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Abstract. As is well-known, the Bernays-Schönfinkel-Ramsey class of all

prenex ∃∗∀∗-sentences which are provable in first-order predicate calculus is
decidable. This paper shows that an analogous result holds when the only

available predicate symbols are ∈ and =, no constants or function symbols

are available, and one moves inside a (rather generic) set theory whose axioms
yield the well-foundedness of membership.
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Introduction

In this paper we prove the decidability of the satisfiability problem for the cel-
ebrated Bernays-Schönfinkel-Ramsey class (BSR-class) in a (rather generic) set-
theoretic context. The BSR-class has a history for inspiring interesting and deep
combinatorial problems and results—Ramsey theorem above all, see [Ram28]—and
the set theoretic context in which we are tackling the problem provides a further
case in which a non-trivial (infinitary) combinatorial treatment turns out to be
necessary to prove its decidability.

Definition 1. A prenex sentence Φ belongs to the Bernays-Schönfinkel-Ramsey
class (BSR-class) if its quantificational prefix has the form ∃∗∀∗.

An open formula ϕ(x1, . . . , xn) all of whose quantifiers are grouped at the begin-
ning belongs to the BSR-class if its quantificational prefix has the form ∀∗.1 �

The reader is referred to [BGG97, DG79, Lew79] for basic notions on the taxon-
omy of quantificational classes and key results on the Classical Decision Problem.

The basic language we consider contains equality and one binary relational sym-
bol ∈ to be interpreted as the membership relation. The set-theoretic satisfiability
issue we will consider concerns the existence of an algorithmic procedure which can
establish, given a formula ϕ(x1, . . . , xn) in the BSR-class, whether or not there are
n sets satisfying ϕ in the standard (von Neumann) universe of sets V, namely the
class inductively defined on all ordinals by the recursion

Vα =
⋃
β<α P(Vβ) ,

where P(·) designates the power-set operation and α, β range over ordinals.

Date: January 27th, 2008. This research has been partially funded by PRIN project 2006/2007
‘Large-scale development of certified mathematical proofs’.

1Occasionally, e.g. when speaking of restricted BSR-formulae, we will slightly abuse terminol-
ogy and ascribe to the BSR-class also formulae which are trivially equivalent to formulae in the

BSR-class proper, as can be shown by elementary syntactic transformations.
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Our answer to the said decision problem will be affirmative: actually, we will
single out a specific algorithm solving the satisfiability problem addressed above.
Related result were presented in [OPP93], which treated a decision algorithm for the
subclass ∃∗∀ (with only one universal quantifier) of the BSR-class, and in [BP06],
which solved the decision problem for the subclass ∃∗∀∀ (with two universals).

With our novel approach, decidability will ensue from the following observations:
• Within the BSR-class, we can associate with any formula ϕ an equi-satisfiable

formula ϕ′ whose quantifiers are of the restricted form ∀ y ∈ z .
• This restricted form of quantification enables one, when the set values for

the free variables of ϕ′ are drawn from a family F , to evaluate ϕ′ within a
confined domain of discourse: the transitive closure (see below) T of F .
• There is a subset W of T which retains enough of the structure of T to

enable one to determine the truth value of ϕ′ in F ; despite not being finite
in general, this W can be adequately represented by a finite data structure.
• Indicating by ν the overall number of distinct variables in ϕ, we can set

a computable bound f(ν) on the size of the finite representation of W .
Indirectly, this sets a bound on the amount of time needed to explore the
search space within which a “witness” W of the satisfiability of ϕ′ can lie.

As will emerge from the ongoing, although we have cast it in semantic terms,
our decision problem could easily be referred to the classical axiomatic theory of
sets ZF, or to a weaker theory postulating among others the existence of infinite
sets and the well-foundedness of membership.

1. Basics and Preliminary Results

We begin with a few simple notions (the reader can refer to [Lev79] for a more
detailed treatment) and basic results.

Throughout, we will assume the membership relation ∈ to be well-founded on
the class V of all sets (i.e., any non-empty subset of V has a ∈-minimal element)
and we introduce the usual notion of rank as follows:

Definition 2. The rank function rk, taking values on the ordinal numbers, is
recursively defined over V as follows:

rk(x) = sup{rk(y) + 1 : y ∈ x}.

In V the only element of rank 0 is ∅ and a set is said to be hereditarily finite
whenever its rank is a natural number. We often use the abbreviation

x<α = { y ∈ x | rk(x)<α },
where x is a set, α is an ordinal, and < is a binary relation: thus, e.g.,

x>α = { y ∈ x | rk(x) > α }, x<α = x ∩Vα, and x>α = x \Vα.

Definition 3. Given a set v, we denote by TrCl(v) the transitive closure of
v, defined through the recursion

TrCl(v) = v ∪
⋃
u∈v

TrCl(u).

Definition 4. Given an acyclic graph G = 〈V,E〉, we define the Mostowski
collapse of G to be the family M(G) of sets defined as

M(v,G) = {M(u,G) : 〈v, u〉 ∈ E}.
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Figure 1. A minimal differentiating set of three elements for a
family F of five sets.

Moreover, given Z ⊆ V , we define the Mostowski collapse of G with param-
eter Z to be the family M(G;Z) of sets defined as

M(v,G;Z) =
{
{M(u,G;Z) : 〈v, u〉 ∈ E}; if v /∈ Z
AZ(v) if v ∈ Z,

where AZ is an arbitrary bijection between Z and a set none of whose elements
comes to equal any M(v,G;Z)—this can be achieved simply by requiring that all
images of AZ have rank |V |+ 1. �

When using the above definition we will omit the parameter G in the notation
whenever this is clear from the context.

Definition 5. Given a set V, we denote by GV the graph 〈V, EV〉 whose nodes
are the elements of V and whose edge relation is the inverse of membership. �

Let F be a finite family of sets. Given z ∈
⋃
F , we denote by F(z) the set

{v \ {z} | v ∈ F}.

Definition 6. A z ∈
⋃
F is said to be redundant if |F| = |F(z)|. We say that

F is irredundant if no element of
⋃
F is redundant. �

If F is irredundant then
⋃
F is also called a minimal differentiating set for F

(see Fig. 1). What is important for our combinatorial problem, is the size of such
a minimal differentiating set as well as technique to determine it. The following
lemma and its proof (see also [PPR97, Bol86]) give us indications on those two
issues.

Lemma 1.1 (Discrimination lemma). Given an n-element nonempty family
F = {v1, . . . ,vn}, we can determine z1, . . . , zk ∈

⋃
F , with k 6 n− 1, so that the

family
{vi ∩ {z1, . . . , zk} | vi ∈ F}

is irredundant and has cardinality n.

Proof. By induction on n, where the case n = 1 is trivial. As for the inductive
step, assume a minimal differentiating set {z1, . . . , zk′} ⊆

⋃
{v1, . . . ,vn−1} has

already been determined. To conclude it is sufficient to observe that either {vi ∩
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{z1, . . . , zk′} | vi ∈ F} is irredundant—and we are done—or, for a unique i ∈
{1, . . . , n− 1}, we have:

vi ∩ {z1, . . . zk′} = vn ∩ {z1, . . . zk′}.

