
BuST-Bundled Suffix Trees

Luca Bortolussi1, Francesco Fabris2, and Alberto Policriti1

1 Department of Mathematics and Informatics, University of Udine.
bortolussi|policriti AT dimi.uniud.it

2 Department of Mathematics and Informatics, University of Trieste. frnzfbrs AT

dsm.uniuv.trieste.it

Summary. We introduce a data structure, the Bundled Suffix Tree (BuST), that
is a generalization of a Suffix Tree (ST). To build a BuST we use an alphabet Σ
together with a non-transitive relation ≈ among its letters. Following the path of
a substring β within a BuST, constructed over a text α of length n, not only the
positions of the exact occurrences of β in α are found (as in a ST), but also the
positions of all the substrings β1 , β2 , β3 , . . . that are related with β via the relation
≈ among the characters of Σ, for example strings at a certain ”distance” from β. A
BuST contains O(n1+δ) additional nodes (δ < 1) in probability, and is constructed
in O(n1+δ) steps. In the worst case it contains O(n2) nodes.

1 Introduction

A Suffix Tree is a data structure computable in linear time and associated
with a finite text α = α[1], α[2], . . . , α[n] = α[1...n], where α[i] ∈ Σ and
Σ = {a1, a2 . . . , aK} is the alphabet (that is |Σ| = K). In the following we
suppose the existence of an ordering among alphabet letters and we assume
to append a character # /∈ Σ at the end of our text, as is customary when
working with ST ’s. A ST allows to check in O(m) time if an assigned string
β, |β| = m, is a substring of α; moreover, at the same time it gives the exact
positions j1, j2, . . . , jr of all the r occurrences of β into α in O(r) additional
time. Therefore, a ST solves the Exact String Matching Problem (ESM) in
linear time with respect to the length n of the searched string. A ST solves
in linear time also the Longest Repeated Exact Substring Problem (LRES) of
an assigned text α. A complete and detailed treatment of these results can be
found in [6].

Even if very efficient in solving the ESM and the LRES problem, the ST
data structure suffers of an important drawback when one has to solve an
Approximate String Matching Problem (ASM), or to solve the harder Longest
Repeated Approximate Substring Problem (LRAS). In these cases, one needs
to search for strings β1 , β2 , β3 , . . . substrings of α, such that d(β, βj) ≤ D,
where d(·, ·) is a suitable distance (most frequently Hamming or Levenshtein

2 Luca Bortolussi, Francesco Fabris, and Alberto Policriti

distance) and D is constant or proportional to the length of β. This hap-
pens because the structure of a ST is not adequate to handle distance in a
natural way. This forces one to take into account errors by using unnatural
and complicated strategies, that inevitably lead to cumbersome algorithms. In
general, many different indexing structures other than ST are used to tackle
approximate matching problems [9, 8, 5], but all these approaches use an exact
index for the text together with some searching strategy to find all (approx-
imate) occurrences of the pattern β in the text α. Among those structures,
STs play a prominent role, not only for approximate matching, but also in
pattern discovery algorithms, like in [7], and for statistical analysis of approxi-
mate occurrences [3], where it is important to have knowledge about the inner
structure of the processed text.

In this work we present a generalization of a Suffix Tree, the Bundled Suf-
fix Tree (BuST), which contains information about an approximate relation
between strings as a structural property of the tree. This allows us perform
some kind of approximated string matching with a BuST in the same manner
in which we perform exact string matching with a ST. In particular, BuST
are better suited for LRES and all the problems that require some form of
exploitation of the inner (approximate) structure of a string. The matching
criterion we use can be very general, in fact we only require to be given a
(not necessarily transitive) relation among letters of the alphabet Σ. For ex-
ample, the notion of Hamming distance induces a very natural non-transitive
relation on Σ when each letter a ∈ Σ is in fact a t-tuple over a sub-alphabet
Σ1 (for example Σ1 = {A,C, G, T}): the relation between two Σ-characters
ai, aj ∈ Σ holds if and only if d

