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Abstract. We produce a detailed proof of a result stated in [4, Remark
3] concerning scalar time-periodic first order differential inclusions. Such
a result shows that the existence of just one subharmonic implies the
existence of large sets of subharmonics of all given orders.

Let us consider the differential inclusion

(1) x′ ∈ F (t, x).

We suppose that F : R × R → 2R is a set-valued map having non-empty
compact convex values, which is periodic in t with period 1 and satisfies the
following conditions:

(i) F (·, x) is measurable for every x ∈ R,
(ii) F (t, ·) is upper semicontinuous for a.e.t ∈ [0, 1],

(iii) for each ρ > 0 there exists γ ∈ L1(0, 1) such that |F (t, x)| ≤ γ(t) for
a.e. t ∈ [0, 1] and every x ∈ [−ρ, ρ].

Solutions of (1) are locally absolutely continuous functions satisfying (1)
almost everywhere. Given n ∈ N, with n > 1, a subharmonic solution of (1)
of order n is a periodic solution of (1) of minimum period n.

Theorem. Assume there exists a subharmonic solution of (1) of order n > 1.
Then, for any k > 1, there exists a subharmonic solution of (1) of order k.
In addition the set Xk of all subharmonic solutions of (1) of order k has
dimension at least k as a subset of L∞(R).

As pointed out in [4, Remark 3] this result significantly improves [1, The-
orem 5]
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Proof. Let x be a subharmonic solution of (1) of order n > 1. Let t0 ∈ R be
such that x(t0) < x(t0 + 1). Let j ∈ {1, . . . , n− 1} be such that

x(t0) < x(t0 + 1) ≤ · · · ≤ x(t0 + j) and x(t0 + j) > x(t0 + j + 1).

Let also ` ∈ {0, . . . , j − 1} be such that

x(t0 + `) < x(t0 + ` + 1) = x(t0 + j).

Then we have max{x(t0 + `), x(t0 + j + 1)} < x(t0 + j). Set

I = ] max{x(t0 + `), x(t0 + j + 1)}, x(t0 + j)[.

Define α, β : [t0, t0 + 1] → R by

α(t) = x(t + `), β(t) = x(t + j).

Then α and β are solutions of (1) such that

α(t0) < β(t0), β(t0 + 1) < α(t0 + 1).

Set
s1 = sup{s ∈ ]t0, t0 + 1[ | α(t) < β(t) on [t0, s[},

s2 = inf{s ∈ ]t0, t0 + 1[ | β(t) < α(t) on ]s, t0 + 1]}.
Pick any p ∈ I. By Theorem 6 in [2, Chapter 2.7] there exists a solution

v of (1) with v(t0) = p, which can be continued to the right up to a point
r1 ≤ s1 where either v(r1) = α(r1) or v(r1) = β(r1). In both cases we can
extend v onto [t0, s2] so that

min{α(t), β(t)} ≤ v(t) ≤ max{α(t), β(t)}
and v(s2) = α(s2) = β(s2).

Similarly there exists a solution w of (1) with w(t0 + 1) = p, which can
be continued to the left up to a point r2 ≥ s2 where either w(r2) = α(r2) or
w(r2) = β(r2). In both cases we can extend w onto [s2, t0 + 1] so that

min{α(t), β(t)} ≤ w(t) ≤ max{α(t), β(t)}
and w(s2) = α(s2) = β(s2). Set up(t) = v(t) on [t0, s2] and up(t) = w(t)
on [s2, t0 + 1]. Then up gives raise to a 1−periodic solution of (1) satisfying
up(t0) = p.

We have just proved that for each p ∈ I there exists a 1−periodic solution
up of (1) such that up(t0) = p and up(s2) = α(s2) = β(s2). By the lattice
structure of the set of solutions of (1), we can easily find an increasing se-
quence (um)m of 1−periodic solutions of (1) such that um(t0) < um+1(t0) and
um(s2) = u0(s2) for every m.

A subharmonic solution v of (1) of order k can be constructed as follows:
we define a k−periodic solution v of (1) by setting v(t) = um(t) on [s2 +m+
ik, s2 + m + 1 + ik[ for every m ∈ {0, . . . , k − 1} and i ∈ Z. Let us prove
that v has minimum period k. Since v is continuous and non-constant, v has
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a minimum period T > 0. Suppose, by contradiction, that T < k. Notice
that, by definition of v, T 6= 1 and, as k is a multiple of T , T ≤ k/2. This
implies in particular that T < k − 1. If T > 1 (and hence k > 2), we get

max v = max v|[s2,s2+T ] ≤ max
m=0,...,k−2

max um = max uk−2 < max uk−1 = max v.

Whereas if T < 1, we get

max v = max u0|[s2,s2+T ] ≤ max u0 < max uk−1 = max v.

In both cases a contradiction is achieved. Hence we conclude that T = k.
Finally, to prove that the dimension of Xk is at least k, we show that

[0, 1]k is embedded into Xk. Let Km be the set of all solutions v of (1) on
[s2, s2 + 1] such that um ≤ v ≤ um+1. By Theorem 6 in [2, Chapter 2.7], Km

is a continuum in C0([s2, s2 + 1]). Let Tm be a totally ordered subset of Km.
By [3, Lemma 3.6] Tm is homeomorphic to a compact interval of R. Extend
all functions v ∈ Tm bt 1−periodicity onto R, so that each v is a 1−periodic
solutions of (1). Define

Φk :
k−1∏
m=0

Tm → L∞(R)

by setting

Φk(v0, . . . , vk−1)(t) = vm(t) on [s + m + ik, s + m + 1 + ik[

for every m ∈ {0, . . . , k−1} and i ∈ Z. Clearly Φk is one-to-one and continu-

ous and hence it is a homeomorphism between
∏k−1

m=0 Tm and Φ
( ∏k−1

m=0 Tm

)
⊆

Xk. �
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