In the latter case just one element needs to be added to {z1, . . . zk′} in order to
obtain a minimal differentiating set for F . �

A useful variant of the above lemma is stated below.

Lemma 1.2 (Élite discrimination lemma). Given an n-element family F =
{v1, . . . ,vn}, such that rk(F) − 1 = % + 1 for some ordinal ρ (i.e., the maximum
rank of an element of F is a successor ordinal), we can determine z1, . . . , zk ∈

⋃
F ,

with k 6 n, so that the family

{vi ∩ {z1, . . . , zk} | vi ∈ F}

has cardinality n and, for every i ∈ {1, . . . , n},

rk(vi) = %+ 1 implies rk(vi ∩ {z1, . . . , zk}) = %+ 1.

Proof. The proof proceeds by induction on the numberm = |{v ∈ F | rk(v) = %+ 1}|
of sets of maximum rank in F . We will assume in the ongoing that z ∈ w ∈ F and
rk(z) = ρ. Observe that the claim of this theorem trivially holds when m = n = 1
(just take k = 1 and z1 = z); if this is not the case, then we can determine
z2, . . . , zk ∈

⋃
(F \ {w}) with k 6 n so that the family {vi ∩ {z2, . . . , zk} : vi ∈

F \ {w}} has cardinality n − 1, by exploiting either Lemma 1.1 (if m = 1) or the
induction hypothesis. When m = 1 < n, we get the desired z1, . . . , zk ∈

⋃
F by

simply adding z1 = z, because w ∩ {z1, . . . , zk} = {z1} 6⊆ v ∩ {z1, . . . , zk} for any
v ∈ F \ {w} in this case.

When m > 1, we can inductively assume that

rk(vi) = %+ 1 implies rk(vi ∩ {z2, . . . , zk}) = %+ 1

for every vi ∈ F other than vi = w. If rk (w ∩ {z2, . . . , zk}) 6= % + 1, then we put
z1 = z, so that rk (w ∩ {z1, . . . , zk}) = ρ + 1 and the set w ∩ {z1, . . . , zk} differs
from any set v ∩ {z1, . . . , zk} with rk(v) 6 ρ (since z1 ∈ w and rk(z1) = %) and it
also differs from any set vi ∩ {z1, . . . , zk} with vi ∈ F \ {w} and rk(vi) = % + 1
(since vi ∩ {z2, . . . , zk} has an element zj of rank ρ not belonging to w). If, on the
contrary, rk (w ∩ {z2, . . . , zk}) = ρ+ 1, then either w ∩ {z2, . . . , zk} already differs
from any vi ∩ {z2, . . . , zk} with vi ∈ F \ {w}, in which case we do not need a new
z1 (and we can put z1 = z2), or else we can arbitrarily pick z1 out of that unique
symmetric difference (w ∩ {z2, . . . , zk})4 (vi ∩ {z2, . . . , zk}), with vi ∈ F , which
is not empty. �

The decidability of restricted unnested BSR-formulae. Let us start by giv-
ing a rather simplified and intuitive satisfiability test for the subclass of restricted
unnested BSR-formulae defined below.

Definition 7. A BSR-formula ϕ(x1, . . . , xn) is said to be restricted if all of its
universal quantifiers are bounded. A restricted formula is unnested if for any
bounded quantifier ∀y ∈ x the variable x is free in ϕ. �
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Figure 2. A family F of five sets with a minimal differentiating
set and the associated membership graph (without edges among
the elements of the differentiating set).

Given a restricted unnested formula ϕ(x1, . . . , xn), if there are sets v1, . . . ,vn
satisfying it, consider the graph G{v1,...,vn} (see Definition (5)). Such graph is a
finite structure that can simply be “guessed” as a non deterministic step of our
satisfiability procedure. The problem is that we are generally unable, given such
a structure, to reconstruct the tuple of sets satisfying the formula (or even an-
other one). The natural move would be trying to use the Mostowski collapse of
G{v1,...,vn}, namely the family

M(vj) = {M(vi) : 〈vj ,vi〉 ∈ E{v1,...,vn}}

with j = 1, . . . , n; however, such sets have the obvious problem that it can easily
be the case that vh 6= vk while M(vh) = M(vk). To avoid this problem, we should
enrich the graph with further nodes acting as witnesses and use the parametric
version of the Mostowski collapse.

Such an enrichment is always possible. In fact, recalling Lemma 1.1 we have
that k < n new elements of v1∪· · ·∪vn are sufficient as witnesses of the differences
among v1, . . . ,vn. These extra nodes z1, . . . , zk can be “guessed” from the outset
by our algorithm.

At this point—as the reader can easily verify—the Mostowski collapse with pa-
rameter Z = {z1, . . . , zk} ensures that all equalities and membership relations
among M(v1; Z), . . . ,M(vn; Z) and their elements mimic exactly the ones among
v1, . . . ,vn and their elements.

Notice that it is the universal character of ϕ that allows us to conclude. In fact, if
the sets M(v1; Z), . . . ,M(vn; Z) were not to satisfy ϕ, then a counterexample to the
satisfiability of ϕ by v1, . . . ,vn (using v’s and witnesses only) could easily be built.
This is the key point in the construction where the assumption of unnestedness
plays its role: a counterexample to a purely universal unnested formula could never
use an element which does not correspond to a node in G{v1,...,vn,z1,...,zk}.

An algorithm which solves the satisfiability problem for restricted un-nested for-
mulae was proposed in [BFOS81], as one of the first results in Computable Set
Theory. The argument used in [BFOS81] was different from the one presented
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above and the decidability result was also extended to cover some extra construc-
tors (notably arithmetic ones) that were shown to maintain both the property of
reflection into the (hereditarily) finite sets and decidability.

The absence of nested quantifiers is crucial in showing the property of reflection
into finite sets: below we examine a restricted and nested formula which is satisfiable
without being finitely satisfiable (cf. [PP88, PP90, PP91]). Consider the formula in
two variables—to be denoted ω0 and ω1, respectively—constituted by the following
sub-formulae where b = 0, 1:

a) ∀y ∈ ωb∀x ∈ y(x ∈ ω1−b), that is ωb ⊆P(ω1−b);
b) ωb /∈ ω1−b;
c) ω0 6= ω1.

Two sets satisfying the above conditions are not necessarily infinite; in fact
ω0 = {∅, {{∅}}}, ω1 = {{∅}, {{{∅}}}} would satisfy our formula.

However, the above interpretation can be seen as the beginning of a back-and-
forth process that will eventually force both ω0 and ω1 to become infinite.

Assuming that ∈ does not form either cycles or infinite descending chains, either
one of the following conditions will do to the case (cf. [PP88, PP90]):

d) ∀x1, x2 ∈ ω0∀y1, y2 ∈ ω1(x1 ∈ y1 ∈ x2 ∈ y2 → x1 ∈ y2),
e) ∀x ∈ ω0∀y ∈ ω1(x ∈ y ∨ y ∈ x).

In case membership is allowed to be a non well-founded relation, the conjunction
of the above is necessary (see [PP91]).

Since here we assume membership to be well-founded and the result is easily
proved, we state:

Lemma 1.3. The conjunction of conditions a), b), c), and e) force both ω0 and ω1

to have the same limit rank (and hence to be infinite).