H
(ai, aj) ≤ D, where, d

H
(·, ·) is the Hamming

distance and D is a constant. Other notions of distance can be used as well.
Bundled Suffix Trees encode in a compact way the relational structure

existing between the substrings of the processed text α. In fact, the relation
among the letters of the alphabet can be easily extended to strings (two
strings are in relation if so are all their constituting characters), and then we
can consider all the relations intercurring between the substrings of α. This
information is added to the Suffix Tree by marking some positions in the tree
(that can be both in the middle of the edges or over its nodes) with labels
corresponding to suffixes, in such a way that the existence of a label j after a
certain point implies that the string labeling the path from the root to that
point is in relation with a prefix of suffix j. In other words, while constructing
a BuST, we are resurrecting some nodes of the underlying suffix trie, and
attaching to them an additional information in terms of labels. The nodes
are added only in the lowest position satisfying the property stated above, to
avoid the insertion of redundant information (see def. 2). A detailed analysis
of the dimension of BuST shows that, though the worst case size is O(|α|2),
the average size is subquadratic (but superlinear), see Section 3.

Observe that the information we add to a ST is internal to the processed
string α, in the sense that we do not add any information about the relation of
substrings of α with external strings. For those reasons, BuST can be useful for

BuST-Bundled Suffix Trees 3

all those applications exploiting this internal information (as LRAS) and not,
for example, to search for the approximate occurrences of an external pattern
in the text α. A suitable application for BuST is presented and concerns the
calculation of the approximate frequency of appearance of a given subword
(with the relative calculation of associated measures of surprise), cf. Section 5.
An advantage is that the above mentioned information can be extracted from
the BuST in the same way this extraction is done with Suffix Trees for the
exact case.

The notion of relation between letters of an alphabet is a general concept,
susceptible of encoding different properties connected with the specific appli-
cation domain, e.g. Hamming-like distances or scoring schemes. Moreover, the
particular relation used is completely orthogonal with respect to the definition,
the construction and the analysis of the data structure. In this presentation
we will deal with a restricted type of relation, constructed over an alphabet of
macrocharacters, by means of a threshold criterion relative to a selected dis-
tance (mainly Hamming distance). The macroletters can have fixed or variable
length; this is not a problem as long as they form a prefix-free code. On the
other hand, the introduction of macrocharacters brings some rigidity in the
type of approximate information that can be encapsulated. For instance, the
Hamming-like relation introduced above puts in correspondence two strings if
their distance is less than a threshold proportional to their length, and if the
errors are distributed among the tuples. Moreover, only strings of length pro-
portional to the macroletters’ length can be compared. This rigidity, however,
is the price to pay to “localize” the approximate information we are looking
for: with the Hamming-like relation, we “localize” a global distance between
two strings by splitting it evenly between their tuples.

The paper is organized as follows. In Section 2 we give the definition of the
structure and a naive algorithm for its construction. In Section 3 we analyze
the dimension of the data structure in the worst and in the average case.
In Section 4 we give some hints to an optimal construction algorithm, while
Section 5 contains an application for computing approximate surprise indexes.
Finally, in Section 6 we draw some conclusions. The interested reader can find
complete proofs, details on the optimal construction and further information
in [4].

2 Naive construction of a BuST

A ST is not suitable to handle approximate search in a natural way essen-
tially because of its rigidity in matching characters: they either match and the
(unique) path proceeds, or the characters are different and a branching point
is necessary. Conversely, in a BuST we accept the idea that a path is good
not only when characters match, but also when they are in relation.

Let Σ = {a1, . . . , ak} be an alphabet, and ≈ be a symmetric and reflexive
binary relation on Σ, encapsulating some form of approximate information.

