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Abstract. We study radially symmetric systems with a singularity of
repulsive type. In the presence of a radially symmetric periodic forcing,
we show the existence of three distinct families of subharmonic solutions:
One oscillates radially, one rotates around the origin with small angular
momentum, and the third one with both large angular momentum and
large amplitude. The proofs are carried out by the use of topological
degree theory.

1 Introduction

We are interested in proving the existence and multiplicity of periodic solutions
for systems of the type

ẍ = f(t, |x|)x . (1)

Here, f : R× ]0,+∞[→ R is L1-Carathéodory and T -periodic with respect to
its first variable, so that 0 is possibly a singularity point. We look for solutions
x(t) ∈ RN which never attain the singularity, in the sense that

x(t) 6= 0 , for every t ∈ R . (2)

Since system (1) is radially symmetric, the orbit of a solution always lies
on a plane, so we will assume, without loss of generality, that N = 2.

Let us consider, e.g., the model equation

ẍ+ c(t)
x

|x|γ
= e(t)

x

|x|
. (3)

Here, γ > 1, and c, e ∈ L1
loc(R) are T -periodic. Notice that, if c and e are

constant functions, with e(t) identically zero, and γ = 3, then (3) is the equa-
tion modelling the motion of an electrical charge in the field of another charge
standing still at the origin. According to the sign of c, we can have both the
cases of attractive and repulsive forces. In [8] we have treated the attractive
case. In this paper, we are interested in the case of a repulsive force.
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Writing the solutions in polar coordinates, we see that equation (3) is
equivalent to the system 

ρ̈− µ2

ρ3
+
c(t)

ργ−1
= e(t) ,

ρ2ϕ̇ = µ ,
(4)

where µ is the (scalar) angular momentum. Let us denote by ē the mean value
of the forcing term:

ē =
1

T

∫ T

0

e(t) dt .

If c(t) is strictly negative, integrating the first equation in (4), it is easily
seen that a necessary condition for the existence of periodic solutions is that
ē be negative. On the other hand, when γ ≥ 2 and µ = 0, it was proved
in [11, 10, 5, 7, 1] that, if ē is negative, then system (4) has periodic radial
solutions. Our interest is to find out whether, besides these radial solutions,
there are periodic solutions rotating around the origin, as well.

In order to have an insight on the possible behaviour of the solutions, let
us now give a description of the circular orbits of (3) in the case when c(t) = c̄
and e(t) = ē are negative constants. We have to look for a constant ρ satisfying

−µ
2

ρ3
+

c̄

ργ−1
= ē . (5)

Defining

ρ̂ :=
( c̄
ē

) 1
γ−1

,

it is easily seen that, for every µ, if ρ satisfies (5), then ρ ≥ ρ̂, with equality
only when µ = 0. Hence, there is a circle of stationary points, centered at the
origin, with radius ρ̂, and there are no circular orbits inside that circle. The
circular solutions with radius ρ greater than ρ̂ have angular momentum

µ(ρ) =
√
c̄ρ4−γ − ēρ3 .

Hence, the angular momentum is strictly increasing with the radius of the
solutions, and

lim
ρ→ρ̂+

µ(ρ) = 0 , lim
ρ→+∞

µ(ρ) = +∞ .

In particular, the circular solutions can be parametrized by the angular mo-
mentum µ, so that, in the plane (µ, ρ), we have a curve whose projection on
the first component is the whole half-line ]0,+∞[ .

As for the period of the solutions, we have

τ(ρ) = 2π

√
ρ

−ē+ c̄ρ1−γ ,
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so that
lim
ρ→ρ̂+

τ(ρ) = +∞ , lim
ρ→+∞

τ(ρ) = +∞ .

The function τ(ρ) has a minimum point at ρ = ρmin :=
(
c̄γ
ē

) 1
γ−1

, with mini-

mum value

τmin =
2π√
γ − 1

(
−c̄ γγ

(−ē)γ

) 1
2(γ−1)

.

Moreover, τ(ρ) is strictly decreasing when ρ < ρmin and strictly increasing
when ρ > ρmin. Hence, for every τ greater than τmin, there are two circular
orbits with minimal period τ : one with a small, and the other with a large
angular momentum.

In the case when c(t) and e(t) are not necessarily constant, but T -periodic,
it is natural to investigate whether (3) still has periodic solutions, rotating
around the origin, having a similar behaviour to the circular orbits described
above. The aim of this paper is to prove that such solutions exist, even for
much more general systems like (1). The idea is to look for periodic solutions
x(t) whose minimal periods are sufficiently large multiples of T , and whose
angular momenta are sufficiently small, or sufficiently large, respectively. In
order to prevent too large eccentricities of the orbits, we will impose the radial
components of the solutions x(t) to be T -periodic.

Let us consider the more general system (1). It is convenient to write it in
the following form:

ẍ =
(
− h(t, |x|) + e(t)

) x
|x|

. (6)

We will prove the following two theorems. The first one deals with periodic
solutions having a small angular momentum.

Theorem 1 Let the following three assumptions hold.

(H1) There is a function α ∈ L1(0, T ) such that

lim sup
r→+∞

h(t, r)

r
≤ α(t) ,

uniformly for almost every t ∈ ]0, T [ , and

α(t) ≤
(π
T

)2

, (7)

for almost every t ∈ ]0, T [ , with strict inequality on a subset of ]0, T [ having
positive measure.

(H2) There exists a function η ∈ L1(0, T ), with positive values, such that

h(t, r) ≤ η(t) , for every r ∈ ]0, 1] and a.e. t ∈ ]0, T [ ,

h(t, r) ≥ −η(t) , for every r ≥ 1 and a.e. t ∈ ]0, T [ ,
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and
1

T

∫ T

0

lim sup
r→0+

h(t, r) dt < ē <
1

T

∫ T

0

lim inf
r→+∞

h(t, r) dt .

(H3) There is a constant δ̄ > 0 and a differentiable function F : ]0, δ̄[→ R such
that

h(t, r) ≤ F ′(r), for every r ∈ ]0, δ̄[ and a.e. t ∈ ]0, T [ ,

and
lim
r→0+

F (r) = +∞ .