Proof. Suppose, by contradiction and w.l.o.g., that ω0 has rank strictly less than
the rank of ω1 and consider an element z ∈ ω1 having the smallest rank greater
than or equal to the rank of ω0. By condition a) we have that z ⊆ ω0 and by
condition e) and the fact that the rank of z is greater than or equal to the rank of ω0,
we have that ω0 ⊆ z. Hence ω0 = z ∈ ω1, which contradicts b). Moreover, observe
that the (common) rank of ω0 and ω1 cannot be a successor ordinal, otherwise two
elements of highest rank in the two sets would fail to satisfy condition e). �

The above result can be seen pictorially: two sets satisfying conditions a), b) and
c) on ω0 and ω1 must have elements of increasing rank ω0,i and ω1,i, respectively,
as in Fig. 3. Stopping at any given finite even rank i forces ω0 to become ω1,i and
ω1 to become ω0,i−1, from which ω1 ∈ ω0 follows. For odd ranks the situation is
symmetric.

There is nothing special about the fact that two sets are involved in the above
example. A more general situation which, for any nonnegative n, analogously
forces n + 2 sets ωi to have limit rank, is described by the formula appearing in
the following proposition, easily rewritable as a BSR-formula2:

2In the ongoing, mod designates the integer remainder operation.
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Figure 3. A pictorial proof of Lemma 1.3.

Lemma 1.4. The formula

∅ 6= ω0 ∧
∧n+1
i=0

(
ωi /∈ ω(i+1) mod (n+2)

)
∧
∧n+1
i=0

(⋃
ω(i+1) mod (n+2) ⊆ ωi

)
∧

(∀x0 ∈ ω0, . . . , xn+1 ∈ ωn+1)
(∨n+1

i=0 xi ∈ x(i+1) mod (n+2)

)
is satisfiable but is not finitely satisfiable.

Proof. For readability, consider all arithmetic operations on indices as modulo n+2.
To see that the above formula is satisfiable, interpret each ωi as the collection

{ωi,0,ωi,1, . . .} of hereditarily finite sets where, for i = 0, . . . , n + 1 and for every
natural number r:

ωi,r =
{
ω(i−1),r′ : r

′ = 0, 1, . . . , r − 1
}

(so that, in particular, ω0,0 = ∅).
To see that the said formula is not finitely satisfiable, suppose that ω0, . . . ,ωn+1

satisfy it. We will assume first that some ωi be null, then that some ωi has a
successor rank, getting into a contradiction in either case. The conclusion will be
that every ωi has a limit rank and hence has an infinite cardinality.

As a preliminary remark, observe that

x ∈ ωi always implies ω(i−1) 6⊆ x ;

for, assuming the contrary, the equality ω(i−1) = x would hold because x ⊆
⋃

ωi ⊆
ω(i−1); but then ω(i−1) ∈ ωi would hold, contradiction.
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Under the temporary assumption that some ωi can be null, consider the largest
k for which ωk = ∅; then, since ω(k+1) 6= ∅, we can pick an element x ∈ ω(k+1)

and we know from the previous remark that ωk 6⊆ x, contradiction.
Suppose next that ωk has a successor rank, and that x ∈ ωk , rk(x)+1 = rk(ωk).

Put xk = x. Then, for i = 0, . . . , n, by repeatedly taking into account our earlier
remark, we can pick an element

x(k−i−1) ∈ ω(k−i−1) \ x(k−i) .

In view of the condition

(∀x0 ∈ ω0, . . . , xn+1 ∈ ωn+1)

(
n+1∨
i=0

xi ∈ x(i+1)

)
,

we have that x ∈ y ∈ ω(k+1) for a suitable y. The leftward loop which has enabled
us to obtain y from x can be placed inside a rightward loop whose second iteration,
starting with y (in the same role which x held before) and proceeding similarly,
will find a z ∈ ω(k+2) such that y ∈ z. Repeated for long enough, this outer loop
will construct a membership chain reaching an x′ belonging to the same ωk with
which we have started, with rk(x) < rk(x′), contradiction.

(Notice that a single execution of the inner loop would have sufficed for the
conclusion that ω0 ∪ · · · ∪ωn+1 cannot be finite; actually, assuming the contrary,
we could have supposed ωk to be of maximum rank amid the ωi’s. However, with
minimum extra effort, we have managed to distill more information from our proof.)

�

2. The syntactic reduction

In this section we show that the (satisfiability) decision problem for the entire
BSR-class can be reduced to the subclass of restricted BSR-formulae.

To see this we begin by proving that every BSR-sentence can always be cast in
the following simple format:

Proposition 2.1. Every prenex sentence

Φ ≡ (∃x1, . . . , xn)(∀y1, . . . , ym)φ(x1, . . . , xn, y1, . . . , ym)

in the BSR-class is logically equivalent to a sentence

Φ ≡ (∃x1, . . . , xn)
k∧
i=1

(∀y1, . . . , ym)φi(x1, . . . , xn, y1, . . . , ym),

where each φi is a disjunction of literals of the forms

z ∈ w , z /∈ w , z = w , z 6= w ,

with z, w ∈ {x1, . . . , xn, y1, . . . , ym}.

To see that the above proposition is true, it suffices to bring the matrix φ of Φ to
conjunctive normal form, then interchanging universal quantifiers and conjunction.

Our next step will be to perform a transformation, rather common in decision
procedures for fragments of set theory, which does not apply to sentences but to
the corresponding formulae obtained by withdrawing the existential quantifiers (see
Definition (1)). Here the notion of injective satisfiability, meaning “satisfiability by
a tuple of pairwise distinct sets”, enters into play. We are about to observe that,
within pure first order logic, we can restrain our analysis to equality-free formulae:
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Lemma 2.2. For any given formula ϕ in n free variables of the BSR-class, one
can determine a finite collection of conjunctions

ϕh =
kh∧
i=1

(∀y1, . . . , ym)φi(xj1 , . . . , xjnh
, y1, . . . , ym)

of BSR-formulae, where nh 6 n and every φi is a disjunction of literals of the forms

z ∈ w , z /∈ w ,

with z, w ∈ {xj1 , . . . , xjn′ , y1, . . . , ym}, so that ϕ is satisfiable if and only if some
ϕh is injectively satisfiable.

(Sets satisfying the original ϕ will correspond to sets injectively satisfying one of
the ϕh’s.)

Proof. To see the result it is sufficient to observe that, by taking an assignment,
any n-tuple of sets satisfying the original formula can always be reduced to an n′-
tuple of sets injectively satisfying the version of the formula deprived of equalities
(that become identities) and inequalities (that become unsatisfiable). See [COP01,
Section 6.3.4]. �

On the ground of the above result, from now on we will assume that no equali-
ties/inequalities appear in the matrix of BSR-formulae/sentences and we will intend
“satisfiability” as actually meaning “injective satisfiability”.