4 Luca Bortolussi, Francesco Fabris, and Alberto Policriti

Definition 1. Given a string β = β[1, . . . ,m], we say that γ = γ[1, . . . ,m] is
a variant of β if and only if β[i] ≈ γ[i], ∀i = 1, . . . ,m, and we write β ≈ γ.
We denote with ≈ (β) = {γ | β ≈ γ}.

The case in which ≈ is an equivalence relation trivializes the approach.
Hence, we assume that, in general, ≈ is not transitive. Other non equivalence
relations could be considered as well.

Given a ST for α, the key idea for constructing the associated BuST is that
of marking in the ST (all) the paths corresponding to (prefixes of) ≈-variants
of each substring α[j . . . n], for 1 ≤ j ≤ n. This is achieved by inserting nodes
over these position and labeling such nodes with the index of the starting
position of the suffix of which they are ≈-variants (see Figure 1). Intuitively,
we are bundling several paths over the skeleton of the ST.

In order to distinguish these newly inserted nodes, we refer to them as
red nodes, while we call black the nodes of the original ST. Notice that,
according to the previous characterization, a node can be both black and red.
In addition, red nodes can have a set of labels associated to them. Moreover,
red nodes that end up in between a ST edge are not branching and are simply
splitting the edge—i.e. they are nodes of the underlying Suffix Trie.

To (naively) construct the BuST of a text α, we can enter each suffix
α[j . . . n] in the associated ST and find all possible paths that correspond to a
(maximum length) prefix of one of its ≈-variants. This is done by successively
comparing and (≈-)matching characters of α and α[j . . . n]. When the first
letter of α[j . . . n], say α[p], not in relation with the processed letter of the
current path in the ST is found, a red node with label j is inserted (if not
already present) in the position just before α[p]. If a red node is already present
at that position, label j is added to its label set.

Turning back to the comparison phase, two different situations can occur.
Either we are in the middle of an edge or on a branching node. In the former
case we simply compare the current text character with the current suffix
character α[i]. If the character is in relation with α[i] we continue, otherwise
we insert the red node. In the latter case we have to consider the first letter of
any branching path from the current node. Following the alphabet ordering
and always keeping operative as many paths as are the letters in relation with
α[i], new matching paths can be generated. If no letters are found that are in
relation with α[i], then the new red node is superimposed over the existing
black branching one.

The BuST for the text α = bcabbabc is depicted in Figure 1, in which
Σ = {a, b, c} and ≈ is defined by a ≈ b, b ≈ c, and a 6≈ c.

Below we give a formal definition of Bundled Suffix Tree.

Definition 2. A Bundled Suffix Tree (BuST) B for a text α[1 . . . n], is a
Suffix Tree S for α (the black skeleton) plus a set of internal (red) nodes with
associated (multiple) labels, such that:

(Main) the path label from the root to a red node labeled j is an ≈-variant of
a prefix of α[j . . . n].

BuST-Bundled Suffix Trees 5

Fig. 1. Bundled Suffix Tree for the sequence α = bcabbabc#, with a ≈ b ≈ c.

(Uniqueness) in every path from the root to a black leaf labeled j, there can be
at most one red node with label h 6= j.

(Maximality) if α[h . . . h+i] is the string labeling the path from the root to a red
node labeled j, then α[h . . . h+i] ≈ α[j . . . j+i] but α[h+i+1] 6≈ α[j+i+1].

The Main property accounts for the most important function of a BuST,
that is to encode all ≈-variants of a substring of α. The Uniqueness property
states that once a red node labeled h is inserted, the subtree rooted at this
node cannot contain other red nodes with the same label. Maximality and
uniqueness together assure that we insert at most one red node at the deepest
possible position.

Remark 1. If β is the path label of the ST for α, the starting positions of
substrings γ of α that are variants of β are found by reading all the labels
rooted at the end of β.