Then, there exists a k1 ≥ 1 such that, for every integer k ≥ k1, equation (6)
has a periodic solution xk(t) with minimal period kT , which makes exactly
one revolution around the origin in the period time kT . Moreover, there is a
constant C > 0 such that, for every k ≥ k1

1

C
< |xk(t)| < C , for every t ∈ R ,

and, if µk denotes the angular momentum associated to xk(t), then

lim
k→∞

µk = 0 .

Let us make a brief comment on the hypotheses of Theorem 1. Assump-
tion (H1), introduced in [12], can be interpreted as a nonresonance condition
with respect to the Dancer-Fučik spectrum. Indeed, the number ( π

T
)2 is the

value of the asymptote to the first curve of that spectrum. Assumption (H2)
is the well-known Landesman-Lazer condition, a nonresonance condition with
respect to the first eigenvalue of the differential operator. Assumption (H3) is
introduced in order to control the solutions which approach the singularity, by
the use of some energy estimates.

As an immediate consequence of Theorem 1, in the particular case of sys-
tem (3), we have the following.

Corollary 1 Assume that, for some negative constants c1 and c2,

c1 ≤ c(t) ≤ c2 < 0 , for a.e. t ∈ R . (8)

If γ ≥ 2 and ē < 0, then the same conclusion of Theorem 1 holds for system (3).

Our second theorem deals with periodic solutions having a large angular
momentum. It is closely related to [8, Theorem 4], where the attractive case
was studied.

Theorem 2 Let the following two assumptions hold.

(H4) lim
r→+∞

h(t, r)

r
= 0 ,

uniformly for almost every t ∈ ]0, T [ .
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(H2)+ There exists a function η ∈ L1(0, T ), with positive values, such that

h(t, r) ≥ −η(t) , for every r ≥ 1 and a.e. t ∈ ]0, T [ ,

and

ē <
1

T

∫ T

0

lim inf
r→+∞

h(t, r) dt .

Then, there exists a k1 ≥ 1 such that, for every integer k ≥ k1, equation (6)
has a periodic solution xk(t) with minimal period kT , which makes exactly one
revolution around the origin in the period time kT . Moreover,

lim
k→∞

(min |xk|) = +∞ , lim
k→∞

min |xk|
max |xk|

= 1 ,

and, if µk denotes the angular momentum associated to xk(t), then

lim
k→∞

µk = +∞ .

Notice that, in Theorem 2, we have no assumptions on the behaviour of the
nonlinearity near the singularity. Indeed, (H2)+ is a kind of Landesman-Lazer
condition, but it is only assumed for large positive values of r. Assumption
(H4) is a non-resonance condition which will be used to show that the angular
velocity of the large-amplitude solutions can be arbitrarily small.

We have the following direct consequence of Theorem 2 concerning sys-
tem (3).

Corollary 2 If γ > 1, ē < 0, and (8) holds, then the same conclusion of
Theorem 2 holds for system (3).

We notice that, in [7], assuming (H2), (H3) and (H4), it was proved that
there is a family of subharmonic solutions with arbitrarily large minimal peri-
ods, which oscillate radially. We thus conclude with the following.

Corollary 3 Assume (H2), (H3) and (H4). Then, system (6) has three dis-
tinct families of subharmonic solutions, with the following distinct behaviour:
one oscillates radially, one rotates with small angular momentum, and one
rotates with large angular momentum and large amplitude.

The above results should be compared with those contained in [13, 6] (see
also [4, 9]), where systems of the type

ẍ+∇V (x) = e(t) (9)

were considered, with V : RN\{0} → R, a continuously differentiable function
satisfying

lim
x→0

V (x) = +∞ , (10)
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and e : R → RN , a locally integrable T -periodic vector-valued function. This
type of problem is not radially symmetric, and the situation is substantially
different from the one considered above. Let e be the mean value of e(t):

e =
1

T

∫ T

0

e(t) dt .

The following result has been proved in [13, 6].

Theorem 3 Assume (10) and the following conditions:

lim sup
x→0

〈∇V (x), x〉 < 0 ,

lim sup
|x|→∞

|∇V (x)| < |e| .

Then, equation (9) has a T -periodic solution x, and a sequence (xk)k of kT -
periodic solutions, whose minimal periods tend to infinity.

The above theorem applies to the equation

ẍ+ c̄
x

|x|γ
= e(t) , (11)

where γ > 2, c̄ is a negative constant, and e 6= 0 . Notice that, in [13], this
last assumption has been shown to be necessary for the existence of periodic
solutions of (11), when e(t) is a small bounded function.

It should be observed that, assuming N = 2 in Theorem 3, the solutions
could remain confined in a sector of the plane, and thus not necessarily rotate
around the origin. See also [14] and [3] for related results.

2 Proof of Theorem 1: solutions with small

angular momentum

Let us first clarify our assumptions. The function h is L1-Carathéodory, i.e.,

• h(·, r) is measurable, for every r > 0;

• h(t, ·) is continuous, for almost every t ∈ ]0, T [ ;

• for every compact interval [a, b] in ]0,+∞[ , there exists `a,b ∈ L1(0, T )
such that

r ∈ [a, b] ⇒ |h(t, r)| ≤ `a,b(t) , for a.e. t ∈ ]0, T [ .

Concerning the function α(t) in assumption (H1), we can assume that
α(t) ≥ 0 for almost every t ∈ ]0, T [ . Hence, in particular, we assume α ∈
L∞(0, T ).
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In the sequel, we will implicitly assume that all functions defined (almost
everywhere) on ]0, T [ are extended by T -periodicity to the whole real line.

Let H1
0 (0, T ) denote the usual Sobolev space of functions satisfying the

homogeneous Dirichlet boundary condition. Given a constant ω ∈ R, let
Bα,ω : H1

0 (0, T )→ R be the quadratic form defined by

Bα,ω(v) =

∫ T

0

[v̇2(t)− α(t+ ω)v2(t)] dt .

We will need the following lemma, analogous to [12, Lemma 3].