Our last result in this section proves that we can further restrict our consideration
to the bounded-quantifier case:

Lemma 2.3. Any conjunction
k∧
i=1

(∀y1, . . . , ym)φi(x1, . . . , xn, y1, . . . , ym)

of BSR-formulae, where each φi is an disjunction of literals of the forms z ∈ w and
z /∈ w, is equivalent to an alike formula in which every φi involving a variable yj
comprises at least one literal of the form

yj /∈ z ,

with z ∈ {x1, . . . , xn, y1, . . . , yj−1}.

Proof. Assume first that there exist a yj and a φi within which yj , but no literal
yj /∈ z with

z ∈ {x1, . . . , xn, y1, . . . , yj−1, yj+1, . . . , ym},
occurs. Hence, all literals involving yj within φi are of the forms

z ∈ yj , z /∈ yj , yj ∈ z .

If φi(x1, . . . , xn, y1, . . . , ym) is true for some n-tuple X1, . . . , Xn of sets and for
everym-tuple Y1, . . . , Ym of sets, then consider any specific suchm-tuple Y1, . . . , Ym,
and replace Yj in such a tuple by a set Y ′j which satisfies all literals

Y ′j /∈ X1, . . . , Y
′
j /∈ Xn, Y

′
j /∈ Y1, . . . , Y

′
j /∈ Ym

and also satisfies all biimplications

Z ∈ Y ′j if and only if φi does not comprise the literal z ∈ yj
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with z ∈ {x1, . . . , xn, y1, . . . , yj−1, yj+1, . . . , ym}. It is easy to see that one such Y ′j
can always be found; therefore truth (under the assignment xk 7→ Xk is preserved
if φi is replaced by its sub-formula φ′i obtained by withdrawing all literals which
involve yj .

At this point, if a chain of the form

yj /∈ z1, . . . , zh /∈ yj
appears in a conjunct φi, we can discard the conjunct inasmuch as blatantly true.
Hence, we can rename the universally quantified variables in every conjunct, so as
to meet the claim of this theorem. �

On the ground of the above result we can assume the following restricted format
for formulae of the BSR-class:

k∧
i=1

(∀y1 ∈ z1, . . . , ymi
∈ zmi

)φi(x1, . . . , xn, y1, . . . , ymi
),

where zh ∈ {x1, . . . , xn, y1, . . . , yh−1} for h ∈ {1, . . . ,mi}.

3. The semantic reduction

In this section we present an argument to prove that a finite (and bounded)
description of a finite family satisfying a given restricted BSR-formula can always
be built. Our general strategy will be to extend the proof used for the unnested
case (see Section (1)) by producing a family of witnesses that will not need the
parametric version of the Mostowski collapse.

We will begin with the following definition that characterizes the self-sustaining
sets of witnesses we are looking for.

Definition 8. Given a family F , we say that W ⊆ TrCl(F) represents F if:
• F ⊆W, and
• for all u,v ∈W, if u 6= v then M(u, GW) 6= M(v, GW).

(That is, the Mostowski collapse on W is injective.) �

Proposition 3.1. If ϕ(x1, . . . , xn) is a restricted BSR-formula satisfied by v1, . . . ,vn
and W represents F = {v1, . . . ,vn}, then also the n-tuple

M(v1, GW), . . . ,M(vn, GW)

satisfies ϕ(x1, . . . , xn).

Proof. The proof is entirely analogous to the one given in the unnested case (see
Section (1)). �

From now on when two elements u,v ∈W are such that u 6= v and M(u, GW) =
M(v, GW), we say that u and v collide.

The following lemma is our first step.

Lemma 3.2. Given a finite family F , a set W can be determined so that:
(1) W represents F ;
(2) W owns at most |F| members of rank α, for each ordinal α;
(3) |{w ∈W | rk(M(w, GW)) is a limit ordinal}| < ω.
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Proof. We proceed by induction on rk(F).
If rk(F) 6 1, then the claim trivially holds, since either F is empty or |F| = 1.

As a matter of fact, if |F| = 1 then for any value of rk(F) it suffices to take W = F .
For the inductive step, let F = {v1, . . . ,vn}. We will consider two cases: either

rk(F)− 1 (i.e. the maximum rank of a vi) is a successor, or is a limit ordinal.
In case rk(F) − 1 is a successor, say % + 1 for some %, we can apply the élite

discrimination lemma (Lemma (1.2)) to the set {v ∈ F | rk(v) = %+ 1} thus deter-
mining elements z1, . . . , zk complying with the claim of that lemma. We can then
apply the inductive hypothesis to get a set W′ satisfying analogs of the conditions
(1), (2), (3) relative to the family

F ′ = {v ∈ F | rk(v) 6 %} ∪ {z1, . . . , zk},

(notice that rk(F ′) = rk(F) − 1 and |F ′| 6 n). Next we show that we achieve our
goal if we put

W = W′ ∪ F(= W′ ∪ {v ∈ F | rk(v) = %+ 1}).

To see that W represents F (claim (1)), observe that:
• two elements of W′ cannot collide, by the induction hypothesis;
• two elements of F \W′ (= {v ∈ F | rk(v) = %+1}) cannot collide, because

the differentiating set {z1, . . . , zk} for F \W′ has been included in W′;
• there can be no collision between an element of F \W′ and an element of

W′, as by Lemma (1.2) every element of F \W′ owns an element zi of
rank %, which cannot be the case for any element in W′.

Claims (2) and (3) are easily seen to follow from the inductive hypothesis.

In case rk(F)−1 is a limit ordinal λ, assume that rk(v1) 6 rk(v2) 6 · · · 6 rk(vn)
and that {vi, . . . ,vn} are the elements of rank λ in F . Let

α = rk({v1, . . .vi−1}) ∪ rk({z1, . . . , zn′}),

where {z1, . . . , zn′} is a differentiating set for {v1, . . . ,vn}; actually, it would suffice
here to choose α to be any ordinal (strictly below λ) which exceeds all of the ranks
rk(v1), . . . , rk(vi−1) and is high enough to ensure that v1, . . . ,vi−1,v<αi , . . . ,v<αn
are n distinct sets.

Let F0 = {v1, . . . ,vi−1} ∪ {v<αi , . . . ,v<αn }, and apply the inductive hypothesis
to get a set W0 satisfying analogs of (1), (2), and (3) relative to F0.

For every u ∈ ω, let zui , . . . , z
u
n be n− i+ 1 sets belonging to vi, . . . ,vn, respec-

tively (see Figure (4)), such that:
• α < rk(z0

i ),
• rk(zui ) < . . . < rk(zun) < rk(zu+1

i ) for all u ∈ ω.
Now, for every u ∈ ω, define the (n − i + 1)-tuple tu = 〈tu(i), . . . , tu(n)〉 by

putting

tu(`) =
{
`′ if zu` = v<rk(zu

` )
`′ = {x ∈ v`′ | rk(x) < rk(zu` )},

0 otherwise.

Notice that the above definition is well posed, as zu` can be at most one among
v<rk(zu

` )
i , . . . ,v<rk(zu

` )
n , since otherwise two elements among v<rk(zu

` )
i , . . . ,v<rk(zu

` )
n

would collide, contradicting the fact that there are witnesses of their difference
at a rank smaller than α < rk(zu` ).
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Figure 4. Positions of zui , . . . , z
u
n relative to vi, . . . ,vn, for u = 0, 1, . . . .