Remark 2. The BuST is a data structure which is, in some sense, in the middle
between a Suffix Tree and a Suffix Trie. We recall that a Suffix Trie is similar
in shape to a ST, but every edge contains as many nodes as the length of
its label. While constructing a BuST, we insert nodes splitting edges, hence
the set of nodes of a BuST contains that of a ST and resembles to that of
the corresponding Suffix Trie. The analogy stops here, as red nodes may have
multiple labels and are added using relation ≈ as matching primitive.

In order to simplify the following computations, we assume that the rela-
tion ≈ enjoys the hypercube-like property over Σ: for each a ∈ Σ, there is a
constant number V of b ∈ Σ, such that a ≈ b. When elements of Σ are tuples
built over a sub-alphabet Σ1, we will put a ≈ b if and only if d(a, b) ≤ D,
where d(a, b) is a suitable distance between tuples and D is a constant. In such

6 Luca Bortolussi, Francesco Fabris, and Alberto Policriti

cases we will also assume that the constant D is proportional to the length
of Σ1 t-tuples constituting elements of Σ. If we work with the Hamming dis-
tance, then the macro-characters b such that a ≈ b are all the elements of the
Hamming sphere of radius d and centered in a. In such a case the constant V
is the volume of this Hamming sphere.

3 Structural properties of a BuST

In order to study the structure of a BuST, we have to compute, for each
assigned suffix α[j . . . n], the number R(j) of red nodes inserted; then the
total number of red nodes inserted3 is R =

∑n
j=1 R(j). We will perform first

the average case analysis, leaving the worst case one at the end. Note that
R(j) corresponds to the number of substrings in α that are (maximum length)
prefixes of ≈-variants of α[j . . . n]. Remember, also, that for any red node with
label j, the label of the path starting from the root and leading to it, is a ≈-
variant of the suffix α[j . . . n]. In order to find the paths with this property, we
reason on the execution of the naive construction presented in the previous
section.

While processing suffix j, we have to follow α[j . . . n] on the black skeleton
as long as the two letters we are comparing are in relation. When we find the
first letter in α[j . . . n] that is not in relation with the current letter of the
ST -path (or to any letter that immediately follows a black branching node),
we insert a red node with label j (or we add label j to a preexisting red node).
In particular, at every branching node of the ST we have to visit only the
edges starting with a character in relation with the corresponding one in the
suffix. Suppose the ST has height h, then it is contained in a complete K-ary
tree of height h, K = |Σ|. In the hypothesis made at the end of the previous
section, we know that only V out of K characters are in relation with one
letter, hence at every internal node only V out of K edges will survive during
the construction. In this way, we can bound the number of survived paths at
depth h, and thus R(j), by V h (at each level, the number of active paths is
multiplied by a factor V). A more reasonable bound of R(j) can be obtained
by replacing h with the average depth d.

Therefore, the value of (an upper bound on) R(j) is strictly connected
with the average structure of the ST. In particular, we are interested in the
average behaviour of the height and of the average depth of a path from the
root to a leaf. These quantities have been analyzed in [10, 11], under the hy-
pothesis of the text being generated by a stationary and memoryless source
S. If X = {X1, . . . , Xn, . . .} is the sequence of random variables generated
by the source, we indicate with Hn the height of the Suffix Tree built from
{X1, . . . , Xn} and with Zn the average depth. From [10] we have that the
average value of the height, hn = E[Hn], asymptotically converges (in prob-
ability) to log(n)/ log(1/p+), while the asymptotic behaviour of zn = E[Zn]
3 We are correctly counting the size of the sets of labels inserted, not the number

of red nodes.

BuST-Bundled Suffix Trees 7

approaches log(n)/H(S). Here p+ is the maximum value of the probability
distribution on Σ that defines S, while H(S) is the Shannon entropy of S.