Lemma 1 There is a constant ε̄ > 0 such that

Bα,ω(v) ≥ ε̄

∫ T

0

v̇2(t) dt ,

for every ω ∈ R and v ∈ H1
0 (0, T ).

Proof By (7) and the Poincaré inequality,

Bα,ω(v) ≥
∫ T

0

[
v̇2(t)−

(π
T

)2

v2(t)
]
dt ≥ 0 , (12)

for every ω ∈ R and v ∈ H1
0 (0, T ). Let us see that

Bα,ω(v) = 0 ⇔ v = 0 .

Indeed, by (12), Bα,ω(v) = 0 implies v(t) = A sin(πt
T

), for some constant A ∈ R.
Then, ∫ T

0

[
A2
(π
T

)2

cos2
(πt
T

)
− α(t+ ω)A2 sin2

(πt
T

)]
dt = 0 ,

i.e., since
∫ T

0
cos2(πt

T
) dt =

∫ T
0

sin2(πt
T

) dt,

A2

∫ T

0

[(π
T

)2

− α(t+ ω)
]

sin2
(πt
T

)
dt = 0 ,

which implies A = 0, as α(·) < ( π
T

)2 on a subset of positive measure.

Assume now, by contradiction, that for every integer n ≥ 1 there are
ωn ∈ [0, T ] and vn ∈ H1

0 (0, T ) such that∫ T

0

[v̇2
n(t)− α(t+ ωn)v2

n(t)] dt <
1

n

∫ T

0

v̇2
n(t) dt .

Let zn = vn / ‖vn‖H1
0
, where

‖vn‖H1
0

=
(∫ T

0

v̇2
n(t) dt

)1/2
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is the usual norm in H1
0 (0, T ). Then, zn ∈ H1

0 (0, T ), ‖zn‖H1
0

= 1, and∫ T

0

α(t+ ωn)z2
n(t) dt > 1− 1

n
.

Passing to subsequences, we can assume that ωn → ω ∈ [0, T ], zn ⇀ z (weakly)
in H1

0 (0, T ), and zn → z uniformly. Then, ‖z‖H1
0
≤ 1, and, since by Lebesgue’s

Theorem α(·+ ωn)→ α(·+ ω) in L1(0, T ),∫ T

0

α(t+ ω)z2(t) dt ≥ 1 . (13)

Hence, Bα,ω(z) ≤ 0, so that, by the above, it has to be z = 0. We thus get a
contradiction with (13).

Let us now begin the proof of Theorem 1. We may write the solutions
of (6) in polar coordinates:

x(t) = ρ(t)(cosϕ(t), sinϕ(t)) , (14)

and (2) is satisfied if ρ(t) > 0, for every t. Equation (6) is then equivalent to
the system

(S)


ρ̈− µ2

ρ3
+ h(t, ρ) = e(t) ,

ρ2ϕ̇ = µ ,

where µ is the (scalar) angular momentum of x(t). Recall that µ is constant in
time along any solution. In the following, when considering a solution of (S),
we will always implicitly assume that ρ > 0.

Without loss of generality we assume that e(t) has zero mean value, i.e.,

ē = 0 . (15)

Indeed, otherwise, we just replace e(t) by e(t) − ē and h(t, ρ) by h(t, ρ) − ē.
We consider µ ≥ 0 as a parameter, and, by the use of degree theory, we will
prove the existence of a T -periodic solution ρ of the first equation in (S). To
this aim, for λ ∈ [0, 1], we introduce the modified problem

ρ̈− µ2

ρ3
+ (1− λ)

(
1− 1

ρ3

)
+ λh(t, ρ) = λe(t) ,

ρ(0) = ρ(T ) , ρ̇(0) = ρ̇(T ) .
(16)

For some r0 ∈ ]0, 1[ , to be fixed later, we define the truncation gλ,µ,r0 : R×R→
R, as follows:

gλ,µ,r0(t, r) =


−µ

2

r3
+ (1− λ)

(
1− 1

r3

)
+ λh(t, r) for r ≥ r0

−µ
2

r3
0

+ (1− λ)
(

1− 1

r3
0

)
+ λh(t, r0) for r ≤ r0 .
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This function is still L1-Carathéodory. We consider the T -periodic problem

(Pλ,µ,r0)

{
ρ̈+ gλ,µ,r0(t, ρ) = λe(t) ,

ρ(0) = ρ(T ) , ρ̇(0) = ρ̇(T ) ,

and look for a priori bounds for the solutions ρ, for small values of r0.

Lemma 2 Assume (H1)–(H3). Given M > 0, there exist r̄0 > 0 and C > 0
such that, if ρ(t) is a solution of (Pλ,µ,r0), with λ ∈ [0, 1], µ ∈ [0,M ] and
r0 ∈ ]0, r̄0 ], then

1

C
< ρ(t) < C and |ρ̇(t)| < C ,

for every t ∈ [0, T ].

Proof By contradiction, assume that, for every n ≥ 1, there are λn ∈ [0, 1],
µn ∈ [0,M ], r0,n ∈ ]0, 1

n
[ , and a solution ρn(t) of (Pλn,µn,r0,n), such that, either

ρn([0, T ]) 6⊆ ] 1
n
, n[, or ‖ρ̇n‖L∞ ≥ n. For simplicity we denote by gn the function

gλn,µn,r0,n . The remaining of the proof is divided into five steps.

Step 1. There exists R1 ≥ 1 such that min ρn ≤ R1 , for every n.

Otherwise, there would exist a subsequence such that min ρn → +∞. We
may also assume that λn → λ̄ ∈ [0, 1]. Integrating the equation

ρ̈n + gn(t, ρn) = λne(t) , (17)

by (15) we have ∫ T

0

gn(t, ρn(t)) dt = 0 . (18)

Hence, from the definition of gn, since min ρn → +∞,

(1− λ̄)T + lim
n

∫ T

0

λnh(t, ρn(t)) dt = 0 .

Using Fatou’s Lemma,

(1− λ̄)T + λ̄

∫ T

0

lim inf
r→+∞

h(t, r) dt ≤ 0 ,

and we get a contradiction with (H2).

Step 2. There exists R2 > R1 such that max ρn ≤ R2 , for every n.