Clearly every tu can be seen as a character in a finite alphabet, hence the infinite
sequence t0, t1, . . . must contain an infinitely repeating character. Let tr0 , tr1 , . . .
be a subsequence of t0, t1, . . . consisting of one such infinitely repeating charac-
ter. Moreover, let t̄r0 , t̄r1 , . . . be the sequence resulting from tr0 , tr1 , . . . through
replacement of each trj

by the t̄rj
defined as

t̄rj (`) =
{
trj (`) if ∃v(` 6= trj (`) = `1 ∧ trj (`1) = `2 ∧ · · · ∧ trj (`v) = `),
0 otherwise.

We claim that by putting

W = (W0 ∩ TrCl(F)) ∪ {zrj

` : j ∈ ω, ` ∈ {i, . . . , n} | t̄r0(`) 6= 0} ∪ {vi, . . . ,vn}

we meet the conditions (1), (2), and (3).
Concerning claim (1) we proceed by contradiction, assuming that x,y ∈ W,

despite being different, own the same successors in GW.
Consider the following three cases:

i) rk(x) > rk(y) > α;
ii) rk(x) > α > rk(y);

iii) α > rk(x) > rk(y).
Case i) splits into three subcases:

i.1) x,y ∈ {vi, . . . ,vn}. This case cannot hold, because W0 includes a differ-
entiating set for {v<αi , . . . ,v<αn } (and therefore for {vi, . . . ,vn}).

i.2) x ∈ {vi, . . . ,vn} and y /∈ {vi, . . . ,vn}. In this case the equality y = zrj

`

must hold for some j and `. Let t̄rj
(`) = `′ /∈ {0, `}.

It cannot be the case that x = v`′ as otherwise, by definition of t̄rj
, it

would be the case that ∃v(trj
(`) = `′ = `1 ∧ trj

(`1) = `2 ∧ · · · ∧ trj
(`v) = `).
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From this it would follow that t̄rj
(`′) = t̄rj

(`1) 6= 0 (as well as t̄rj
(`2) 6=

0, . . . , t̄rj (`v) 6= 0). As t̄rj (`′) 6= 0, there would be infinitely many elements
of rank greater than α witnessing the difference between x and y.

Moreover, it cannot be the case that x = v`′′ 6= v`′ , since by definition

zrj

` = v<rk(z
rj
` )

`′ , and therefore a witness of the difference between v<α`′′ and
v<α`′ is also a witness of the difference between x and y.

i.3) x,y /∈ {vi, . . . ,vn}. This case is entirely analogous to the previous one.
Details are left to the reader.

Case ii) cannot occur, as if x and y could collide, their respective ranks being
greater and smaller than α, then v<α`′ and y would also collide, for some `′ ∈
{i, . . . , n}, contradicting the inductive hypothesis on W0.

Case iii) cannot occur, due to the inductive hypothesis, as both x and y belong
to W0.

Claim (2) follows from the definition of the zrj

` ’s and from the inductive hypoth-
esis.

Claim (3) is a plain consequence of the above construction.
�

Given F , the proof of the above lemma implicitly defines a procedure to deter-
mine a (countable) W representing it. Such a procedure—to be specified in a more
“algorithmic” format in the second appendix—inserts elements of decreasing ranks
in W and, for a finite number

h = |{w ∈W | rk(M(w, GW)) is a limit ordinal}|

of times, introduces elements of the form zrj

` . We will denote such elements in W
as zjk,ik , . . . , z

j
k,nk

for j ∈ ω and k 6 h, and call them the rotors of W. The (extra)
index k in zjk,` indicates that the rotor was introduced while dealing with the k-th
limit ordinal.

We will work with the following definition.

Definition 9. Let W be a countable set representing the family F so that

{rk(w) : w ∈W | rk(M(w, GW)) is a limit ordinal} = {λ1, . . . , λh},

has cardinality h < ω. Assume λ1 < · · · < λh for definiteness.
A rotor system for W is a decomposition

W = c(W) ∪R1 ∪ · · · ∪Rh
of W into disjoint sets such that

• c(W), to be called the core of W, is finite;
• each Rk, to be called the k-th level of W, consists of distinct elements

zjk,ik , . . . , z
j
k,nk

(j ∈ ω)

of rank less than λk, to be called the rotors ascribed to λk. �

The reader can easily verify that rotors determined as in the proof of Lemma (3.2)
are downward uniform, in the sense that of two rotors having the same subscripts
and different superscripts one is always included in the other. More precisely: if



14 EUGENIO OMODEO AND ALBERTO POLICRITI

j < j′, then zjk,` ( zj
′

k,`. Indeed, this follows directly from the fact that rotors with
the same subscripts, by definition, collide with the same element (of the core) at
different stages of our procedure.

The definition below captures the symmetrical property of upward uniformity
whose fulfillment, as we will see, can be achieved jointly with downward uniformity.

Definition 10. Let W represent F and satisfy the claims of Lemma (3.2). We
will say that W is upward uniform (respectively, downward uniform) if for
k 6 h and j, j′ ∈ ω, any pair zjk,`, z

j′

k,` of rotors belong to the same elements of W

(respectively, zjk,` ( zj
′

k,`, if j < j′). �

In order to fulfill upward uniformity, we can proceed from higher to lower λk,
erasing some of the rotors ascribed to λk, but preserving infinitely many of them
along each “track” `, and managing things in such a way that all rotors zjk,` left on
the same track belong to the same elements above. More precisely:

Lemma 3.3. Given a finite family F , a set W can be determined so that:
(1) W represents F ;
(2) W owns at most |F| members of rank α, for each ordinal α;
(3) |{w ∈W | rk(M(w, GW)) is a limit ordinal}| < ω;
(4) W is downward and upward uniform.

Proof. On the ground of Lemma 3.2, we need only concentrate on the upper uni-
formity part of (4).

Let n = |F|, and h = |{w ∈W | rk(M(w, GW)) is a limit ordinal}|. Let more-
over λ1, . . . , λh, with λ1 < · · · < λh, be the limit ranks to which the rotors in W
have been ascribed.

We begin by proving that we can shrink W into a W1 whose rotors zjh,`, z
j′

h,`

ascribed to λh belong (when, as shown, the subscripts they bear are the same) to
the same elements of W (and hence of W1). To see this, it suffices to observe that
the infinite sequence of tuples

zjh,ih , . . . , z
j
h,nh

(j ∈ ω),

admits an infinite subsequence of tuples of elements with the required property.
This fact easily follows from the fact that there are only finitely many elements of
W whose ranks exceed λh and that for j′ 6 j,

zj
′

h,` ∈ zjh,`′ holds if and only if zj
′

h,` ∈ v`′′ ,

where `′′ ∈ {ih, . . . , nh} is such that z0
h,`′ = v

<rk(z0
h,`′ )