The results stated above allow us to compute probabilistic upper bounds
(denoted by .) for the quantity R(j):

R(j) . V hn w V log1/p+ n = nδ,

with δ = log V/ log(1/p+). A better estimate of R(j) can be obtained by
replacing hn with zn, obtaining R(j) . nδ′

, with δ′ = log V/ log H(S).
Therefore, the total number of red nodes inserted, denoted by R, is

bounded on average by:

R =
n∑

j=1

R(j) .
n∑

j=1

nδ = n1+δ.

The value of δ depends on the probability distribution of the source and on
the relation between the letters of the alphabet. For instance, for an Hamming-
like relation with macrocharacters of length 4 and error rate 25% built over
DNA alphabet, and the maximum probability of a DNA letter varying from
0.25 to 0.5, the value of δ remains between 0.46 to 0.92, hence the size of the
structure is bound by a subquadratic function.

Observe that the bound we give is coarse, in fact δ can be greater than
one, while the size of the data structure cannot be more than quadratic in the
length of the processed text. In fact, the number R(j) of red nodes inserted
while processing suffix j can be at most one per each path of the Suffix Tree, or
equivalently, at most one for each suffix of the text, hence R(j) ≤ n. Therefore
R ≤ n2. This theoretical bound can be reached for particular texts, as shown
in the following example.

Example 1. Consider a sequence of the form α = ancnb2n, over the alphabet
Σ = {a, b, c, d}, with a ≈ b ≈ c ≈ d ≈ a as relation (it is hypercube like).
The lengths of the runs of a,b,c in α are in proportion of 1 : 1 : 2. Note
from Figure 2 that, if the length of the text is 4n, then the rectangular area
delimited by the dashed line contains n(n− 1) red nodes (the ones with label
from 2n + 1 to 4n− 1, repeated n times).

4 Optimal Construction

We briefly outline here an algorithm for constructing BuST s which is optimal,
in the sense that its complexity is of the same order of magnitude of its output
(i.e., essentially O(R), the number of red nodes inserted). First of all, let is
put forward some useful notation. Given two strings β and γ, we write γ ≺ β
if γ is a prefix of β. γ < β means that γ is a substring of β, while γ - β means
that γ is in ≈-relation with a prefix of β. Negations of these expressions are
indicated by γ 6≺ β, γ </ β and γ � β, respectively.

8 Luca Bortolussi, Francesco Fabris, and Alberto Policriti

Fig. 2. A worst case BuST for the sequence α = aaccbbbb#

Consider now a red node ri with label i,4 such that its path label `(ri)
equals some string xγ, x ∈ Σ, γ ∈ Σ+. Hence xγ - α[i . . . n], but, ∀y ∈ Σ
such that xγy < α, xγy � α[i . . . n]. All this information implies that γ -
α[i + 1 . . . n], but we cannot conclude that there must be a (i + 1)–red node
ri+1 after γ. In fact, there can be edges departing from γ with label γz such
that γz - α[i+1 . . . n], which derive from paths labeled with yγz, y 6= x (and
maybe y 6≈ α[i]). In other words, if we cross a suffix link (SL from now on)
from a node ri and we find ourselves in a black node p, we may need to visit
the whole subtree rooted at p to complete the insertion of (i + 1)–red nodes.

Indeed, the situation is even worse. There can be paths in the ST, where
a (i + 1)–red nodes must be inserted, which can never be reached, neither
directly traversing a SL from a (i)–red node, nor visiting subtrees at the end
of a SL. These paths correspond to positions that can be reached only from
SLs that depart from nodes with path label zγ and z 6≈ α[i].

Therefore, the frontier of a BuST is much more complex than that of a
ST, and it cannot be controlled easily using SL. In some sense, the (main)
problem is that, while inserting (i + 1)–red nodes, we need access to zones of
the ST that are forbidden to suffix i, because their path label begins with a
character which is not equivalent to α[i].