Let ε̄ > 0 be as in Lemma 1. By (H1), there is a R̃1 ≥ R1 such that

h(t, r) ≤
(
α(t) +

ε̄

2

(π
T

)2)
r , for every r ≥ R̃1 and a.e. t ∈ R . (19)
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By contradiction, we assume that max ρn → +∞. Then, for n large enough,
there exists an interval [an, bn], with bn − an ≤ T , such that

ρn(an) = R̃1 = ρn(bn) ,

and
ρn(t) > R̃1 , for every t ∈ ]an, bn[ ,

and there exists tn ∈ ]an, bn[ such that max ρn = ρn(tn). Let un(t) = ρn(t)−R̃1,
so that un(an) = 0 = un(bn). Recall the Poincaré inequality∫ bn

an

u2
n(t) dt ≤

(
bn − an
π

)2 ∫ bn

an

u̇2
n(t) dt . (20)

Define vn : [0, T ]→ R as follows:

vn(t) =

{
un(t+ an) if t ∈ [0, bn − an] ,
0 otherwise .

Then, vn ∈ H1
0 (0, T ) and, by Lemma 1,

Bα,an(vn) ≥ ε̄

∫ T

0

v̇2
n(t) dt ,

for every n, i.e., ∫ bn

an

[u̇2
n(t)− α(t)u2

n(t)] dt ≥ ε̄

∫ bn

an

u̇2
n(t) dt . (21)

Multiplying by un in equation (17) and integrating between an and bn, by (19)
we obtain∫ bn

an

u̇2
n =

∫ bn

an

un[gn(t, ρn)− λne(t)] dt

≤
∫ bn

an

un[1 + λn(h(t, ρn)− e(t))] dt

≤
∫ bn

an

un

[
1 +

(
α(t) +

ε̄

2

(π
T

)2)
(un + R̃1) + |e(t)|

]
dt

≤
∫ bn

an

[(
α(t) +

ε̄

2

(π
T

)2)
u2
n + γ(t)un

]
dt ,

where

γ(t) = R̃1

(
α(t) +

ε̄

2

(π
T

)2)
+ |e(t)|+ 1 .

Then, using (21),

ε̄

∫ bn

an

u̇2
n ≤

ε̄

2

(π
T

)2
∫ bn

an

u2
n + ‖γ‖L2

(∫ bn

an

u2
n

) 1
2
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so that, by (20), as bn − an ≤ T , the sequence
( ∫ bn

an
u̇2
n

)
n

has to be bounded.

Since

maxun ≤
∫ bn

an

|u̇n| ≤
√
T

(∫ bn

an

u̇2
n

) 1
2

,

we get a contradiction with the fact that max ρn → +∞.

Step 3. There exists r1 ∈ ]0, 1[ such that max ρn ≥ r1 , for every n.

Otherwise, there would exist a subsequence such that max ρn → ρ̄ ∈
[−∞, 0]. We may also assume that λn → λ̄ ∈ [0, 1] and µn → µ̄ ∈ [0,M ].
Set

ρ̃n(t) = max{ρn(t), r0,n} . (22)

Notice that
gn(t, ρn(t)) = gn(t, ρ̃n(t)) ,

for almost every t. Since r0,n ≤ ρ̃n(t) ≤ 1 for n large enough, by (H2),

gn(t, ρn(t)) = − µ2
n

ρ̃3
n(t)

+ (1− λn)

(
1− 1

ρ̃3
n(t)

)
+ λnh(t, ρ̃n(t))

≤ 1 + λnh(t, ρ̃n(t))

≤ 1 + η(t) .

Hence, by Fatou’s Lemma and (18), we have∫ T

0

lim sup
n

gn(t, ρn(t)) dt ≥ lim sup
n

∫ T

0

gn(t, ρn(t)) dt = 0 ,

and then ∫ T

0

lim sup
n

[
(1− λn)

(
1− 1

ρ̃3
n(t)

)
+ λnh(t, ρ̃n(t))

]
dt ≥ 0 .

Since ρ̃n(t) > 0 for every t and max ρ̃n(t) → 0, we easily get a contradiction
with (H2).

Step 4. Proof of the estimate on the derivative.

By (H2), we have

gn(t, r) ≤ η(t) , for every r ≤ 1 and a.e. t ∈ ]0, T [ .

Then, using (18),∫
{ρn≤1}

|gn(t, ρn(t))| dt ≤
∫
{ρn≤1}

|gn(t, ρn(t))− η(t)| dt+ ‖η‖L1

=

∫
{ρn≤1}

(−gn(t, ρn(t)) + η(t)) dt+ ‖η‖L1

≤ −
∫
{ρn≤1}

gn(t, ρn(t)) dt+ 2‖η‖L1

=

∫
{ρn>1}

gn(t, ρn(t)) dt+ 2‖η‖L1

≤
∫
{ρn>1}

|gn(t, ρn(t))| dt+ 2‖η‖L1 ,
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so that ∫ T

0

|gn(t, ρn(t))| dt =

(∫
{ρn≤1}

+

∫
{ρn>1}

)
|gn(t, ρn(t))| dt

≤ 2

∫
{ρn>1}

|gn(t, ρn(t))| dt+ 2‖η‖L1 .

As proved in Step 2, we have ρn(t) ≤ R2, for every t. So, there is a constant
c1 > 0 for which ∫

{ρn>1}
|gn(t, ρn(t))| dt ≤ c1 ,

for every n. Consequently,∫ T

0

|ρ̈n(t)| dt ≤
∫ T

0

|gn(t, ρn(t))| dt+ ‖e‖L1 ≤ 2c1 + 2‖η‖L1 + ‖e‖L1 .

Since, being ρn periodic, its derivative must vanish somewhere, we have that
‖ρ̇n‖L∞ ≤ ‖ρ̈n‖L1 . Setting C1 = 2c1 + 2‖η‖L1 + ‖e‖L1 , we thus have

‖ρ̇n‖L∞ ≤ C1 , (23)

for every n.

Step 5. Conclusion of the proof.