`′′ .
Assume that Wu has been so constructed that its rotors ascribed to λh−u+1

and bearing the same rotors belong to the same elements of Wu−1. In order to
conclude, it suffices to iterate the above technique also taking into account that for
h− u+ 1 6 k 6 h and j′ 6 j,

zj
′

h−u,` ∈ zjk,`′ holds if and only if zj
′

h−u,` ∈ vk,`′′ ,

where vk,`′′ ∈ {v ∈W | rk(v) = λk} is such that z0
h−u,`′ = v

<rk(z0
h−u,`′ )

k,`′′ . �

A rotor system W as above, representing a family F which satisfies a given
restricted BSR-formula, can be encoded as follows by a finite graph:
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Definition 11. Let W represent F in downward and uniform fashion, with h levels
of rotors. We define the encoding of W to be the graph GFW = 〈V,E〉 whose nodes
V result from the disjoint union of sets Vc and Vr defined as follows:

Vc =
{
vi : wi ∈ c(W)

}
,

Vr =
{
zk,ik , . . . , zk,nk

: (z0
k,ik

, . . . , z0
k,nk
∈W), k ∈ {1, . . . , h}

}
,

and whose set E of arcs results from the disjoint union of four sets (the second of
which is generally not an acyclic relation) defined as follows:

Ecc =
{
〈vj , vi〉 : vi, vj ∈ Vc | wi ∈ wj

}
,

Err =
{
〈zk,`, zk′,`′〉 : (zk′,`′ , zk,` ∈ Vr), b ∈ {0, 1} | zbk′,`′ ∈ zbk,`

}
,

Erc =
{
〈zk,`, vi〉 : zk,` ∈ Vr, vi ∈ Vc | vi ∈ z0

k,`

}
,

Ecr =
{
〈vi, zk,`〉 : zk,` ∈ Vr, vi ∈ Vc | z0

k,` ∈ vi
}
.

�

The encoding GFW retains the overall information necessary to obtain a set W′ =
W(GFW) mimicking F in the sense to be clarified by Propositions (3.4,3.5) below.

Definition 12. The ω-unrolling of GFW = 〈V,E〉 is defined to be the set

W(GFW) = Wc(GFW) ∪Wr(GFW),

where

Wc(GFW) = {v : v ∈ Vc }, Wr(GFW) = { zj : z ∈ Vc, j ∈ ω },

and the following equalities are recursively satisfied for all v ∈ Vc , z = zk,` ∈ Vr ,
and j ∈ ω:

v = {w : 〈v, w〉 ∈ Ecc } ∪ {z̃j : 〈v, z̃〉 ∈ Ecr, j ∈ ω },
zj = {w : 〈z, w〉 ∈ Erc } ∪

{z̃j
′
: z̃ = zk′,`′ ∈ Vr, 〈z, z̃〉 ∈ Err | k′ < k ∨ j′ < j ∨ (j′ = j ∧ `′ < `) }.

We get a fully analogous definition of m-unrolling by putting m+ 1 in place
of ω in the above characterizations. �

To achieve full rigor, we could recast the above as a definition based on induction
over a well-founded structure. In fact, as the reader can easily check, a vice in the
definition of the ω-unrolling would stem either from a cycle appearing in the acyclic
part of the encoding or from an infinite descending chain of natural numbers (the
indices ` involved in the definition of zj), neither of which is possible.

Although not essential to our decidability result, our next proposition clarifies
the notion of ω-unrolling introduced above. The proof of the fact reported below
it relates to our goals more directly.

Proposition 3.4. Given W representing F , we have that:

W(GFW) = M(W, GW).
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Proposition 3.5. Given a restricted BSR-formula ϕ = ϕ(x1, . . . , xn) and a family
F = {v1, . . . ,vn} represented by W in downward and upward uniform fashion, one
can establish whether or not v1, . . . ,vn satisfy ϕ on the basis of the encoding GFW.

Proof. Proposition (3.1) implies that if v1, . . . ,vn satisfy ϕ(x1, . . . , xn), then by
taking F = {v1, . . . ,vn} and by choosing a W representing F , we will have
M(v1, GW), . . . ,M(vn, GW) satisfying ϕ(x1, . . . , xn). We will now show that test-
ing ϕ(x1, . . . , xn) for satisfaction under the assignment xi 7→M(vi, GW) is possible
by mere inspection of the (finite) graph GFW.

To this end notice that if the formula

ϕ(x1, . . . , xn) =
k∧
i=1

(∀yi,1 ∈ zi,1, . . . , yi,mi
∈ zi,mi

)φi(x1, . . . , xn, yi,1, . . . , yi,mi
)

is not satisfied by M(v1, GW), . . . ,M(vn, GW), then there is a conjunct in ϕ whose
negation is satisfied by such sets. Namely, for some i ∈ {1, . . . , k} the formula

(∃yi,1 ∈ zi,1, . . . , yi,mi ∈ zi,mi)¬φi(x1, . . . , xn, yi,1, . . . , yi,mi),

is satisfied by M(v1, GW), . . . ,M(vn, GW). In this case, let yi,1, . . . ,yi,mi
be mi

elements that, together with M(v1, GW), . . . ,M(vn, GW), satisfy

¬φi(x1, . . . , xn, yi,1, . . . , yi,mi
).

It can easily be seen that since W is downward and upward uniform, all the
rotors among yi,1, . . . ,yi,mi can be assumed to be of level less than mi. From this
it follows that the mi-unrolling of GFW would be sufficient to check whether ϕ is
satisfied by M(v1, GW), . . . ,M(vn, GW) and hence by v1, . . . ,vn. �

In consequence of the above series of results, the decidability result announced
at the beginning of this paper will ensue from our ability to place a bound on the
size of the core of a set representing a family potentially satisfying a restricted
BSR-formula ϕ(x1, . . . , xn): once that bound is known, from the given ϕ we can
determine a list of all candidate encodings, and testing ϕ for satisfiability will
amount to checking that one of those actually encodes a satisfying tuple.

Lemma 3.6. Given F = {v1, . . . ,vn} and an integer m, there exist a computable
function f and a rotor system W∗ such that:

(1) W∗ represents F in upward and downward uniform fashion;
(2) M(W∗) (i.e. {M(w, GW∗) : w ∈ W∗}) satisfies any BSR-formula in n

free variables and m universally quantified variables satisfied by F ;
(3) the size ‖GFW∗‖ of GFW∗ (the number of nodes plus the number of edges)

meets the inequality ‖GFW∗‖ 6 f(n,m).

Proof. We assume, without loss of generality, that v1 = ∅. To prove our claim by
induction on the number n of free (understood as existentially bound) variables,
we add the following extra condition to the above clauses (1)–(3):

(4) for all u ∈W∗,
– if rk(M(u,W∗)) is a successor, ρ, then ∃u′ ∈ u(u′ ∈W∗∧rk(M(u′,W∗)) =
ρ− 1);

– if rk(M(u,W∗)) is a limit ordinal, then all rotors in the transitive
closure of u and ascribed to rk(u) are in W∗.
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Case n = 1 is trivial, as in this case W∗ = {v1}(= F) will satisfy (1)–(4).
In case n > 1, recalling Lemma (3.3), assume that W is a downward and upward

uniform set representing F whose core (finite, as ever) has least possible cardinality.
After isolating as vn an element of maximum rank in F , consider the family

F ′ = {M(v1,W), . . . ,M(vn−1,W)},

and let W′ satisfy analogs of (1)–(4) relative to F ′.
To obtain a bounded-core W∗ representing F and satisfying (1)–(4), we will

construct a list W0,W1, . . . ,Wk, . . . issuing from W0 = M−1(W′) and W1 =
W0∪{vn}, where the inclusions Wk ( Wk+1 ( W hold as long as the component
Wk+1 must be introduced, namely as long as putting W∗ = Wk would not suffice
to ensure injectivity of the Mostowski collapse (associated with GWk) and the
satisfaction of condition (4). After we discuss the rules for progressively prolonging
this list, it will be clear that its overall length must be finite; hence we can define
W∗ to be its last component.