Now, suppose we have a (i+1)–red node ri+1 with path label `(ri+1) = γ. It
follows that γ - α[i+1 . . .m] and ∀y ∈ Σ such that γy < α, γy � α[i+1 . . . n].
Thus we can consider all the positions in the tree identified by the labels xγ,
where xγ < α and x ≈ α[i], claiming that in all these points we find a (i)–
red node. In fact, ∀y ∈ Σ such that xγy < α, it holds that xγy � α[i . . . n],
otherwise we have that γy - α[i + 1 . . . n], which is a contradiction.

Therefore, if we have a way to reach from a position γ all the positions xγ
in the tree, we may be able to insert all (i)–red nodes from (i + 1)–red nodes
without matching any character of α[i . . . n] along any path. The operation of
going from γ to xγ is, in some sense, like crossing in the inverse direction a
4 From now on we refer to such a node as an (i)–red node

BuST-Bundled Suffix Trees 9

SL. If we are disposed to pay a price in terms of space used, we can define
a collection of pointers, called inverse suffix links (ISL), that do this job.
Specifically for each node p of the ST, with path label β, and for each letter
x ∈ Σ, there is an inverse suffix link ISL(p, x) that points to the position of
the tree with path label xβ, if any. Note that this position may well be in the
middle of an edge.

Equipped with ISL, and with some extra care to keep correctly into account
the maximality property of BuST, we can define an algorithm that builds the
BuST for α starting from its ST and processing the text backwards, from the
last suffix to the first. Red nodes for suffix i are generated from red nodes for
suffix i+1, essentially by visiting their parent nodes (in the ST) and checking
the positions of the tree pointed by ISL departing from there (only for the
letters in relation with α[i]). Each red node ri+1 can be processed in constant
time (actually in O(K2), with K = |Σ|), thus giving rise to an algorithm
(called ISL BUST) with complexity O(R). The interested reader can find all
the details in [4], where the following theorem is proved.

Theorem 1. ISL BUST constructs a BuST for a text α in time O(R).

5 An Application of BuST : detecting approximate
unusual words

In this section we present an application of BuST s, related to the detection
of unusually overrepresented words in a text α. Specifically, we admit as oc-
currences β′ of a word β also strings that are “close” to β, where the concept
of closeness means that β′ is a variant of β.

Before entering into the details related to the use of BuST s, we give a brief
overview of a method presented by Apostolico et al. in [2, 1]. The problem
tackled is the identification, in a reliable and computationally efficient way, of
a subset of strings of a text α that have a particularly high (or low) score of
“surprise”. Particular care is given in finding a suitable data structure that
can represent this set of strings in a space-efficient way, i.e. in a size linear
w.r.t. the length of the processed text.

The class of measures of surprise considered is the so called z-score, de-
fined for a substring β of α as δ(β) = (f(β) − E(β))/N(β). Here f(β) is the
observed frequency of β, E(β) is a function that can be interpreted as a kind
of expected frequency for β and N(β) is a normalization factor. Intuitively,
we are computing the (normalized) difference between the expected value for
the frequency of β and the observed one. If this score is high, it means that
β appears more often than expected, while if it is very low (and negative),
than β is underrepresented in α. Conditions on E and N are given to guar-
antee that, whenever f(β) = f(βγ), then δ(β) ≤ δ(βγ). In other words, while
looking for overrepresented words, we do not have to examine all the O(n2)
substrings of a text α, but we can focus on the longest strings sharing the

10 Luca Bortolussi, Francesco Fabris, and Alberto Policriti

same occurrences, as they are those having the higher z-score. It is easy to
see that those strings correspond exactly to the labels of the (inner) nodes of
the suffix tree for α, so we must compute the z-score only for these strings.
Their frequency can be computed easily by a traversal of the tree in overall
linear time. On the other hand, the computation of E and N can be far from
trivial, and its complexity is deeply related to the choice of the probabilistic
model adopted for the source. E is usually taken as the expectation of the
frequency of a word, while N is usually chosen as the variance or as its first
order approximation

√
E(β)Prob(β). If the probabilistic model of the source

is stationary and memoryless, computation of E can be carried out in constant
time after a linear preprocessing.