Using Step 2 and Step 4, if n is sufficiently large we have that ρn(t) < n
and ‖ρ̇n(t)‖ < n, for every t. Therefore, it has to be min ρn ≤ 1

n
, for n large

enough. Let r1 ∈ ]0, 1[ be as in Step 3, and set r̃1 = min{r1, δ̄}. We can assume
r̃1 >

1
n

. Then, there is an interval [γn, δn] such that

ρn(γn) = r̃1 , ρn(δn) = 1
n
,

and
1
n
< ρn(t) < r̃1 , for every t ∈ ]γn, δn[ .

Recall that r0,n <
1
n

. So, for t ∈ [γn, δn], we have that ρn(t) = ρ̃n(t). We define

h̃(t, r) = h(t, r)− η(t) , ẽ(t) = e(t)− η(t) , f̃(r) = min{F ′(r), 0} ,

and let F̃ : ]0, δ̄[→ R be a primitive of f̃ , i.e., F̃ ′(r) = f̃(r), for every r. Then,

h̃(t, r) ≤ F̃ ′(r), for every r ∈ ]0, δ̄[ and a.e. t ∈ R ,

and

lim
r→0+

F̃ (r) = +∞ . (24)

We can write (17) as

ρ̈n + g̃n(t, ρn) = λnẽ(t) , (25)
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where g̃n(t, r) is defined as gn(t, r), with h̃(t, r) instead of h(t, r). Notice that

g̃n(t, ρn(t)) = − µ2
n

ρ3
n(t)

+ (1− λn)

(
1− 1

ρ3
n(t)

)
+ λnh̃(t, ρn(t)) ≤ 0 ,

for every t ∈ ]γn, δn[ . Let C1 be the constant defined in Step 4, for which (23)
holds. Multiplying in (25) by (ρ̇n − C1) and integrating on [γn, δn],

1

2
[(ρ̇n − C1)2]δnγn +

∫ δn

γn

g̃n(t, ρn)(ρ̇n − C1) dt =

∫ δn

γn

λnẽ(t)(ρ̇n − C1) dt

≤ 2C1(‖e‖L1 + ‖η‖L1) .

Hence, there is a constant c2 > 0 for which∫ δn

γn

g̃n(t, ρn)(ρ̇n − C1) dt ≤ c2 , (26)

for every n. On the other hand, since ρ̇n − C1 ≤ 0,∫ δn

γn

g̃n(t, ρn)(ρ̇n − C1) dt ≥

≥
∫ δn

γn

(
(1− λn)

(
1− 1

ρ3
n

)
+ λnh̃(t, ρn)

)
(ρ̇n − C1) dt

≥
∫ δn

γn

(
(1− λn)

(
1− 1

ρ3
n

)
+ λnF̃

′(ρn)
)

(ρ̇n − C1) dt

≥
∫ δn

γn

(
(1− λn)

(
1− 1

ρ3
n

)
+ λnF̃

′(ρn)
)
ρ̇n dt

=

[
(1− λn)

(
ρn +

2

ρ2
n

)
+ λnF̃ (ρn)

]δn
γn

≥ (1− λn)
( 1

n
+ 2n2

)
+ λnF̃

( 1

n

)
− c3 ,

for some constant c3 > 0. Using (24), when n tends to infinity we get a
contradiction with (26), thus ending the proof of the lemma.

We now fix M > 0 and take r̄0 > 0 and C > 0 as given by Lemma 2. Let
us also fix r0 = min{r̄0,

1
C
}. As a consequence of Lemma 2, if λ ∈ [0, 1] and

µ ∈ [0,M ], any solution ρ(t) of (Pλ,µ,r0) is also a solution of (16). In particular,
if λ = 1, any solution of (P1,µ,r0) is a T -periodic solution of the first equation
in (S).

Notice that, viceversa, once M > 0 is fixed, every T -periodic solution of
the first equation in (S) with µ ∈ [0,M ] satisfies (P1,µ,r̂0) for sufficiently small
r̂0 > 0, so that it also verifies the estimates given by Lemma 2.

In the following, we denote by C1
T the set of T -periodic C1-functions, with

the usual norm of C1([0, T ]).
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Lemma 3 Given M > 0, there is a continuum C in [0,M ] × C1
T , connecting

{0}×C1
T with {M}×C1

T , whose elements (µ, ρ) satisfy the first equation in (S).

Proof In order to apply degree theory, let us define the following operators:

L : D(L) ⊂ C1([0, T ])→ L1(0, T ) ,

D(L) = {ρ ∈ W 2,1(0, T ) : ρ(0) = ρ(T ) , ρ̇(0) = ρ̇(T )} ,
Lρ = ρ̈− ρ ,

and, for λ ∈ [0, 1],

Nλ : [0,M ]× C1([0, T ])→ L1(0, T ) ,

Nλ(µ, ρ)(t) = −gλ,µ,r0(t, ρ(t)) + λe(t)− ρ(t) .

Problem (Pλ,µ,r0) is thus equivalent to

Lρ = Nλ(µ, ρ) .

Since L is invertible, we can write equivalently

ρ− L−1Nλ(µ, ρ) = 0 . (27)

Let C > 0 be the constant given by Lemma 2 and define Ω to be the following
open subset of C1([0, T ]):

Ω =
{
ρ ∈ C1([0, T ]) :

1

C
< ρ(t) < C and |ρ̇(t)| < C , for every t ∈ [0, T ]

}
.

By Lemma 2, equation (27) has no solutions ρ on ∂Ω, for any λ ∈ [0, 1] and
µ ∈ [0,M ]. Since L−1Nλ(µ, ·) is a compact operator, by the global continuation
principle of Leray-Schauder (see e.g. [15, Theorem 14.C]), the lemma will be
proved if we show that the degree is nonzero for some (λ, µ) ∈ [0, 1]× [0,M ].
Indeed, since the degree is the same for every (λ, µ) ∈ [0, 1] × [0,M ], then, it
will be nonzero when λ = 1, for every µ ∈ [0,M ].

Let us then take µ = λ = 0 and define the function

Ψ :
[ 1

C
,C
]
× [−C,C]→ R2 ,

Ψ(u, v) =
(
v ,

1

u3
− 1
)
.