If no collisions take place in Wk, which however fails to meet condition (4), then
choose an element y of M(Wk) not belonging to M(Wk−1), so that rk(y) is as small
as possible. If rk(y) is a successor, then put Wk+1 = Wk ∪ {w}, where w is such
that M(w,W) ∈ y and rk(M(w,W)) + 1 = rk(y); otherwise, let Wk+1 \Wk be
the set of all rotors ascribed to rk(M−1(y,W)) which belong to TrCl(M−1(y,W)).

If a collision takes place in Wk, the reader can verify that only one element x
in Wk \Wk−1 can collide with an x′ in Wk−1 (this element is in fact the rotor
of least rank, unless |Wk \Wk−1| = 1). Then pick an element w ∈ Wk in the
symmetric difference x4 x′ = (x \ x′) ∪ (x \ x′).

If M(x,W) has limit rank, then let Wk+1 \Wk be the set of all rotors ascribed
to rk(x) which belong to TrCl(x). Otherwise we act as described in the following,
depending on whether

i) rk(x′) > rk(x),
ii) rk(x′) = rk(x), or

iii) rk(x) > rk(x′).
i) This case cannot occur as otherwise, -by (4), in Wk−1 there would be an

element of x′ endowed with rank greater than or equal to rk(x), and hence
no collision could take place.

ii) Let Wk+1 \Wk = {w} (Notice that (4) ensures that Wk owns an element
x of maximum rank in this case.)

iii) Let Wk+1 \Wk = {w}, with w an element of x of rank rk(x)− 1.
It is straightforward to check that the proposed action will enforce injectivity, save
possibly on the element of least rank in Wk+1 \Wk, without disrupting (4). At
the end, it can easily be seen that the elements in W∗ \W0 have pairwise distinct
ranks.

Consider any BSR-formula ϕ in n existentially and m universally quantified
variables satisfied by F . As for the core of W∗, the minimality of |c(W)| guarantees
that |c(W)| = |c(W∗)|. Its size can be determined as the sum of the following two
values:

a =
∣∣{w ∈ c(W∗) | |c(W∗)=rk(w)| = 1}

∣∣;
b =

∣∣{w ∈ c(W∗) | |c(W∗)=rk(w)| > 1}
∣∣.



18 EUGENIO OMODEO AND ALBERTO POLICRITI

Clearly b 6 2 · |M−1(c(W′))| = 2 · |c(W′)| and hence, by the inductive hypothesis,
b is bounded by 2 · f(n− 1,m)..

In order to put a bound on a, we prove that any collection of elements u1, . . . ,uk ∈
W∗ such that for i ∈ {1, . . . , k}:

|{w ∈ c(W∗) | rk(w) = rk(ui)}| = 1,

and u1 3 u2 3 · · · 3 uk, can be limited in length.
We begin by treating the case when ui 63 uj whenever j > i+ 1. In this case, let

Σ whose characters are the subsets of the finite set c(W∗)>rk(u1). Consider then
the string of sets:

{w ∈ c(W∗)>rk(u1) | u1 ∈ w} · · · {w ∈ c(W∗)>rk(u1) | uk ∈ w}.

that we will denote by u1 · · ·uk, with ui ∈ Σ for i ∈ {1, . . . , k}.
We claim that the minimality of |c(W∗)| implies that the above string cannot

own a repeated substring of length exceeding m. In order to prove the claim,
arguing by contradiction let us assume that this is not the case and let j < j′ < k
be such that

uj · · ·uj+m = uj′ · · ·uj′+m.
Let W be the set resulting from W∗ through the replacement of uj+h by uj′+h,

for 0 6 h 6 m, in any w ∈W∗ having uj+h as an element. Formally:

W = {(w \ {uj+h}) ∪ {uj′+h} : w ∈W∗, 0 6 h 6 m | uj+h ∈ w}.

We want to prove that the Mostowski collapse of W , still satisfies ϕ. As
|c(W)| < |c(W∗)|, this would contradict the minimality of |c(W∗)|.

First of all notice that the Mostowski collapse of GW is injective (details are left
to the reader). To see that if F satisfies ϕ then also M(GW) satisfies it, we proceed
again by contradiction. Reasoning as in the proof of Proposition (3.1), we assume
that yi,1, . . . ,yi,mi

aremi elements which, together with M(v1, GW), . . . ,M(vn, GW),
satisfy

¬φi(x1, . . . , xn, yi,1, . . . , yi,mi),
with φi conjunct of ϕ.

If none of yi,1, . . . ,yi,mi
is among uj′ , . . . ,uj′+m, then yi,1, . . . ,yi,mi

would prove
the unsatisfiability of ϕ by F .

Otherwise, let yi,h = uj′+r. Since m > mi, the following two cases cannot occur
together:

(1) uj−1,uj′ , . . . ,uj′+r ∈ {yi,1, . . . ,yi,mi
};

(2) uj′+r, . . . ,uj′+m,uj′+m+1 ∈ {yi,1, . . . ,yi,mi
}.

By replacing every element yi,h = uj′+r by uj+r whenever the first case occurs,
the reader can verify that an mi-tuple of sets satisfying ¬φi together with F can
be obtained. This contradicts the satisfiability of ϕ by F .

The last remaining case is the one in which in the list

u1 3 u2 3 · · · 3 uk,

there exist some index i for which ui 3 uj and j > i + 1. We claim that there
are at most |c(W∗)>rk(u1)| such indexes and, moreover, that the overall number of
uh’s such that i > h > j is again limited by |c(W∗)>rk(u1)|. To see this notice
that, given ui,uj such that ui 3 uj with j > i + 1, either uh with i > h > j
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differentiates a pair of elements in c(W∗)>rk(u1) or it can be eliminated without
causing any collision and thereby contradicting the minimality of c(W∗). This, by
Proposition (1.1), bounds to |c(W∗)>rk(u1)| the overall number of possible h’s; from
such a bound also the bound on the number of possible i’s follows.

The above two bounds on the length of chains of elements in

{w ∈ c(W∗) | |c(W∗)=rk(w)| = 1},
allow us to recursively specify the function f(n,m)—details can be found in the
first appendix—and conclude our proof of point (3).

�

We can now conclude with the following:

Theorem 3.7. The BSR-class is decidable in Set Theory.

Proof. By Lemma (2.3) we have that the satisfiability problem for the BSR-class
is equivalent to the satisfiability problem for the restricted BSR-class.

By Lemmas (3.3) and (3.6), if a formula in n variables is satisfied by a family
F , then there exists a downward and upward uniform set W representing F ; more-
over, under these hypotheses, the size of an encoding GFW of W is bounded by a
computable value g.