We stress that Suffix Trees not only give rise to an efficient algorithm for
computing overrepresented words, but they also allow a compact representa-
tion of them. In addition, they allow to reply efficiently to a query of the type:
“is a substring β of α overrepresented?”. The answer to such a question is,
in general, not binary. It can be the case, in fact, that β terminates in the
middle of an edge of the Suffix Tree, so there exists a superstring βγ of β
with the same set of occurrences of β, but with an higher z-score. Therefore
an answer to the above query can be this superstring, which is maximal w.r.t.
the δ measure.

In order to improve the above approach, however, we can consider the
case in which we are willing to admit as occurrences of a string β also strings
which differ from it, but are “close enough”. In [3], an approach is presented
to look for overrepresented strings of length m with at most k errors, in the
sense that for each β substring of α, we count the number of substrings of α of
length n with distance at most k from β, we calculate the expected frequency
of approximate occurrence of β, and finally we compute the z-score w.r.t. such
parameters. The overall algorithm has complexity O(kn2), where n = |α|.

The approach we present here is a straightforward adaption of the algo-
rithm for the exact case, casted in the realm of BuST s. In this setting we have
at our disposal a simple and powerful tool for defining a concept of “close-
ness” between two strings, i.e. the relation on the alphabet of macrocharac-
ters. For instance, we can use an Hamming-like relation (cf. Introduction) on
macrocharacters of length m, putting in relation two of them if their Ham-
ming distance is D or less. In this case, we put in relation strings of length
multiple of m, which can differ in D/m of their positions, with errors evenly
distributed. Thus, we can search for surprising strings of variable length, by
counting all the substrings at distance proportional to their length (with some
rigidity induced by the usage of macroletters).

We can proceed as follows: given a text α, if we use macrocharacters of size
m, we construct the m strings in this new alphabet, obtained by segmenting
α starting from different positions (i.e. from position 1 to position m). Then
we build the generalized BuST for those m strings, and we visit it to mark
each internal node, both black and red, with the number of black leaves and
red nodes present in the subtree rooted at it. This operation can be performed

BuST-Bundled Suffix Trees 11

in time O(R). At this point, for each substring β of α (of size multiple of m),
we can read in the BuST its approximate frequency fR(β), i.e. the number of
substrings of α that are variants of β. With an abuse of notation, we denote
from now on by α and β also the corresponding strings in macrocharacters.

We compute the z-score under the hypothesis that α is generated by a
Bernoulli process, and we indicate the probability of generating a macroletter
a with pa. However, here we have to compute, for each substring β of α the
probability of finding a substring β′ ≈ β in α. For a macroletter a we have
that p′a =

∑
b≈a pb is the probability of finding a macrocharacter in relation

with a, while for a string a1 . . . ak the probability of finding an approximate
occurrence under the source model is Prob(a1 . . . ak) =

∏k
i=1 pai . Thus the

expected numbers of occurrences in α, |α| = n of a string in relation with
β, |β| = m is (n − m + 1)Prob(β). Therefore we can adopt the same trick
used for computing expectations for the exact case: we precompute a vector
A[i] = Prob(α[1 . . . i]) in linear time using the recursive relation A[i] = A[i−
1]pα[i], then the expectation for α[i . . . j] can be computed in constant time
by Prob(α[i . . . j]) = A[j]/A[i].
As normalization factor, we can use the expectation itself, or the first order
approximation of the variance. A direct computation of the variance itself
seems much more complicated, as here we cannot use anymore the method
used in [2] (in essence, we should replace the concept of autocorrelation with
the weaker notion of ≈-autocorrelation, i.e. we should look for ≈-periods of
words; we leave this investigation for future work).