By a result of Capietto, Mawhin and Zanolin [2, Theorem 1], one can compute
the Leray-Schauder degree of I − L−1N0(0, ·) as the Brouwer degree of Ψ:

dLS(I − L−1N0(0, ·),Ω) = dB

(
Ψ,
] 1

C
,C
[
× ]− C,C[

)
.

Since Ψ has the unique zero (1, 0), and the jacobian matrix JΨ(1, 0) has a
positive determinant, we conclude that the degree has to be equal to 1.

14



Notice that, if (µ, ρ) ∈ C then ρ is T -periodic and the first equation in (S)
is satisfied. Let us consider the function Φ : C → R, defined by

Φ(µ, ρ) 7→
∫ T

0

µ

ρ2(t)
dt .

It is continuous and defined on a connected domain, so its image is an interval.
Since Φ(0, ρ) = 0 and, by Lemma 2,

Φ(µ, ρ) ≤ TC2µ ,

this interval is of the type [0, θ] for some θ > 0.

Lemma 4 For every θ ∈ [0, θ], there are (µ, ρ, ϕ), verifying system (S), for
which (µ, ρ) ∈ C, and

ρ(t+ T ) = ρ(t) , ϕ(t+ T ) = ϕ(t) + θ ,

for every t ∈ R.

Proof Given θ ∈ [0, θ], there are (µ, ρ) ∈ C such that∫ T

0

µ

ρ2(t)
dt = θ .

As noticed above, the first equation in (S) is satisfied. Moreover, defining

ϕ(t) =

∫ t

0

µ

ρ2(s)
ds ,

the second equation in (S) is also satisfied and

ϕ(t+ T )− ϕ(t) =

∫ t+T

t

µ

ρ2(s)
ds =

∫ T

0

µ

ρ2(s)
ds = θ .

We are going to complete now the proof of Theorem 1. For every θ ∈ [0, θ],
the solution of system (S) found in Lemma 4 provides, through (14), a solution
to equation (6) such that

x(t+ T ) = eiθx(t) ,

for every t ∈ R (for briefness we used here the complex notation).

In particular, if θ = 2π
k

for some integer k ≥ 1, then x(t) is periodic with
minimal period kT , and rotates exactly once around the origin in the period
time kT . Hence, for every integer k ≥ 2π/ θ, we have such a kT -periodic
solution, which we denote by xk(t). Let (ρk(t), ϕk(t)) be its polar coordinates,

15



and µk be its angular momentum. By the above construction, (µk, ρk, ϕk)
verify system (S), (µk, ρk) ∈ C, and∫ T

0

µk
ρ2
k(t)

dt =
2π

k
.

Since µk ∈ [0,M ], by Lemma 2 we have that

1

C
< ρk(t) < C and |ρ̇k(t)| < C ,

for every t ∈ [0, T ]. Hence,

2π

k
=

∫ T

0

µk
ρ2
k(t)

dt > T
µk
C2

,

so that
lim
k→∞

µk = 0 .

The proof is thus completed.

3 Proof of Theorem 2: solutions with large

angular momentum

The proof of Theorem 2 follows closely both the proof of [8, Theorem 4], where
the attractive case has been considered, and the proof of Theorem 1.

As in the previous section, without loss of generality, we assume (15), i.e.,

ē = 0 .

We consider µ ≥ 0 as a parameter, and, by the use of degree theory, we will
prove the existence of a T -periodic solution ρ of the first equation in (S). To
this aim, for λ ∈ [0, 1], we introduce the modified problem (16). We define the
truncation at r0 = 1, i.e., gλ,µ : R× R→ R, as follows:

gλ,µ(t, r) =

 −µ
2

r3
+ (1− λ)

(
1− 1

r3

)
+ λh(t, r) for r ≥ 1

−µ2 + λh(t, 1) for r ≤ 1 .

This function is still L1-Carathéodory. We consider the T -periodic problem

(Pλ,µ)

{
ρ̈+ gλ,µ(t, ρ) = λe(t) ,

ρ(0) = ρ(T ) , ρ̇(0) = ρ̇(T ) ,

and look for a priori bounds for the positive solutions ρ. This time, we will
consider solutions with a large angular momentum.
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Lemma 5 For every Γ > 1 there exists µ(Γ) ≥ 1 such that, if µ ≥ µ(Γ),
λ ∈ [0, 1], and ρ is a positive solution of (Pλ,µ), then ‖ρ‖L∞ ≥ Γ.

Proof Assume by contradiction that there are Γ > 1, and sequences (λn)n,
(µn)n, and (ρn)n such that λn ∈ [0, 1], limn µn = +∞, and ρn is a positive
solution of (Pλn,µn), with ‖ρn‖L∞ < Γ. Integrating the equation, since ē = 0,
we obtain ∫ T

0

gλn,µn(t, ρn(t)) dt = 0 .

Hence, setting ρ̃n(t) = max{ρn(t), 1},

µ2
n

∫ T

0

1

ρ̃3
n(t)

dt = (1− λn)

∫ T

0

(
1− 1

ρ̃3
n(t)

)
dt+ λn

∫ T

0

h(t, ρ̃n(t)) dt .

Since 1 ≤ ρ̃n ≤ Γ, using the L1-Carathéodory condition we see that the right-
hand side is bounded, and we get a contradiction with the assumption that
(µn)n tends to +∞.

Lemma 6 There exists a constant C > 0 such that, if µ ≥ 1, λ ∈ [0, 1], and
ρ is a positive solution of (Pλ,µ), then

min ρ ≥ 1

2
‖ρ‖L∞ − C .

Proof By (H4), we can fix r ≥ 1 such that

r ≥ r ⇒ |h(t, r)| ≤ r

4T 2
for a.e. t ∈ ]0, T [ .