Accordingly, we can list all possible encodings of size less than g and apply
Proposition (3.5) to test whether any of them is the encoding of a satisfying tuple.
If this is not the case, we can declare the formula to be unsatisfiable. �
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Appendix: Bound on f(n,m) of Lemma 3.6

Below we outline the argument enabling one to establish a (gross) recursive
bound on the value f(n,m).

First of all notice that f(1,m) equals 1 for every m.
In case n > 1 let u1

1 · · ·u1
k1

be the first chain of elements in

a = {w ∈ c(W∗) | |c(W∗)=rk(w)| = 1},

such that u1
i 3 u1

i+1. The cardinality σ1 =
∣∣c(W∗)>rk(u1

1)
∣∣ is at most 2 ·f(n−1,m).

Since there can be no repeated substring of length m in the string over the alphabet
P(c(W∗)>rk(u1

1)) and the number of u1
h’s for which there exist i, j such that i >

h > j and u1
i 3 u1

j cannot exceed σ1, the overall length k1 of the first chain of
elements in a meets the inequality:

k1 < σ1 · (2m·σ1 +m) 6 2 · f(n− 1,m) · (2m·2·f(n−1,m) +m)

Likewise we can put a bound on the cardinality σ2 of the set c(W∗)>rk(u2
1),

relative to the second chain of elements in a, namely

σ2 6 σ1 + k1 + 2 · f(n− 1,m).

From such a bound, arguing as in the first case, we obtain the bound k2 < σ2 ·
(2m·σ2 +m) on the length of the second chain of elements in a.

Our final bound is obtained by simply observing that there must be fewer than
f(n− 1,m) chains and hence

f(n,m) 6 σf(n−1,m)−1.

Appendix: Algorithmic Specifications

The procedures ‘represents’ (with its subordinate ‘findRotors’) and ‘reprUni-
formly’ (with its subordinate ‘findUniformRotors’) in this appendix specify in de-
tail the (perpetual) construction of a set W representing a given finite family F ,
as carried out within the proof of Lemma (3.2) and within the proof of Lemma
(3.3), respectively. Both procedures receive F as an input parameter and return W
(along with additional information concerning the rotors) as a result; the second
input parameter of ‘reprUniformly’, A, should be actualized as the empty set at
top level and will grow progressively across recursion, inside the core of W .

procedure represents(F);
assert |F| < ω;
µ :=

⋃
{ rk(x) : x ∈ F };

T := {x ∈ F | rk(x) = µ };
if |F| 6 1 then

return [F , ∅, F ];
elseif ∃% ∈ µ | µ = %+ 1 then

[ W′, rotors′, core′] := represents
(
(F \ T ) ∪ elite(T )

)
;

return [ W′ ∪ T , rotors′, core′ ∪ T ];
else

α := rk
(
(F \ T ) ∪ differentiators(F)

)
;
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[ W0, rotors0, core0 ] := represents
(
(F \ T ) ∪ { v<α : v ∈ T }

)
;

rotors1 := findRotors(α, T );
return [

(
W0 ∩ TrCl(F)

)
∪ T ∪

⋃
rotors1,

rotors0 ∪ rotors1,
(
core0 ∩ TrCl(F)

)
∪ T ];

end if ;
end represents;

procedure findRotors(α, T );
assert |T | < ω &(

∃λ | α < λ & { rk(v) : v ∈ T } = {λ} & λ 6= ∅ & (∀ % ∈ λ | λ 6= %+ 1)
)
;

~v := [ v : v ∈ T ]; β := α; Z := [ ];
for j ∈ ω loop

~z := [ ];
for v = ~v(`) loop

~z := ~z with
(
z := arb(v>β)

)
; β := rk(z);

end loop;
Z := Z with ~z;

end loop;
j := 1;
repeat ~t := template

(
Z(j)

)
; j := j + 1;

until
∣∣∣{ r ∈ ω \ j | template

(
Z(r)

)
= ~t

}∣∣∣ = ω;

return
{
{Z(r)(`) : r ∈ ω \ 1 | template

(
Z(r)

)
= ~t } :

` ∈ {1, . . . , |T |} | inCycle(`,~t)
}

;

procedure template(~z);
return [ if ∃ v = ~v(p) | z = v<rk(z) then p else 0 end if : z = ~z(`) ];

end template;

end findRotors;

procedure inCycle(`,~t);
seen := {0}; p := `;
while p /∈ seen loop seen := seen with p; p := ~t(p) end loop;
return ~t(`) 6= ` & ` ∈ seen;

end inCycle;

procedure reprUniformly(F ,A);
assert |F| < ω;
µ :=

⋃
{ rk(x) : x ∈ F };

T := {x ∈ F | rk(x) = µ };
if |F| 6 1 then

return [F , ∅ ];
elseif ∃% ∈ µ | µ = %+ 1 then

[ W′, rotors′] := reprUniformly
(
(F \ T ) ∪ elite(T ), A ∪ T

)
;

return [ W′ ∪ T , rotors′ ];
else

α := rk
(
(F \ T ) ∪ differentiators(F)

)
;
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[ W0, rotors0 ] := reprUniformly
(
(F \ T ) ∪ { v<α : v ∈ T }, A ∪ T

)
;

rotors1 := findUniformRotors(α, T ,A);
return [

(
W0 ∩ TrCl(F)

)
∪ T ∪

⋃
rotors1, rotors0 ∪ rotors1 ];

end if ;
end reprUniformly;

procedure findUniformRotors(α, T ,A);
assert |T | < ω &(

∃λ | α < λ & { rk(v) : v ∈ T } = {λ} & λ 6= ∅ & (∀ % ∈ λ | λ 6= %+ 1)
)
;

~v := [ v : v ∈ T ]; β := α; Z := [ ];
for j ∈ ω loop

~z := [ ];
for v = ~v(`) loop

~z := ~z with
(
z := arb(v>β)

)
; β := rk(z);

end loop;
Z := Z with ~z;

end loop;
j := 1;
repeat ~t := template

(
Z(j)

)
; j := j + 1;

until
∣∣∣{ r ∈ ω \ j | template

(
Z(r)

)
= ~t

}∣∣∣ = ω;

Z := shrink
([
Z(r) : r ∈ ω \ 1 | template

(
Z(r)

)
= ~t

]
,

~m :=
[
` ∈ {1, . . . , |T |} | inCycle(`,~t) ], A ∪ T

)
;

return
{
{Z(r)(`) : r ∈ ω \ 1 } : ` = ~m(k)

}
;

procedure shrink(Z, ~m,A);

assert |A| < ω &
(
∀ j ∈ ω \ 1, a ∈ A, ` = ~m(k)| rk

(
Z(j)(`)

)
< rk(a)

)
;

j := 1;
repeat ~s :=

[
{ a ∈ A | Z(j)(`) ∈ a } : ` = ~m(k)

]
; j := j + 1;

S :=
{
q ∈ ω \ j |

[
{ a ∈ A | Z(q)(`) ∈ a } : ` = ~m(k)

]
= ~s

}
;

until |S| = ω;
return S;

end shrink;
procedure template(~z);

return [ if ∃ v = ~v(p) | z = v<rk(z) then p else 0 end if : z = ~z(`) ];
end template;

end findUniformRotors;
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