With those choices for the source model and for the normalization factor,
we are able to compute the z-score δ for each string labeling an inner node
(both black and red) of the BuST in constant time. Note that if the path in
the tree labeled by β ends in the middle of an edge, its frequency is the same
as that of the string βγ labeling the path from the root to the fist node (black
or red) below the end of β, and therefore δ(βγ) ≥ δ(β). So we are guaranteed,
in order to find the maximal surprising strings, that we need to compute
the index only for the nodes of the BuST. In addition the algorithm runs in
a time proportional to the size of the BuST itself, which is subquadratic on
average. Note also that the number of maximal surprising strings (modulo the
approximations introduced by the relation) is of the same size of the BuST,
so we are computing the z-score in optimal size and time.

6 Conclusions

We presented BuST, a new index structure for strings, which is an extension
of Suffix Trees where the alphabet is enriched with a non-transitive relation,
encapsulating some form of approximate information. This is the case, for
instance, of a relation induced by the Hamming distance for an alphabet
composed of macrocharacters on a base one. We showed that the average size
of the tree is subquadratic, despite a quadratic worst case dimension, and
we provided a construction algorithm linear in the size of the structure. In

12 Luca Bortolussi, Francesco Fabris, and Alberto Policriti

the final section, we discussed how BuST can be used for computing in a
efficient way a class of measures of statistical approximate overrepresentation
of substrings of a text α. We have also an implementation of the (naive)
construction of the data structure in C, which we used to perform some tests
on the size of BuST, showing that the bound given in Section 3 is rather
pessimistic (cf. again [4]).

BuST allow to extract approximate information from a string α in a simple
way, essentially in the same way exact information can be extracted from ST.
In addition, they are defined in an orthogonal way w.r.t. the relation and the
alphabet used, hence they can be adapted in different contexts with minor
efforts. Their main drawback is that the usage of a relation on the alphabet
permits to encode only a localized version of approximate information, like
global Hamming distance distributed evenly along strings.

Future directions include the exploration of other application domains, like
using the information contained in BuST to build heuristics for the difficult
consensus substring problem (cf. [7]).

References

1. A. Apostolico, M. E. Block, and Lonardi. Monotony of surprise and large-scale
quest for unusual words. Journal of Computational Biology, 7(3–4):283–313,
2003.

2. A. Apostolico, M. E. Block, S. Lonardi, and X. Xu. Efficient detection of unusual
words. Journal of Computational Biology, 7(1–2):71–94, 2000.

3. A. Apostolico and C. Pizzi. Monotone scoring of patterns with mismatches. In
Proceedings of WABI 2004, 2004.

4. L. Bortolussi, F. Fabris, and A. Policriti. Bundled suffix trees. Tech-
nical report, Dept. of Maths and Informatics, University of Udine, 2006.
http://www.dimi.uniud.it/bortolus/techrep.htm.

5. R. Cole, L. Gottlieb, and M. Lewenstein. Dictionary matching and indexing
with errors and don’t cares. In Proceedings of STOC 2004, pages 91–100, 2004.

6. D. Gusfield. Algorithms on Trees, Strings and Sequences: Computer Science and
Computational Biology. Cambridge University Press, London, 1997.

7. L. Marsan and M. F. Sagot. Extracting structured motifs using a suffix tree -
algorithms and application to promoter consensus identification. In Proceedings
of RECOMB 2000, pages 210–219, 2000.

8. G. Navarro. A guided tour to approximate string matching. ACM Computing
Surveys, 33(1):31–88, 2001.

9. G. Navarro, R. Baeza-Yates, E. Sutinen, and J. Tarhio. Indexing methods for
approximate string matching. IEEE Data Engineering Bulletin, 24(4):19–27,
2001.

10. W. Szpankowski. A generalized suffix tree and its (un)expected asymptotic
behaviors. SIAM J. Computing, 22:1176–1198, 1993.

11. W. Szpankowski, P. Jacquet, and B. McVey. Compact suffix trees resemble
patricia tries: Limiting distribution of depth. Journal of the Iranian Statistical
Society, 3:139–148, 2004.