Multiplying in (Pλ,µ) by ρ and integrating we get, writing ρ̃ = max{ρ, 1},∫ T

0

ρ̇2 = −
∫ T

0

µ2

ρ̃3
ρ+ (1− λ)

∫ T

0

(
1− 1

ρ̃3

)
ρ+ λ

∫ T

0

h(t, ρ̃)ρ− λ
∫ T

0

eρ

≤ T‖ρ‖L∞ +

∫
{1≤ρ̃<r}

|h(t, ρ̃)|ρ+

∫
{ρ̃≥r}

|h(t, ρ̃)|ρ+ ‖e‖L1‖ρ‖L∞

≤ 1

4T
‖ρ‖2

L∞ + (T + ‖`1,r‖L1 + ‖e‖L1)‖ρ‖L∞ .

Setting
C := (T + ‖`1,r‖L1 + ‖e‖L1)T ,

we have

T‖ρ̇‖2
L2 ≤

1

4
(‖ρ‖2

L∞ + 4C‖ρ‖L∞) ≤ 1

4
(‖ρ‖L∞ + 2C)2 .

So,

max ρ−min ρ ≤
√
T‖ρ̇‖L2 ≤ 1

2
‖ρ‖L∞ + C ,

thus proving the lemma.
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Let us now fix Γ > 2(1 + C), where C is given by Lemma 6. Correspond-
ingly, let µ := µ(Γ), with µ(Γ) ≥ 1 as in Lemma 5.

Lemma 7 Given A,B, with µ ≤ A ≤ B, there is a constant C > 1 such that,
if µ ∈ [A,B], λ ∈ [0, 1], and ρ is a positive solution of (Pλ,µ), then

1 < ρ(t) < C , |ρ̇(t)| < C ,

for every t ∈ [0, T ].

Proof By contradiction, assume that, for every n ≥ 1 there are λn ∈ [0, 1],
µn ∈ [A,B] and a positive solution ρn(t) of the T -periodic problem (Pλn,µn)
such that, either ρn([0, T ]) 6⊆ ]1, n[ or ‖ρ̇n‖L∞ ≥ n. By the choice of µ and
Lemma 5, it has to be ‖ρn‖L∞ ≥ Γ, and by Lemma 6,

min ρn ≥
1

2
‖ρn‖L∞ − C ≥

1

2
Γ− C > 1 .

Arguing as in Step 1 of the proof of Lemma 2 we show that there exists a
R1 ≥ 1 such that min ρn ≤ R1 for every n. By Lemma 6 we deduce that

‖ρn‖L∞ ≤ 2(min ρn + C) < 2(R1 + C) .

Set b = 2(R1 + C). From the equation in (Pλn,µn) and the Carathéodory
conditions, recalling that ρn(t) > 1, since ρ̇n(t) vanishes somewhere, we obtain

‖ρ̇n‖L∞ ≤ ‖ρ̈n‖L1 ≤
∫ T

0

µ2
n

ρ3
n

+

∫ T

0

|h(t, ρn)|+ ‖e‖L1 < B2T + ‖`1,b‖L1 + ‖e‖L1 ,

thus ariving at a contradiction.

As a consequence of Lemma 7, if µ ≥ µ and ρ(t) is a T -periodic solution
of (P1,µ) then ρ(t) also satisfies the first equation in (S). The following lemma
gives an important information concerning the T -periodic solutions of that
equation.

Lemma 8 Given A,B, with µ ≤ A ≤ B, there is a continuum CA,B in [A,B]×
C1
T , connecting {A}×C1

T with {B}×C1
T , whose elements (µ, ρ) satisfy the first

equation in (S), being ρ(t) > 1 for every t.

Proof We proceed as in the proof of Lemma 3. Let L be the differential
operator defined there, and, for λ ∈ [0, 1],

Nλ : [A,B]× C1([0, T ])→ L1(0, T ) ,

Nλ(µ, ρ)(t) = −gλ,µ(t, ρ(t)) + λe(t)− ρ(t) .

Problem (Pλ,µ) is thus equivalent to (27). Let C > 0 be the constant given by
Lemma 7 and define Ω to be the following open subset of C1([0, T ]):

Ω =
{
ρ ∈ C1([0, T ]) : 1 < ρ(t) < C and |ρ̇(t)| < C , for every t ∈ [0, T ]

}
.

By Lemma 7, equation (27) has no solutions ρ on ∂Ω, for any λ ∈ [0, 1] and
µ ∈ [A,B]. Since L−1Nλ(µ, ·) is a compact operator, by the global continuation
principle of Leray-Schauder, the lemma will be proved if we show that the
degree is nonzero for some (λ, µ) ∈ [0, 1]× [A,B].
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Let us then take λ = 0, µ = A, and define the function

Ψ : [1 , C]× [−C,C]→ R2 ,

Ψ(u, v) =
(
v ,

A2 + 1

u3
− 1
)
.

Since

dB

(
Ψ, ]1 , C[× ]− C,C[

)
= 1 ,

we conclude as in the proof of Lemma 3.

Using classical arguments from the theory of global continuation, we can
deduce from Lemmas 7 and 8 that there is a connected set C, contained in
[µ,+∞[×C1

T , which connects {µ} × C1
T with {µ∗} × C1

T , for every µ∗ > µ,
whose elements (µ, ρ) satisfy the first equation in (S).

Lemma 9 For every ε > 0, there exists µε ≥ µ such that, if (µ, ρ) ∈ C with
µ ≥ µε, then ∫ T

0

µ

ρ2(t)
dt ≤ ε .

Proof Given ε > 0, set

ε′ :=
( ε

36T

)2

.

Let C be as in Lemma 6. By (H4), there exists r′ ≥ max{3C, 1} such that

r ≥ r′ ⇒ |h(t, r)| ≤ ε′r , for a.e. t ∈ ]0, T [ .

For Γ := 2(r′ + C), let µ(Γ) be as in Lemma 5. Set µε := max{µ(Γ), µ}.

Let (µ, ρ) be an element of C, with µ ≥ µε. By Lemma 5, ‖ρ‖L∞ ≥ Γ, and
by Lemma 6, ρ(t) ≥ 1

2
‖ρ‖L∞ − C ≥ r′, for every t ∈ R. Hence,

1

T

∫ T

0

h(t, ρ) ≤ 1

T

∫ T

0

ε′ρ ≤ ε′‖ρ‖L∞ .

