in S).
Let (uy)x be a minimizing sequence in Sy. As (ug)x is bounded in W2P(Q) and W2P(Q) is
reflexive, there exists a subsequence of (uy )k, we still denote by (ug)r, weakly convergent in
W2P(Q) and, hence strongly convergent in C1(€), to a function @ € W2P(Q). As N, is closed
in C1(Q), H) is continuous with respect to the C'(Q) convergence and

allw=r (o) < lminf [[un|[wzr ),

we have @ € S and H)(a) = ngin H)(u). Recalling the recursive definitions given in Step 6 of
A
g = U, U1, - .., U+2 = Tr(1), we obtain, by (17),
Hx(u) < Hx(Tx(w)) = Hx(t42) < -+ < Hx(u1) < Hx(2)
and hence, in particular,
H)\(ﬁ) = H)\(ﬂl).

By the claim in Step 3 we conclude that 4 is a solution of (6). As a limit of non-negative
functions, @ is also non-negative. Further, by (12), @ is non-trivial.

Step 10. Ewistence of a positive solution uy € W*P(Q) of (1) for all large X. Set

A= (Hﬁ{li,@)q_Qv

where my is defined in Step 8, and fix A € ]\., +oo[. Let uy € W2P(Q) be the solution of (6)
whose existence is proved in Step 9. Since ||Vuy]loo < 1 and ||ur]loo < 7, uy is a non-trivial

non-negative solution of (1) too. The strong maximum principle and the Hopf boundary lemma
imply that u(z) > 0 in © and %(x) < 0 on 09. Finally, estimates (11) and (21) yield

/(\/1+|Vu,\|2—1)dx—/\ F(z,uy)dx >0
Q Q

and
A lunllw=r (@) = 0.
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