Integrating the first equation in (S), since ē = 0, we have

1

T

∫ T

0

µ2

ρ3
=

1

T

∫ T

0

h(t, ρ) ≤ ε′‖ρ‖L∞ .

On the other hand,
1

T

∫ T

0

µ2

ρ3
≥ µ2

‖ρ‖3
L∞

,

so that
µ2

‖ρ‖4
L∞
≤ ε′ .

19



Then, using again Lemma 6,∫ T

0

µ

ρ2(t)
dt ≤ T

µ

(min ρ)2
≤ T

4µ

(‖ρ‖L∞ − 2C)2

= T
µ

‖ρ‖2
L∞

(
2‖ρ‖L∞
‖ρ‖L∞ − 2C

)2

≤ T
√
ε′
(

2r′

r′ − 2C

)2

≤ T
√
ε′
(

6C

3C − 2C

)2

= 36T
√
ε′ = ε ,

thus proving the lemma.

Since the function

(µ, ρ) 7→
∫ T

0

µ

ρ2(t)
dt

is continuous from C to R, and C is connected, its image is an interval. By
Lemmas 8 and 9 this interval is of the type ]0, θ] for some θ > 0. The analogue
of Lemma 4 then holds in this case, too, with θ ∈ ]0, θ].

The proof of Theorem 2 can now be completed as in the previous section
(see also [8, Theorem 4]).

4 Remarks on the continuum of solutions and

multiplicity of periodic solutions

Assume (H1), (H2) and (H3). By Lemma 2 we have that, for every M > 0,
there exists a constant C > 0 such that, for any µ ∈ [0,M ], if ρ(t) is a T -
periodic solution of the first equation in (S), then

1

C
< ρ(t) < C and |ρ̇(t)| < C ,

for every t ∈ [0, T ]. Moreover, as seen in Lemma 3, for every µ the associated
degree is constantly equal to 1. Hence, by the global continuation principle of
Leray-Schauder, there is a closed connected set C, contained in [0,+∞[×C1

T ,
which connects {0} × C1

T with {µ∗} × C1
T , for every µ∗ > 0, whose elements

(µ, ρ) satisfy the first equation in (S).

Consider now the function ϕ̂ : C → C2(R), defined by

ϕ̂(µ, ρ)(t) =

∫ t

0

µ

ρ2(τ)
dτ .

Since this function is continuous, its graph is a closed connected subset Ĉ+ of
[0,+∞[×C1

T × C2(R). Moreover, the projection of Ĉ+ on its first component
is the whole half-line [0,+∞[ .
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It is easily seen that the same arguments used till now symmetrically hold
in the case of negative angular momenta µ. In particular, the above a priori
bounds hold for every µ ∈ [−M,M ], once M > 0 has been fixed. We then
have the following result.

Lemma 10 Let assumptions (H1)-(H3) hold. Then, there is a closed con-
nected subset Ĉ of R× C1

T × C2(R) whose elements (µ, ρ, ϕ) solve system (S),
and whose projection on its first component is the whole real line ]−∞,+∞[ .
Moreover, for any sufficiently large integer k, this set Ĉ contains solutions for
which µ is small and ϕ(t+ kT ) = ϕ(t) + 2π, for every t.

If, instead of (H1), the stronger assumption (H4) holds, then we can repeat
the estimates made in Lemmas 5 - 9 to deduce that, along the connected set Ĉ
given by Lemma 10, there also are solutions with large angular momenta and
amplitudes, for which ϕ(t+ kT ) = ϕ(t) + 2π, for every t.

Recalling that (S) represents, through

x(t) = ρ(t)(cosϕ(t), sinϕ(t)) ,

the solutions of (6) having angular momentum µ, we can conclude as follows.

Corollary 4 Let assumptions (H2), (H3) and (H4) hold. Then, there is a
closed connected subset of R × C1(R,R2\{0}) whose elements (µ, x) are such
that x(t) is a solution of system (6) with angular momentum µ, and |x(t)| is
T -periodic. The projection of this set on its first component is the whole real
line ]−∞,+∞[ . Moreover, this set contains infinitely many periodic solutions,
rotating around the origin, with arbitrarily large periods and amplitudes.

Till now, we always considered periodic solutions making exactly one rev-
olution around the origin in their period time. Concerning the existence of
periodic solutions making a higher number of revolutions around the origin,
we have the following result.

Theorem 4 Let e(t) be continuous, with minimal period T , and negative mean
value. Let h(t, r) be continuous, and assume that

(H5) lim
r→+∞

h(t, r) = 0 ,

uniformly for every t. Then, for every integer m ≥ 1, there exists a km ≥ 1
such that, for every integer k ≥ km, if k and m are relatively prime, equa-
tion (6) has a periodic solution xk,m(t) with minimal period kT , which makes
exactly m revolutions around the origin in the period time kT . Moreover,

lim
k→∞

(min |xk,m|) = +∞ ,

and

lim
k→∞

min |xk,m|
max |xk,m|

= 1 .
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We omit the proof, since it is exactly the same as that of [8, Theorem 7].
To conclude, let us state the following multiplicity result.

Theorem 5 Let e(t) be continuous, with minimal period T , and negative mean
value. Let h(t, r) be continuous, and assume (H5). Then, for every n ∈ N,
there is a k(n) ≥ 1 such that, for every prime integer k ≥ k(n), equation (6)
has at least n geometrically distinct periodic solutions with minimal period kT .

Proof Given n ≥ 1, let p1, p2, . . . , pn be the first n prime numbers. Corre-
spondingly, let kp1 , kp2 , . . . , kpn be as in Theorem 4. Define

k(n) = max{kp1 , kp2 , . . . , kpn} .

By Theorem 4, for every prime number k ≥ k(n), equation (6) has periodic
solutions xk,p1 , xk,p2 , . . . , xk,pn , with minimal period kT , which make exactly
p1, p2, . . . , pn rotations around the origin, respectively, in the period time kT .

We immediately deduce the following corollary concerning equation (3).

Corollary 5 Let c(t) and e(t) be continuous. Assume e(t) has minimal period
T , and ē < 0. If γ > 1 and (8) holds, then the same conclusions of Theorems 4
and 5 hold for system (3).
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